JPH03111707A - Detecting method of shape of object - Google Patents

Detecting method of shape of object

Info

Publication number
JPH03111707A
JPH03111707A JP24966489A JP24966489A JPH03111707A JP H03111707 A JPH03111707 A JP H03111707A JP 24966489 A JP24966489 A JP 24966489A JP 24966489 A JP24966489 A JP 24966489A JP H03111707 A JPH03111707 A JP H03111707A
Authority
JP
Japan
Prior art keywords
light
reflected
reflected light
shape
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24966489A
Other languages
Japanese (ja)
Inventor
Shinji Hashinami
伸治 橋波
Masahito Nakajima
雅人 中島
Tetsuo Hizuka
哲男 肥塚
Giichi Kakigi
柿木 義一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24966489A priority Critical patent/JPH03111707A/en
Publication of JPH03111707A publication Critical patent/JPH03111707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable improvement of precision in measurement of a shape by disposing a polarization control means and an analyzer sequentially on the optical axis of a reflected light from the surface of an object and by intercepting selectively a light being different in the number of times of reflection. CONSTITUTION:A linearly-polarized parallel beam generated by a laser light source unit 31 is passed through a lambda/2 wave plate 32 and turned into a light having an arbitrary azimuth angle and falls on a galvanomirror 34 which is made to vibrate by the drive of a motor 33, and thereby scanning of the beam is conducted. The beam reflected by the mirror 34 is condensed by a scanning lens 35 and applied to an object 36. The mirror 34 and a stage 37 are controlled synchronously and independently by a computer control so that an image of the object 36 be sensed. An image sensing system is constructed by arranging an imaging lens 38, a lambda/4 wave plate 39, an analyzer 40 and PSD 41, a position detecting means, sequentially on the optical axis of a reflected light. The lambda/4 wave plate 39 is equivalent to a polarization control means which controls the direction of polarization of the reflected light. Even when a light reflected in a plurality of times enters the lens 38, only a light reflected one time is detected by the PSD 41, according to this constitution, and thus the precision in measurement of a shape can be improved.

Description

【発明の詳細な説明】 〔概要〕 物体の形状を非接触で計測する物体形状検出方法に関し
、 多重反射が生じた場合でも、1回反射光のみを検出して
形状計測の精度を向上できる物体形状検出方法を提供す
ることを目的とし、 所定角度に設置した光源により発生した光を集束して物
体に照射し、該物体表面からの反射光を結像して受光し
、受光位置に応じた電気信号を出力する位置検出手段を
備え、該位置検出手段の出力に基づいて物体の形状を計
測する物体形状検出方法において、前記光源の光を所定
偏向角を有する直線偏向するように構成するとともに、
前記物体表面からの反射光の光軸上に、偏向状態を制御
する偏向制御手段と、検光子とを順次配置し、反射口数
の異なる光を選択的に検出して物体の形状を計測するよ
うに構成する。
[Detailed Description of the Invention] [Summary] Regarding an object shape detection method for measuring the shape of an object in a non-contact manner, an object that can improve the accuracy of shape measurement by detecting only one reflected light even when multiple reflections occur. The purpose of this method is to provide a shape detection method.The light generated by a light source installed at a predetermined angle is focused and irradiated onto an object, and the reflected light from the surface of the object is imaged and received. An object shape detection method comprising position detection means for outputting an electrical signal and measuring the shape of the object based on the output of the position detection means, the method comprising: linearly deflecting the light from the light source with a predetermined deflection angle; ,
A deflection control means for controlling a polarization state and an analyzer are sequentially arranged on the optical axis of the reflected light from the object surface, and the shape of the object is measured by selectively detecting light having different numbers of reflection points. Configure.

〔産業上の利用分野〕[Industrial application field]

本発明は、物体形状検査装置に関し、特に、物体の形状
を非接触で計測する物体形状検出方法に関する。
The present invention relates to an object shape inspection device, and particularly to an object shape detection method for measuring the shape of an object in a non-contact manner.

近年、物体に光を照射し、その反射光を検出することで
、物体の形状や位置を非接触で計測する方法が盛んに行
われている。中でも、物体の立体形状を計測する光検出
方式が必要とされているが、多種多様な対象物に対し満
足のいく光検出方式が開発されてない。このような光検
知方式を開発すれば、例えば、多種多様な対象物が搭載
されている表面実装部品の形状計測などにも応用できる
BACKGROUND ART In recent years, methods of measuring the shape and position of an object in a non-contact manner by irradiating the object with light and detecting the reflected light have been widely used. Among these, there is a need for a photodetection method that measures the three-dimensional shape of an object, but a photodetection method that is satisfactory for a wide variety of objects has not yet been developed. If such a light detection method is developed, it can be applied to, for example, shape measurement of surface-mounted components on which a wide variety of objects are mounted.

すなわち、表面実装部品(S M D : 5urfa
ce M。
That is, surface mount components (SMD: 5urfa
ce M.

unted Device)は、基板上に載置された状
態で半田付けされるので、わずかにブリッジ浮きや、半
田未着があった場合、これが原因で故障を起こしやすく
、確実な実装検査が望まれる。こうした実装検査は、目
視によって行われるのが一般的であった。しかし、目視
検査では人的過誤が避けられないことから自動的に実装
検査を行うことのできる装置が求められている。
Unted Devices are soldered while placed on a board, so if there is a slight floating bridge or unattached solder, this is likely to cause a failure, and reliable mounting inspection is desired. Such mounting inspections were generally performed visually. However, since human error is inevitable in visual inspection, there is a need for an apparatus that can automatically perform mounting inspection.

〔従来の技術〕[Conventional technology]

従来、物体の外形や位置を計測するために、2次元計測
が行われてきた。この計測方式では所定方向から光を照
射し、鉛直上方に設置した光検出器で反射光を検知し濃
淡画像を収集し、画像処理により形状計測を行っていた
Conventionally, two-dimensional measurement has been performed to measure the outer shape and position of an object. In this measurement method, light is irradiated from a predetermined direction, the reflected light is detected by a photodetector installed vertically above, a grayscale image is collected, and the shape is measured by image processing.

また、3次元形状を計測する方法も従来から試みられ、
3次元形状検知方式にも複数の方法がある。
In addition, methods to measure three-dimensional shapes have been tried in the past.
There are multiple methods for detecting three-dimensional shapes.

ところが、光を走査し、非接触で3次元形状を計測する
場合、光検知系に反射回数の異なる反射光が入射すると
、正しい反射光のみを検出できず、物体の正確な位置を
計測することができない。この現象は、物体の2次元的
外形などを計測するためにはあまり問題にならなかった
が、3次元計測での光検出では、非常に重大な問題とな
っていた。
However, when scanning light to measure three-dimensional shapes without contact, if reflected light with different number of reflections enters the light detection system, it will not be possible to detect only the correct reflected light, making it difficult to measure the exact position of the object. I can't. Although this phenomenon did not pose much of a problem when measuring the two-dimensional outline of an object, it became a very serious problem when detecting light in three-dimensional measurement.

従来の3次元形状計測法の中で、スポット光やスリット
光を対象物に照射し、三角測量の原理で高さを計測する
検知方式は、数l〜数十crnの対象物を数十μmの分
解能で高速、高精度に計測する方式として適している。
Among the conventional three-dimensional shape measurement methods, the detection method that irradiates the object with spot light or slit light and measures the height using the principle of triangulation is a method that measures the height of an object from several liters to several tens of crn by several tens of micrometers. It is suitable as a method for high-speed, high-precision measurement with a resolution of .

この方式を用いた従来の物体形状検出方法としては、例
えば第14図に示すようなレーザ走査型光学系を用いた
ものがある。同図において、コリメートしたレーザ光源
1からのレーザ光Paはモータ2の駆動により振動する
ガルバノミラ−3に入射し、このガルバノミラ−3によ
り反射レーザ光pbとして走査された後、走査レンズ4
(例えば、fθレンズ)で絞られ、ステージ5(図中、
矢印方向に移動可能)上の対象物6に照射される。そし
て、対象物6からの反射光Pcは結像レンズ7で集光さ
れて半導体装置検出素子(以下、P −3Dという)8
に結像され、PSD8により反射光PCを検出して対象
物6の高さと濃淡(明るさ)が同時に計測される。
As a conventional object shape detection method using this method, there is a method using a laser scanning optical system as shown in FIG. 14, for example. In the figure, a collimated laser beam Pa from a laser light source 1 is incident on a galvano mirror 3 that vibrates due to the drive of a motor 2, and after being scanned by this galvano mirror 3 as a reflected laser beam pb, a scanning lens 4
(for example, an fθ lens) and stage 5 (in the figure,
movable in the direction of the arrow)) is irradiated onto the object 6 above. Then, the reflected light Pc from the object 6 is condensed by an imaging lens 7 to a semiconductor device detection element (hereinafter referred to as P-3D) 8.
The reflected light PC is detected by the PSD 8, and the height and shading (brightness) of the object 6 are measured simultaneously.

ここで、PSDは、その受光面に照射されたレーザ光ス
ポットの位置に応じて2つの出力電流I、、I2の電流
値を変化させる半導体素子で、受光面の中央に光を照射
すると、11とI2とがほぼ等しい大きさとなり、また
、両辺の何れかに片寄って光を照射すると、片寄った方
の辺から引き出されて電流値が大きくなる特性を持つ。
Here, the PSD is a semiconductor element that changes the current values of two output currents I, I2 according to the position of the laser beam spot irradiated on its light receiving surface.When light is irradiated to the center of the light receiving surface, and I2 have approximately the same size, and when light is irradiated on one of both sides, the electric current is drawn from the off-centered side, and the current value increases.

すなわち、第14図の例の場合には、レーザ光の走査に
伴ってPSD8の受光面に、光の軌跡x、 y、  z
が描かれ、この軌跡はYが対象物6の上面に、そしてX
、Zが対象物6を載置する例えばステージ5の上面に対
応している。これらのx、y、zの軌跡に沿って出力さ
れたI、、I2は次式■■に従って演算処理され、それ
ぞれ高さh、および明るさPの値を得る。
That is, in the case of the example shown in FIG. 14, as the laser beam scans, light trajectories x, y, z are formed on the light receiving surface of the PSD 8.
is drawn, and this trajectory shows that Y is on the top surface of the object 6, and
, Z correspond to, for example, the upper surface of the stage 5 on which the object 6 is placed. I, , I2 output along these x, y, and z trajectories are processed according to the following equation (■■) to obtain the values of height h and brightness P, respectively.

P=1. +1.  ・・・・・・■ 上式■で求められたhは、対象物6の高さを表している
。例えば、このhを所定の検査基準値と比較すれば、対
象物6の高さの良否検査を自動的に行うことができる。
P=1. +1. ......■ h determined by the above formula (■) represents the height of the object 6. For example, by comparing this h with a predetermined inspection reference value, the height of the object 6 can be automatically inspected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の物体形状検出方法にあ
っては、レーザ走査型光学系により高速処理で、対象物
の高さと濃淡情報を同時に収集し、検査を行うことが可
能であるが、多重反射が発生した場合に、その対策が考
慮されておらず、必ずしも正確な高さが計測できないこ
とがあるという問題点があった。
However, with such conventional object shape detection methods, it is possible to perform inspection by simultaneously collecting height and shading information of the object using a laser scanning optical system at high speed. When this occurs, countermeasures are not taken into consideration, and there is a problem in that accurate height measurement may not always be possible.

すなわち、対象物6には、金属部品や、ガラス部品等が
存在し、所定の条件の反射面では、多重反射が容易に生
じる。例えば、第15図に示すように対象物6が表面実
装部品であるとき、その電極部6aに垂直上方から入射
した光pbは、ある条件で、1回反射光PC,以外に多
重反射光Pctが発生する。なお、図中のAは1回反射
点、B、B’は2回反射点を表す。これらの光がPSD
8面上に結像されると、PSD8からの高さ信号、明る
さ信号の両者に誤差が生じ、正確な高さが計測できない
That is, the object 6 includes metal parts, glass parts, etc., and multiple reflections easily occur on a reflective surface under predetermined conditions. For example, as shown in FIG. 15, when the object 6 is a surface-mounted component, the light pb incident vertically on the electrode portion 6a is reflected under certain conditions, in addition to the once-reflected light PC, the multiple reflected light Pct. occurs. Note that A in the figure represents a single reflection point, and B and B' represent twice reflection points. These lights are PSD
When the image is formed on eight planes, errors occur in both the height signal and the brightness signal from the PSD 8, making it impossible to accurately measure the height.

第16図には多重反射が生じた時の側面図を示す。FIG. 16 shows a side view when multiple reflections occur.

垂直上方から入射したレーザ光pbは点Aで反射し、そ
の一部は検知角方向に進みPSD8面の点りで結像する
。また、点Aで正反射した反射光は、点Bで正反射しP
SD8面の点Eで結像する。この場合、点Bでの反射光
は光学上は点Cの虚像位置からの正反射と同じとなり高
さ計測の誤差となる。すなわち、点Aからの反射光はP
SD8において点りで結像し、点Cからの反射光(点B
と同様)はPSD8において点Eで結像するため、PS
D8では両者の中間位置である点Gからの反射光である
として点Fで結像する光として検出され、その場合は高
さ計測の誤差を生じる。
The laser beam pb incident vertically from above is reflected at point A, and a portion of it advances in the detection angle direction and forms an image at a dot on the PSD 8 surface. Also, the reflected light that is specularly reflected at point A is specularly reflected at point B and P
An image is formed at point E on the SD8 surface. In this case, the reflected light at point B is optically the same as regular reflection from the virtual image position at point C, resulting in an error in height measurement. That is, the reflected light from point A is P
The image is formed as a point in SD8, and the reflected light from point C (point B
) is imaged at point E in PSD8, so PS
At D8, it is detected as reflected light from point G, which is an intermediate position between the two, and the light is imaged at point F, and in this case, an error occurs in height measurement.

何れにしてもPSD8は同時に2点以上の多重反射を含
む光が照射されると、2点の平均位置に対応する電流を
発生し、真の高さは計測できない。
In any case, when the PSD 8 is simultaneously irradiated with light including multiple reflections at two or more points, it generates a current corresponding to the average position of the two points, and the true height cannot be measured.

そこで本発明は、多重反射が生じた場合でも、1回反射
光のみを検出して形状計測の精度を向上できる物体形状
検出方法を提供することを目的としている。
Therefore, an object of the present invention is to provide an object shape detection method that can improve the accuracy of shape measurement by detecting only one reflected light even when multiple reflections occur.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による物体形状検出方法は上記目的達成のため、
所定角度に設置した光源により発生した光を集束して物
体に照射し、該物体表面からの反射光を結像して受光し
、受光位置に応じた電気信号を出力する位置検出手段を
備え、該位置検出手段の出力に基づいて物体の形状を計
測する物体形状検出方法において、前記光源の光を所定
偏向角を有する直線偏向するように構成するとともに、
前記物体表面からの反射光の光軸上に、偏向状態を制御
する偏向制御手段と、検光子とを順次配置し、反射回数
の異なる光を選択的に検出して物体の形状を計測するよ
うにしている。
In order to achieve the above object, the object shape detection method according to the present invention has the following features:
comprising a position detection means for converging light generated by a light source installed at a predetermined angle and irradiating it onto an object, forming an image of reflected light from the surface of the object, receiving the light, and outputting an electric signal according to the light receiving position, In the object shape detection method for measuring the shape of the object based on the output of the position detection means, the light from the light source is configured to be linearly deflected at a predetermined deflection angle, and
A deflection control means for controlling a polarization state and an analyzer are sequentially arranged on the optical axis of the reflected light from the object surface, and the shape of the object is measured by selectively detecting the light having a different number of reflections. I have to.

〔作用〕[Effect]

本発明では、物体表面からの反射光の光軸上に偏光制御
手段および検光子が順次配置され、反射回数の異なる光
が選択的に遮断されて物体の形状が計測される。
In the present invention, the polarization control means and the analyzer are sequentially arranged on the optical axis of the reflected light from the object surface, and the shape of the object is measured by selectively blocking the light having different number of reflections.

したがって、多重反射が生じた場合でも1回反射光のみ
を検出して形状計測の精度が向上する。
Therefore, even if multiple reflections occur, only one reflected light is detected, improving the accuracy of shape measurement.

〔原理説明〕[Explanation of principle]

最初に、本発明の詳細な説明する。 First, the present invention will be explained in detail.

本発明者は、上記問題点を解決するために鋭意検討した
結果、直線偏光のレーザ光が反射する場合に起きる偏光
状態の変化を応用した方法を用いれば、PSDに複数回
反射した光が入っても、所定偏光の不必要な反射光を選
択的に遮光でき、これにより直接反射光のみを選択して
形状計測の誤差をなくするこができるという事実に到っ
た。
As a result of intensive studies to solve the above problems, the inventors of the present invention have found that if a method that applies changes in the polarization state that occur when linearly polarized laser light is reflected, light that has been reflected multiple times can enter the PSD. However, we have reached the fact that unnecessary reflected light of a predetermined polarization can be selectively blocked, and thereby only directly reflected light can be selected to eliminate errors in shape measurement.

次に、上記原理を詳細に説明すると、まず、第2図(a
)は金属面11、同図(b)はガラス面12に直線偏光
のレーザ13が入射した場合の反射光14の偏光の変化
を示すものである。伝導媒質の金属と透明誘電体のガラ
スとは、同じ式で表され、反射光の振幅は、 R,=tan(φ−x)/1an (φ+X) ・AP  ・・・・・・■R,=−sin
(φ−x)/5in (φ+X) ・A、・・・・・・■ で表されている。ここで、R,、R,は反射光の垂直、
水平成分、φは入射角、Xは屈折角、AP。
Next, to explain the above principle in detail, first, Fig. 2 (a
) shows the change in polarization of the reflected light 14 when a linearly polarized laser 13 is incident on the metal surface 11, and FIG. The conduction medium metal and the transparent dielectric glass are expressed by the same formula, and the amplitude of the reflected light is R, = tan (φ-x)/1an (φ+X) ・AP ・・・・・・■R, =-sin
It is expressed as (φ-x)/5in (φ+X) ・A,...■. Here, R,,R, is the vertical direction of the reflected light,
horizontal component, φ is the angle of incidence, X is the angle of refraction, AP.

A、は入射光の垂直、水平成分をそれぞれ示す。A indicates the vertical and horizontal components of the incident light, respectively.

また、金属はXが複素数であり、ガラスでは、実数とな
る。したがって、金属では、RP/APR3/ A 3
も、複素数であり、反射により位相の変化がおこる。そ
して、第3図(a)〜(c)に示すように一般に金属で
は直線偏光が入射しても、反射光は楕円偏光となる。ま
た、ガラス面では、直線偏光が入射すると、反射光も直
線偏光となる。
Further, for metals, X is a complex number, and for glass, it is a real number. Therefore, in metals, RP/APR3/A3
is also a complex number, and a change in phase occurs due to reflection. As shown in FIGS. 3(a) to 3(c), even if linearly polarized light is incident on a metal, the reflected light generally becomes elliptically polarized light. Furthermore, when linearly polarized light is incident on a glass surface, the reflected light also becomes linearly polarized light.

ここで、入射光が直線偏光で、その振動方向が入射面と
角α8をなすとする。すなわち、次式が成立するとする
Here, it is assumed that the incident light is linearly polarized light, and its vibration direction makes an angle α8 with the incident surface. That is, it is assumed that the following equation holds true.

tanα==As/Ap・・・・・・■また、反射光に
ついては、α、とすると、t a fict、 =Rs
 /Rp =−cos(φ−x)/cos (φ+X) ・ tanα1 ・・・・・・■となる。
tanα==As/Ap...■Also, regarding the reflected light, if α, then ta fict, =Rs
/Rp=-cos(φ-x)/cos(φ+X)・tanα1...■.

したがって、入射方位角α8−0°、90°のときは、
上式〇、■、■より反射方位角α、はα□と等しくなる
Therefore, when the incident azimuth is α8-0°, 90°,
From the above formulas 〇, ■, ■, the reflection azimuth angle α is equal to α□.

第4図(a)〜(c)は金属面11に対する入射方位角
α五をそれぞれO’、45°、900とし、入射角φを
0’、40°、85°、90°に変化させたときの反射
光の偏光の変化状態を示すもので、この図から明らかで
あるように、α、=456のときのみ反射方位角α、に
変化が生ることが判る。
In Fig. 4 (a) to (c), the incident azimuth α with respect to the metal surface 11 is set to O', 45°, and 900, respectively, and the incident angle φ is changed to 0', 40°, 85°, and 90°. As is clear from this figure, a change occurs in the reflection azimuth α only when α=456.

一方、第5図は、ガラス面12での反射方位角の変化を
示すもので、この場合もα1=45’のときのみ反射方
位角α、に変化が生じる。
On the other hand, FIG. 5 shows changes in the reflection azimuth angle on the glass surface 12, and in this case as well, the reflection azimuth angle α changes only when α1=45'.

次に、金属面11やガラス面12に2回反射した場合を
考える。第6図は2回反射光路を示すもので、入射方位
角α、=O”、90°のときは、1回反射と同様に偏光
の変化は無く、入射光の偏光が保存される。ところが、
α1=45’で入射した光は、入射角や反射面の材質で
偏光方向が変化する。そこで、入射光の振幅をAP 、
  As、入射角度をφ。
Next, consider the case where the light is reflected twice on the metal surface 11 or the glass surface 12. Figure 6 shows a twice-reflected optical path, and when the incident azimuth α, = O'', is 90°, there is no change in polarization, as in the case of single reflection, and the polarization of the incident light is preserved. ,
The polarization direction of the light incident at α1=45' changes depending on the incident angle and the material of the reflecting surface. Therefore, the amplitude of the incident light is AP,
As, the incident angle is φ.

とし、反射面H′での1回反射光をR□+  R3l9
反射角をφ1とする。また、この反射光は反射面Iに入
射角φ2で入射し、2回反射光は、R,2,R52の振
幅で反射する。反射面H,Iの組み合わせとしては、次
の表1のようなものがある。
Then, the light reflected once on the reflecting surface H' is R□+R3l9
Let the reflection angle be φ1. Further, this reflected light is incident on the reflective surface I at an incident angle φ2, and the twice reflected light is reflected with amplitudes of R,2 and R52. Combinations of the reflective surfaces H and I are shown in Table 1 below.

反射面の組み合わせ(表1) また、次の表2に入射偏光45°での2回反射光の偏光
状態を示す。
Combinations of Reflective Surfaces (Table 1) Table 2 below shows the polarization state of the twice reflected light when the incident polarization is 45°.

(以下、本頁余白) 入射偏光45°のときの2回反射光の偏光(表2) この表からガラス−ガラスの組み合わせは、2回反射し
ても直線偏光となるが、その他は、楕円偏光となること
が判る。
(Hereinafter, in the margin of this page) Polarization of twice-reflected light when the incident polarization is 45° (Table 2) From this table, it can be seen that the glass-glass combination becomes linearly polarized light even if it is reflected twice, but for other cases, it becomes elliptical. It turns out that the light is polarized.

第7図および第8図に入射光が反射面Hで反射した場合
の正反射光a、散乱光す、cの偏光の変化を示す。各図
中の散乱光す、cの矢印は、入射光と反射光を含む平面
内の散乱光の方向と強度を示している。反射光す、cの
偏光方向は、金属面およびガラス面でも正反射光a(7
)偏光方向と同じ向きを示す。
FIGS. 7 and 8 show changes in the polarization of specularly reflected light a, scattered light S, and c when incident light is reflected by the reflecting surface H. The arrows of scattered light (i) and (c) in each figure indicate the direction and intensity of scattered light within a plane including incident light and reflected light. The polarization direction of the reflected light beams S and C is the same as that of the specularly reflected light A(7) even on metal and glass surfaces.
) indicates the same direction as the polarization direction.

以上述べた原理を基に、偏光分離法を金属およびガラス
を材質とする被測定物に適用する。そして、上記論理よ
り、1つの入射光を対象物に入射したとき、複数の反射
光が生じた場合の反射光の分離を可能にする。このため
には、入射偏光方位角がO″や90’では1回反射光と
複数反射光に偏光方向の差が生じない。そこで、0°〜
90°の間の角度で入射する必要がある。
Based on the principles described above, the polarization separation method is applied to objects to be measured made of metal and glass. Based on the above logic, it is possible to separate the reflected lights when a plurality of reflected lights occur when one incident light enters the object. For this purpose, when the incident polarization azimuth is O'' or 90', there is no difference in polarization direction between the once reflected light and the multiple reflected light.
The angle of incidence must be between 90°.

第9図に、光の反射について場合分けをして示す。反射
面Hに関しては、金属とガラスの組み合わせが考えられ
ることは、前記表1に示した通りである。そこでここで
は、反射面I4は全て金属面とする。第9図のように、
(a)、  (b)、  (c)の3通りのモデルを考
える。ここで、(a)。
FIG. 9 shows cases of light reflection. Regarding the reflective surface H, as shown in Table 1 above, a combination of metal and glass can be considered. Therefore, here, all the reflective surfaces I4 are metal surfaces. As shown in Figure 9,
Consider three models (a), (b), and (c). Here, (a).

(b)に関しては、1回反射光のみしか検知方向に光が
進まないため、光を分離する必要が無い。
Regarding (b), since the light travels in the detection direction only once reflected, there is no need to separate the lights.

ところが、(c)のように円筒状の対象物21や、エツ
ジのある物体22があるときは、多重反射が起きる。こ
の場合、1回反射光、2回反射光共に楕円偏光である。
However, when there is a cylindrical object 21 or an edged object 22 as shown in (c), multiple reflections occur. In this case, both the once reflected light and the twice reflected light are elliptically polarized light.

ところが、反射偏光の方位角に違いがあれば、両者を分
離できる。
However, if there is a difference in the azimuth angle of the reflected polarized light, the two can be separated.

第1図に、両者を分離する場合の偏光分離光学系を示す
。この光学系は2つの偏光方向が異なった反射光の内、
どちらか一方を通過させ、他方を遮光することができる
ものであり、これにより多重反射光を遮光しようとする
ものである。まず、2つの反射光23.24は、λ/4
波長板(偏光制御手段に相当)25を通る。ここで、λ
/4波長板25の長軸方向と、遮光したい反射光24の
長軸方向を一致させておく。この波長板を通った2つの
反射光23.24のうち、反射光24は直線偏光に変換
され、反射光23は楕円偏光のままで通過する。そこで
、次に検光子26により、直線偏光となった反射光24
のみを遮光し、楕円偏光の反射光23は通過させる。
FIG. 1 shows a polarization separation optical system for separating both. This optical system uses two reflected lights with different polarization directions.
It is possible to allow one of them to pass and block the other, thereby attempting to block multiple reflected light. First, the two reflected lights 23 and 24 are λ/4
The light passes through a wavelength plate (corresponding to polarization control means) 25. Here, λ
The long axis direction of the /4 wavelength plate 25 and the long axis direction of the reflected light 24 to be blocked are made to match. Of the two reflected lights 23 and 24 that have passed through this wavelength plate, reflected light 24 is converted into linearly polarized light, and reflected light 23 passes through as elliptically polarized light. Then, the reflected light 24, which has become linearly polarized light, is analyzed by the analyzer 26.
The reflected light 23 of elliptically polarized light is allowed to pass through.

この方法によると、方位角の違う複数の楕円偏光を分離
し、希望の反射光のみを選択することが可能である。し
たがって、反射光23を1回反射光に対応させ、反射光
24を多重反射光に対応させると、1回反射光のみを通
過させて多重反射光の影響を除去し、形状計測の精度を
向上させることができる。
According to this method, it is possible to separate a plurality of elliptically polarized lights having different azimuthal angles and select only the desired reflected light. Therefore, by making the reflected light 23 correspond to the once reflected light and the reflected light 24 corresponding to the multiple reflected light, only the once reflected light is allowed to pass, eliminating the influence of the multiple reflected light, and improving the accuracy of shape measurement. can be done.

〔実施例〕〔Example〕

次に、上記基本原理に基づく本発明の実施例について説
明する。
Next, embodiments of the present invention based on the above basic principle will be described.

葉上災旅桝 第10図は本発明の第1実施例構成図であり、物体の形
状検査装置を示している。図中、31はレーザ光源ユニ
ット(光源に相当)であり、半導体レーザとコリメーテ
ィングレンズからなり、直線偏光の平行ビームを発生さ
せる。ここで発生した直線偏光平行ビームは、λ/2波
長板32を通り任意の方位角を有する光に変換される。
FIG. 10 is a block diagram of a first embodiment of the present invention, and shows an object shape inspection device. In the figure, a laser light source unit 31 (corresponding to a light source) is composed of a semiconductor laser and a collimating lens, and generates a parallel beam of linearly polarized light. The linearly polarized parallel beam generated here passes through the λ/2 wavelength plate 32 and is converted into light having an arbitrary azimuth angle.

次に、モータ33の駆動により振動するガルバノミラ−
34に入射し、ビームの走査を行う。ガルバノミラ−3
4で反射したビームは走査レンズ35で集光し、対象物
36に垂直上方向(Z軸に平行)から照射する。対象物
36はステージ37上にあり、ガルバノミラ−34とス
テージ37をコンピュータコントロールにより同期を取
り、独立に制御して対象物36を描像する。
Next, the galvanometer mirror vibrates due to the drive of the motor 33.
34, and the beam is scanned. Galvano mirror 3
The beam reflected by 4 is condensed by a scanning lens 35 and irradiated onto an object 36 from vertically upward (parallel to the Z axis). The object 36 is placed on a stage 37, and the galvanometer mirror 34 and the stage 37 are synchronized by computer control and controlled independently to image the object 36.

撮像系は、ステージ37面に対し所定の角度に設置し、
反射光の光軸上に結像レンズ38、λ/4波長板39、
検光子40およびPSD (位置検出手段に相当)41
を順次配列して構成する。λ/4波長板39は反射光の
偏光方向を制御する偏光制御手段に相当する。
The imaging system is installed at a predetermined angle with respect to the stage 37 surface,
On the optical axis of the reflected light, an imaging lens 38, a λ/4 wavelength plate 39,
Analyzer 40 and PSD (corresponding to position detection means) 41
Configure by arranging them sequentially. The λ/4 wavelength plate 39 corresponds to polarization control means for controlling the polarization direction of reflected light.

以上の構成において、本方式では、ビームを1次元に走
査して高さと明るさを同時に計測する。
In the above configuration, in this method, the beam is scanned one-dimensionally to simultaneously measure height and brightness.

また、ステージコントロール回路により、ステージ37
を光走査方向に対し垂直方向に移動することで、対象物
36の3次元形状が計測できる。
In addition, the stage control circuit allows the stage 37
By moving in a direction perpendicular to the optical scanning direction, the three-dimensional shape of the object 36 can be measured.

この計測で、例えば対象物36のエツジなどで反射した
光により多重反射が生じた場合には、前述の基本原理の
項で述べたような偏光分離法を適用し、結像レンズ38
には複数回反射した光が入ってもλ/4波長板39およ
び検光子40を用いることで所定偏光の多重反射に対応
する光を選択的に遮光でき、1回反射光のみをPSD4
1で検出して形状計測の精度を向上させることができる
。また、多重反射の影響を避けるために偏光分離法を用
いて迅速な処理を行っているから、対象物36の高さと
明るさを高速(0,5M/画素)で検出することができ
る。
In this measurement, if multiple reflections occur due to light reflected from the edges of the object 36, for example, the polarization separation method as described in the basic principle section above is applied, and the imaging lens 36
Even if light that has been reflected multiple times enters the PSD 4, by using the λ/4 wavelength plate 39 and the analyzer 40, it is possible to selectively block the light corresponding to multiple reflections of a predetermined polarized light, and only the once reflected light can be transmitted to the PSD4.
1, the accuracy of shape measurement can be improved. Furthermore, since rapid processing is performed using the polarization separation method to avoid the influence of multiple reflections, the height and brightness of the object 36 can be detected at high speed (0.5M/pixel).

第」Jo【桝 第11図は本発明の第2実施例を示す図であり、本実施
例はガルバノミラ−を回転ミラー45に変えたものであ
る。すなわち、λ/2波長板32を通過した平行ビーム
は回転ミラー45の側面により高速で走査された後、反
射ミラー46で反射しfθレンズ47を通り、さらに反
射ミラー48で反射して対象物36に照射される。本実
施例では、回転ミラー45を回転させることにより、第
1実施例以上に高速で対象物36を走査できるという利
点がある。
Figure 11 shows a second embodiment of the present invention, in which the galvanometer mirror is replaced with a rotating mirror 45. That is, the parallel beam that has passed through the λ/2 wavelength plate 32 is scanned at high speed by the side surface of the rotating mirror 45, is reflected by the reflection mirror 46, passes through the fθ lens 47, is further reflected by the reflection mirror 48, and is directed toward the object 36. is irradiated. This embodiment has the advantage that by rotating the rotary mirror 45, the object 36 can be scanned at a higher speed than in the first embodiment.

策主裏庭班 第12図は本発明の第3実施例を示す図であり、本実施
例はスポット光に代えてスリット光を投光するものであ
る。すなわち、レーザ光線ユニット31からの光は反射
ミラー49で反射した後、λ/2波長板50を通って偏
光され、シリンドリカルレンズ51に入射する。そして
、シリンドリカルレンズ51でスポット光が細長いスリ
ット光に変換されてそのまま対象物36に投光される。
Figure 12 shows a third embodiment of the present invention, in which a slit light is projected instead of a spot light. That is, after the light from the laser beam unit 31 is reflected by the reflection mirror 49, it is polarized through the λ/2 wavelength plate 50 and enters the cylindrical lens 51. Then, the spot light is converted into an elongated slit light by the cylindrical lens 51, and the light is directly projected onto the object 36.

対象物36に投光された光の反射光は結像レンズ38、
λ/4波長板39、検光子40を順次通過してCODカ
メラ(位置検出手段に相当)52によって受光される。
The reflected light of the light projected onto the object 36 is reflected by an imaging lens 38,
The light passes sequentially through a λ/4 wavelength plate 39 and an analyzer 40, and is received by a COD camera (corresponding to position detection means) 52.

したがって、本実施例ではスポットでないため光の走査
が不必要である。
Therefore, in this embodiment, since it is not a spot, scanning of light is unnecessary.

茅↓実施± 第13図は本発明の第4実施例を示す図であり、本実施
例は面照射を行うものである。すなわち、レーザ光線ユ
ニット31からの光はビームエクスパンダ−53により
面方向に拡大してλ/2波長板32に入射し、その後、
対象物36に面照射される。面照射された光は第3実施
例と同様の構成でCCDカメラ52によって面単位で受
光される。したがって、本実施例では2次元の走査が瞬
時にできるという利点がある。
Figure 13 is a diagram showing a fourth embodiment of the present invention, and this embodiment performs surface irradiation. That is, the light from the laser beam unit 31 is expanded in the plane direction by the beam expander 53 and enters the λ/2 wavelength plate 32, and then,
The target object 36 is illuminated with a surface. The surface-irradiated light is received on a surface-by-surface basis by a CCD camera 52 with a configuration similar to that of the third embodiment. Therefore, this embodiment has the advantage that two-dimensional scanning can be performed instantaneously.

なお、上記各実施例では対象物に対し光を垂直方向から
照射し、斜め方向から光を検出しているが、これに限ら
ず、例えば光を斜め方向から照射し、垂直上方から光を
検出したり、あるいは斜め方向から光を検出してもよい
。この場合に、光の入射角度、検知角度は任意に設定し
てよい。
Note that in each of the above embodiments, light is irradiated onto the object from a vertical direction and light is detected from an oblique direction, but the invention is not limited to this, for example, light may be irradiated from an oblique direction and light is detected from vertically above. Alternatively, the light may be detected from an oblique direction. In this case, the incident angle and detection angle of light may be set arbitrarily.

また、光位置検出器は対象物に対し複数方向に所定の角
度で設置し、光を検出するようにしてもよく、そのよう
にすると、いわゆる三角測量の欠点である死角がなくな
り、形状計測の精度が向上する。
In addition, the optical position detector may be installed at predetermined angles in multiple directions relative to the target object to detect light. In this way, the blind spot, which is a drawback of so-called triangulation, will be eliminated and shape measurement will be easier. Improves accuracy.

さらに、入射光源用波長板、光検知用波長板および検光
子を光軸に対し回転させるような機構を有し、最適角度
に調整可能であるようにしてもよい。
Furthermore, a mechanism may be provided to rotate the incident light source wavelength plate, the light detection wavelength plate, and the analyzer with respect to the optical axis, so that they can be adjusted to optimal angles.

また、偏向制御手段として、例えば波長板の代わりに光
変調素子を用い、電気的に偏光方向を所定の角度に制御
するようにしてもよい。
Further, as the polarization control means, for example, a light modulation element may be used instead of a wavelength plate, and the polarization direction may be electrically controlled to a predetermined angle.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多重反射が生じた場合でも1回反射光
のみを検出して多重反射による誤差を無くすことができ
、物体の形状計測の精度を向上させることができる。
According to the present invention, even if multiple reflections occur, it is possible to detect only one reflected light to eliminate errors caused by multiple reflections, and it is possible to improve the accuracy of measuring the shape of an object.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜9図は本発明の詳細な説明する図であり、第1図
はその偏光分離光学系を示す図、第2図はその反射光の
状況を示す図、 第3図はその反射光の偏光変化を示す図、第4図はその
金属面反射での偏光変化を示す図、第5図はそのガラス
面反射での偏光変化を示す図、 第6図はその2回反射光路を示す図、 第7図はその散乱光の偏光を説明する図、第8図はその
他の散乱光の偏光を説明する図、第9図はその光の反射
モデルを説明する図、第10図は本発明に係る物体形状
検出方法の第1実施例の構成図、 第11図は本発明に係る物体形状検出方法の第2実施例
の構成図、 第12図は本発明に係る物体形状検出方法の第3実施例
の構成図、 第13図は本発明に係る物体形状検出方法の第4実施例
の構成図、 第14〜16図は従来の物体形状検出方法を示す図であ
り、 第14図はその全体構成図、 第15図はその多重反射の反射光を説明する図、第16
図はその多重反射の経路を説明する図である。 23.24・・・・・・反射光、 25.39・・・・・・λ/4波長板(偏光制御手段)
26.40・・・・・・検光子、 31・・・・・・レーザ光線ユニット(光源)、32.
50・・・・・・λ/2波長板、33・・・・・・モー
タ、 34・・・・・・ガルバノミラ− 35・・・・・・走査レンズ・ 36・・・・・・対象物、 37・・・・・・ステージ、 38・・・・・・結像レンズ、 41・・・・・・PSD (位置検出手段)、45・・
・・・・回転ミラー 46.48.49・・・・・・反射ミラー47・・・・
・・fθレンズ、 51・・・・・・シリンドリカルレンズ、52・・・・
・・CCDカメラ(位置検出手段)53・・・・・・ビ
ームエクスパンダ−本発明の詳細な説明するだめの反射
光の状況を示す図第2図 本発明の詳細な説明するための反射光の偏光変化を示す
同第3図 反射光 本発明の詳細な説明するための2回反射光路を示す図第 図 本発明の詳細な説明するため φ勇40゜ φ=関゛ の金属面反射での偏光変化を示す図 φ=90゜ a;正反射光 b:散乱光 C:散乱光 本発明の詳細な説明するための散乱光の偏光を説明する
同第7図 第1実施例の構成図 第 0 図 第3実施例の構成図 第 2 図 第4実施例の構成図 第 3 図 第 14 図 d 従来例の多重反射の反射光を説明する同第 5 図
Figures 1 to 9 are diagrams explaining the present invention in detail. Figure 1 is a diagram showing its polarization separation optical system, Figure 2 is a diagram showing the state of its reflected light, and Figure 3 is its reflected light. Figure 4 shows the polarization change due to reflection from a metal surface, Figure 5 shows the polarization change due to reflection from a glass surface, and Figure 6 shows the optical path of the twice reflected light. Figure 7 is a diagram explaining the polarization of the scattered light, Figure 8 is a diagram explaining the polarization of other scattered lights, Figure 9 is a diagram explaining the reflection model of the light, and Figure 10 is a diagram explaining the polarization of the scattered light. FIG. 11 is a block diagram of the first embodiment of the object shape detection method according to the present invention. FIG. 11 is a block diagram of the second embodiment of the object shape detection method according to the present invention. FIG. 13 is a configuration diagram of a fourth embodiment of the object shape detection method according to the present invention. FIGS. 14 to 16 are diagrams showing a conventional object shape detection method. is its overall configuration diagram, Figure 15 is a diagram explaining the reflected light of multiple reflections, and Figure 16 is a diagram explaining the reflected light of multiple reflections.
The figure is a diagram illustrating the path of multiple reflections. 23.24... Reflected light, 25.39... λ/4 wavelength plate (polarization control means)
26.40... Analyzer, 31... Laser beam unit (light source), 32.
50... λ/2 wavelength plate, 33... Motor, 34... Galvano mirror 35... Scanning lens, 36... Target object , 37...stage, 38...imaging lens, 41...PSD (position detection means), 45...
...Rotating mirror 46.48.49...Reflecting mirror 47...
...fθ lens, 51...Cylindrical lens, 52...
... CCD camera (position detecting means) 53 ... Beam expander - Diagram showing the situation of reflected light for detailed explanation of the present invention Fig. 2 Reflected light for detailed explanation of the present invention Fig. 3 shows the polarization change of the reflected light; Fig. 3 shows the twice-reflected optical path for the detailed explanation of the present invention. Diagram showing the polarization change of φ=90°a; Regularly reflected light b: Scattered light C: Scattered light FIG. 7 illustrating the polarization of scattered light for detailed explanation of the present invention. Fig. 0 A block diagram of the third embodiment Fig. 2 A block diagram of the fourth embodiment Fig. 14 Fig. d Fig. 5 explaining the reflected light of multiple reflections in the conventional example

Claims (1)

【特許請求の範囲】 所定角度に設置した光源(31)により発生した光を集
束して物体(36)に照射し、 該物体(36)表面からの反射光を結像して受光し、受
光位置に応じた電気信号を出力する位置検出手段(41
、52)を備え、 該位置検出手段(41、52)の出力に基づいて物体(
36)の形状を計測する物体形状検出方法において、 前記光源(31)の光を所定偏向角を有する直線偏向す
るように構成するとともに、 前記物体(36)表面からの反射光の光軸上に、偏向状
態を制御する偏向制御手段(39)と、検光子(40)
とを順次配置し、 反射回数の異なる光を選択的に検出して物体(36)の
形状を計測するようにしたことを特徴とする物体形状検
出方法。
[Claims] Light generated by a light source (31) installed at a predetermined angle is focused and irradiated onto an object (36), and the reflected light from the surface of the object (36) is imaged and received. Position detection means (41) that outputs an electrical signal according to the position
, 52), and detects the object () based on the output of the position detection means (41, 52).
36) In the object shape detection method for measuring the shape of the object (36), the light from the light source (31) is configured to be linearly deflected with a predetermined deflection angle, and the light reflected from the surface of the object (36) is deflected on the optical axis. , a deflection control means (39) for controlling the deflection state, and an analyzer (40)
A method for detecting the shape of an object, characterized in that the shape of the object (36) is measured by sequentially arranging the light beams and the light beams having a different number of reflections.
JP24966489A 1989-09-26 1989-09-26 Detecting method of shape of object Pending JPH03111707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24966489A JPH03111707A (en) 1989-09-26 1989-09-26 Detecting method of shape of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24966489A JPH03111707A (en) 1989-09-26 1989-09-26 Detecting method of shape of object

Publications (1)

Publication Number Publication Date
JPH03111707A true JPH03111707A (en) 1991-05-13

Family

ID=17196382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24966489A Pending JPH03111707A (en) 1989-09-26 1989-09-26 Detecting method of shape of object

Country Status (1)

Country Link
JP (1) JPH03111707A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343153A (en) * 2005-06-07 2006-12-21 Konica Minolta Sensing Inc Three-dimensional position measuring method and apparatus used for three-dimensional position measurement
JP2012127887A (en) * 2010-12-17 2012-07-05 Keyence Corp Optical displacement meter
WO2018221049A1 (en) * 2017-05-31 2018-12-06 シャープ株式会社 Optical radar apparatus
KR20210016745A (en) 2019-08-05 2021-02-17 이승주 Turning direction apparatus of vehicles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343153A (en) * 2005-06-07 2006-12-21 Konica Minolta Sensing Inc Three-dimensional position measuring method and apparatus used for three-dimensional position measurement
JP2012127887A (en) * 2010-12-17 2012-07-05 Keyence Corp Optical displacement meter
CN102564316A (en) * 2010-12-17 2012-07-11 株式会社其恩斯 Optical displacement meter
WO2018221049A1 (en) * 2017-05-31 2018-12-06 シャープ株式会社 Optical radar apparatus
KR20210016745A (en) 2019-08-05 2021-02-17 이승주 Turning direction apparatus of vehicles

Similar Documents

Publication Publication Date Title
US4828384A (en) High power laser beam intensity mapping apparatus
US4498776A (en) Electro-optical method and apparatus for measuring the fit of adjacent surfaces
JP2510786B2 (en) Object shape detection method and apparatus
JPS6249562B2 (en)
JPH04319615A (en) Optical height measuring apparatus
JPH03111707A (en) Detecting method of shape of object
JPH0914935A (en) Measuring device for three-dimensional object
KR20080098811A (en) Surface measurement apparatus
JPH10267624A (en) Measuring apparatus for three-dimensional shape
JPH0791930A (en) Three-dimensional scanner
JPH04221705A (en) Visual inspection device
JP3108588B2 (en) Shape measurement method and device
JPH03102249A (en) Method and apparatus for detecting foreign matter
JPH02268207A (en) Shape recognizing apparatus
JP2500658B2 (en) Scanning laser displacement meter
US3540831A (en) Indicium locating apparatus
JP2647924B2 (en) Height measuring device
RU2153647C2 (en) Device for check of linear sizes by triangulation method
JP2597711B2 (en) 3D position measuring device
JP2509776B2 (en) Three-dimensional shape measuring device
JPH05267117A (en) Method and device for detecting and setting gap between mask and substrate
JPS61191908A (en) Measurement of shape
JPH02276908A (en) Three-dimensional position recognizing device
JPS62503049A (en) Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects
JPS6127178A (en) Detection of beveling edge