JPH10267624A - Measuring apparatus for three-dimensional shape - Google Patents

Measuring apparatus for three-dimensional shape

Info

Publication number
JPH10267624A
JPH10267624A JP7481197A JP7481197A JPH10267624A JP H10267624 A JPH10267624 A JP H10267624A JP 7481197 A JP7481197 A JP 7481197A JP 7481197 A JP7481197 A JP 7481197A JP H10267624 A JPH10267624 A JP H10267624A
Authority
JP
Japan
Prior art keywords
measured
light spot
dimensional shape
light
psd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7481197A
Other languages
Japanese (ja)
Inventor
Kazunari Hirano
一成 平野
Yoshinobu Noritake
佳伸 則武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP7481197A priority Critical patent/JPH10267624A/en
Publication of JPH10267624A publication Critical patent/JPH10267624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a three-dimensional shape with high accuracy and at a high speed on the basis of an obtained signal by a method wherein an object to be measured is irradiated with one light spot, the light spot is scanned sequentially in different points on the object, to be measured, with the passage of time and parts which are irradiated with the light spot are put into visual fields of a plurality of a plurality of PSD cameras from mutually different directions. SOLUTION: Light which is radiated from a light source 101 is polarized by a galvanometer mirror 102, it is polarized via a rotating polygon mirror 103, and an object 10 to be measured is irradiated with a light spot. Tow PSD cameras 201, 202 are directed to the object 10 to be measured, and the light spot on the object 10 to be measured is image-formed on PSDs arranged on image-formation faces of the cameras 201, 202. When the light spot on the object 10, to be measured, at this point of time is situated in a point P, a computing operation which finds a visual-line angle looking t the point P on the basis of signal obtained by the PSD cameras 201, 202 is executed inside a computer 300, and the position in the three-dimensional space of the point P is found. In addition, an optical scanning device 100 is scanned, and a three-dimensional shape is found.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物体の三次元形状
を測定する三次元形状測定装置に関する。
The present invention relates to a three-dimensional shape measuring device for measuring a three-dimensional shape of an object.

【0002】[0002]

【従来の技術】近年、高速道路の料金所の形態としてノ
ンストップの料金所が考えられており、そこでは、正し
い料金を微収するために100km/hの高速で走行す
る車体の形状を高速に測定することが要請されているな
ど、物体の三次元形状の高速測定が要請されてきてい
る。
2. Description of the Related Art In recent years, non-stop tollgates have been considered as a form of tollgates on expressways, in which the shape of a vehicle running at a high speed of 100 km / h is reduced in order to finely collect correct tolls. For example, high-speed measurement of a three-dimensional shape of an object has been demanded.

【0003】従来、物体の三次元形状測定装置として特
公平6−65964号公報に開示された技術が知られて
いる。この公報には、ライン状の光を物体に照射し、そ
の照射したライン光をCCDカメラで観察するという方
式で物体の立体形状を測定する技術が開示されている。
Conventionally, a technique disclosed in Japanese Patent Publication No. 6-65964 has been known as a three-dimensional shape measuring apparatus for an object. This publication discloses a technique for measuring the three-dimensional shape of an object by irradiating the object with linear light and observing the irradiated line light with a CCD camera.

【0004】この方式は、物体に照射する光の照射経路
とCCDカメラがその物体上の光の照射ラインを睨む方
向(光の反射経路)との成す角度を求めるという三角測
量の原理に基づいている。
This method is based on the principle of triangulation in which an angle formed between an irradiation path of light irradiating an object and a direction in which a CCD camera looks at a light irradiation line on the object (light reflection path). I have.

【0005】[0005]

【発明が解決しようとする課題】上記公報に記載された
方式の場合、物体の三次元形状を測定する上での問題点
として、測定精度上の問題点と、測定速度上の問題点が
存在する。測定精度上の問題点としては、上記の原理は
光の照射経路と反射経路との成す角度を求める方式であ
るため、光の照射経路が厳密に定められている必要があ
るという点である。すなわち、物体を照射するライン状
の光が厳密に直線状の光である必要があり、直線からず
れるとそのずれた分光の照射経路に誤差を生じ、三角測
量に誤差を生じ、測定精度が低下することになる。
In the case of the method described in the above publication, there are two problems in measuring the three-dimensional shape of an object: measurement accuracy and measurement speed. I do. As a problem in measurement accuracy, the above-described principle is a method for obtaining an angle between a light irradiation path and a reflection path, and thus the light irradiation path needs to be strictly determined. In other words, the linear light that irradiates the object must be strictly linear light, and if it deviates from the straight line, an error will occur in the irradiation path of the deviated spectrum, an error will occur in triangulation, and measurement accuracy will decrease. Will do.

【0006】このため、コストアップを覚悟でこのライ
ン状の光を物体に照射する照射光学系には極めて収差の
少ない高精度の光学部材を採用するか、あるいは測定精
度を犠牲にしてコストダウンを図る必要がある。また、
測定速度の点に関しては、1ラインについて同時に測定
できるため一見高速測定が可能のように見えるが、CC
Dカメラの場合、1枚の画像を取り込むのに30分の1
秒ほどかかるため、1ラインにつきそれ以上の高速測定
は不可能である。また、その1ラインと交わる方向への
走査方法として、そのライン状のビームを走査すること
も考えられるが、そのようなライン状の光を走査すると
その走査の各点でそのライン状の光が厳密に直線を保っ
ている必要があり、このような高精度の光学系を構成す
るのは極めて困難である。一方、物体を移動台にのせて
移動することにより、そのライン状の光と交わる方向へ
の走査を実現することも考えられるが、その場合、測定
時間が極めて長時間となり、高速測定の要請に反するこ
とになる。
For this reason, the irradiation optical system for irradiating the object with this linear light in preparation for an increase in cost may employ a high-precision optical member having very little aberration, or reduce the cost by sacrificing the measurement accuracy. It is necessary to plan. Also,
Regarding the measurement speed, it seems that high-speed measurement is possible at first glance because it can be measured simultaneously for one line.
In case of D camera, it takes 1/30 to capture one image
Since it takes about a second, it is impossible to perform higher-speed measurement per line. As a scanning method in a direction intersecting with the one line, it is conceivable to scan the linear beam. However, when such a linear beam is scanned, the linear beam is scanned at each point of the scanning. It is necessary to maintain a strictly straight line, and it is extremely difficult to construct such a highly accurate optical system. On the other hand, it is conceivable to realize scanning in a direction intersecting with the linear light by moving the object on a moving table. Would be contrary.

【0007】本発明は、上記事情に鑑み、高精度かつ高
速な測定が可能な三次元形状測定装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a three-dimensional shape measuring apparatus capable of performing high-accuracy and high-speed measurement.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明の三次元形状測定装置は、被測定体の三次元形状を測
定する三次元形状測定装置において、1つの時点では被
測定体に1つの光スポットを照射し、時間経過に伴って
順次に、その被測定体上の異なる点に光スポットを移動
される光走査手段と、被測定体の光スポットが照射され
た部分を互いに異なる方向から視野におさめる、像面に
二次元のPSDが配置されたPSDカメラ複数台と、こ
れら複数台のPSDカメラで得られた信号に基づいて、
被測定体上の光スポットの三次元位置を求める演算部と
を備えたことを特徴とする。
A three-dimensional shape measuring apparatus according to the present invention for achieving the above object is a three-dimensional shape measuring apparatus for measuring a three-dimensional shape of an object to be measured. Light scanning means for irradiating two light spots and sequentially moving the light spots to different points on the object to be measured with the passage of time, and moving the light-irradiated portions of the object to be measured in different directions from each other. Based on signals obtained by a plurality of PSD cameras in which a two-dimensional PSD is arranged on an image plane, and signals obtained by the plurality of PSD cameras.
A calculation unit for obtaining a three-dimensional position of the light spot on the measured object.

【0009】本発明の三次元形状測定装置は、先ずPS
Dカメラを使用していることから高速測定に向いてい
る。また、本発明ではPSDカメラを複数台(ここでは
例えば2台とする)使用していることから、本発明で
は、被測定体上に照射された光スポットをそれら2台そ
れぞれのPSDカメラが睨む方向(2方向への光の反射
経路)どうしの成す角度を求めることになり、光スポッ
トを被測定体に照射する照射経路の変動は一切測定誤差
とはならず、またPSDではそのPSD上の光スポット
の重心位置が求められるため光スポットの寸法や形状も
誤差にはほとんど影響せず、安価な光走査装置で済む。
The three-dimensional shape measuring apparatus according to the present invention comprises a PS
Because it uses a D camera, it is suitable for high-speed measurement. Further, in the present invention, since a plurality of PSD cameras (here, for example, two) are used, in the present invention, each of the two PSD cameras gazes at a light spot irradiated on the measured object. The angle formed between the directions (reflection paths of light in two directions) is determined, and the fluctuation of the irradiation path for irradiating the light spot to the object to be measured does not cause any measurement error. Since the position of the center of gravity of the light spot is required, the size and shape of the light spot hardly affect the error, and an inexpensive optical scanning device is sufficient.

【0010】したがって本発明によれば高精度かつ高速
な三次元形状測定を行なう装置を安価に構成することが
できる。
Therefore, according to the present invention, an apparatus for performing high-accuracy and high-speed three-dimensional shape measurement can be configured at low cost.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は、本発明の三次元形状測定装置の一実
施形態の構成図である。この図1に示す三次元形状測定
装置は、被測定体10に光スポットを照射してその光ス
ポットを二次元的に走査する光走査装置100と、2台
のPSDカメラ201,202と、本発明にいう演算部
に相当するパーソナルコンピュータ300が備えられて
いる。
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of an embodiment of the three-dimensional shape measuring apparatus of the present invention. The three-dimensional shape measuring apparatus shown in FIG. 1 includes an optical scanning device 100 that irradiates a light spot on a measured object 10 and two-dimensionally scans the light spot, two PSD cameras 201 and 202, A personal computer 300 corresponding to an arithmetic unit according to the present invention is provided.

【0012】光走査装置100は、半導体レーザあるい
はLED等の光源101と、その光源から出射した光を
図1の紙面に垂直な方向に偏向させるガルバノメータミ
ラー102と、そのガルバノメータミラー102で反射
した光を、図1の紙面内で偏向させる回転多面鏡103
とで構成されている。ここで前述したように、光スポッ
トの照射位置や光スポットの形状等はほとんど誤差要因
とはならず、各光学部品は精度の低い安価なものであっ
てもよい。
The optical scanning device 100 includes a light source 101 such as a semiconductor laser or an LED, a galvanometer mirror 102 for deflecting light emitted from the light source in a direction perpendicular to the plane of FIG. 1, and light reflected by the galvanometer mirror 102. Is deflected in the plane of the paper of FIG.
It is composed of As described above, the irradiation position of the light spot, the shape of the light spot, and the like hardly cause an error, and each optical component may be an inexpensive one with low accuracy.

【0013】2台のPSDカメラ201,202は、被
測定体10の方向を向いており、被測定体10上の光ス
ポットが、それら2台のPSDカメラ201,202そ
れぞれの結像面に配置された各PSD上に結像される。
PSDセンサ(Position Sensitive
Device)自体は広く知られているため、詳細説
明は省略するが、このPSDは、そのセンサ面上に照射
された光スポットの光量重心位置をあらわすアナログ信
号を出力するセンサである。
The two PSD cameras 201 and 202 are oriented in the direction of the object to be measured 10, and the light spot on the object to be measured 10 is arranged on the image plane of each of the two PSD cameras 201 and 202. An image is formed on each of the PSDs.
PSD sensor (Position Sensitive)
Although the device itself is widely known, a detailed description thereof will be omitted. However, the PSD is a sensor that outputs an analog signal indicating the position of the center of light amount of the light spot irradiated on the sensor surface.

【0014】2台のPSDカメラ201,202でで得
られた、それぞれのPSDカメラ201,202に備え
られた各PSD面上の光スポットの重心位置をあらわす
信号は、コンピュータ300に伝えられ、AD変換によ
りディジタル信号に変換されてコンピュータ300に取
り込まれる。現時点における被測定体10上の光スポッ
トが、図1に示す点Pにあったとすると、コンピュータ
300内では、2台のPSDカメラ201,202で得
られた信号に基づいて、2台のそれぞれPSDカメラ2
01,202でその点Pを睨む視線どうしの角度θを求
める演算、あるいはこれと等価な演算が実行され、これ
により、点Pの三次元空間上の位置が求められる。光走
査装置100で走査された、被測定体上の各点の光スポ
ットについて同様な演算が実行され、これにより、被測
定体10の三次元形状が求められる。
Signals obtained by the two PSD cameras 201 and 202 and representing the positions of the centers of gravity of the light spots on the respective PSD surfaces provided in the respective PSD cameras 201 and 202 are transmitted to the computer 300, and are transmitted to the computer 300. The signal is converted into a digital signal by the conversion and is taken into the computer 300. Assuming that the light spot on the measured object 10 at the present time is at the point P shown in FIG. 1, the computer 300 generates two PSDs based on signals obtained by the two PSD cameras 201 and 202. Camera 2
In steps 01 and 202, an operation for obtaining the angle θ between the lines of sight looking at the point P or an operation equivalent thereto is executed, whereby the position of the point P in the three-dimensional space is obtained. Similar calculations are performed on the light spots at each point on the measured object scanned by the optical scanning device 100, and thereby the three-dimensional shape of the measured object 10 is obtained.

【0015】図2は、本発明の三次元形状測定装置の他
の実施形態の概略構成図である。ここでは、仮想立方体
400の中心位置に被測定体10が配置され、その仮想
立方体400の8つの頂点それぞれに、被測定体10が
配置された中心位置を向いたPSDカメラ200を配置
し、その仮想立方体400の各面の中心位置から被測定
体10に向けて光ビーム100aを照射し、それらの光
ビーム100aをそれぞれ走査する。ただし、光ビーム
100aの走査にあたっては、各光ビーム100aが同
時に被測定体10に照射されないよう切り換えが行なわ
れる。
FIG. 2 is a schematic configuration diagram of another embodiment of the three-dimensional shape measuring apparatus of the present invention. Here, the measured object 10 is arranged at the center position of the virtual cube 400, and at each of the eight vertices of the virtual cube 400, the PSD camera 200 facing the center position where the measured object 10 is arranged is arranged. A light beam 100a is emitted from the center position of each surface of the virtual cube 400 toward the measured object 10, and each of the light beams 100a is scanned. However, when scanning with the light beam 100a, switching is performed such that the light beams 100a are not simultaneously irradiated on the measured object 10.

【0016】図1に示す三次元形状測定装置の場合、被
測定体10の、図1の上側を向いた面の三次元形状しか
測定することができず、その被測定体全面の三次元形状
を測定するにはその被測定体10を回転させる必要があ
るが、被測定体10を回転させるとその回転が測定精度
の低下をもたらす原因となる場合がある。これに対し、
図2に示す三次元形状測定装置を構成すると、複雑な形
状の被測定体の場合であっても、ほとんど死角なしに、
その被測定体の三次元形状の極めて高精度の測定が可能
となる。
In the case of the three-dimensional shape measuring apparatus shown in FIG. 1, only the three-dimensional shape of the surface of the measured object 10 facing upward in FIG. 1 can be measured, and the three-dimensional shape of the entire measured object can be measured. In order to measure the measurement, it is necessary to rotate the object to be measured 10. However, when the object to be measured 10 is rotated, the rotation may cause a decrease in measurement accuracy. In contrast,
When the three-dimensional shape measuring apparatus shown in FIG. 2 is configured, even in the case of a measurement target having a complicated shape, almost no blind spot
Very high-precision measurement of the three-dimensional shape of the measured object becomes possible.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
高精度な三次元形状測定を高速に行なうことができ、か
つ安価な装置を構成することができる。
As described above, according to the present invention,
High-accuracy three-dimensional shape measurement can be performed at high speed, and an inexpensive apparatus can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の三次元形状測定装置の一実施形態の構
成図である。
FIG. 1 is a configuration diagram of an embodiment of a three-dimensional shape measuring apparatus according to the present invention.

【図2】本発明の三次元形状測定装置の他の実施形態の
概略構成図である。
FIG. 2 is a schematic configuration diagram of another embodiment of the three-dimensional shape measuring apparatus of the present invention.

【符号の説明】[Explanation of symbols]

10 被測定体 100 光走査装置 100a 光ビーム 101 光源 102 ガルバノメータミラー 103 回転多面鏡 200,201,202 PSDカメラ 300 コンピュータ 400 仮想立方体 Reference Signs List 10 object to be measured 100 optical scanning device 100a light beam 101 light source 102 galvanometer mirror 103 rotating polygon mirror 200, 201, 202 PSD camera 300 computer 400 virtual cube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定体の三次元形状を測定する三次元
形状測定装置において、 1つの時点では被測定体に1つの光スポットを照射し、
時間経過に伴って順次に、該被測定体上の異なる点に光
スポットを移動される光走査手段と、 被測定体の光スポットが照射された部分を互いに異なる
方向から視野におさめる、像面に二次元PSDが配置さ
れたPSDカメラ複数台と、 これら複数台のPSDカメラで得られた信号に基づい
て、被測定体上の光スポットの三次元位置を求める演算
部とを備えたことを特徴とする三次元形状測定装置。
1. A three-dimensional shape measuring apparatus for measuring a three-dimensional shape of a measured object, comprising: irradiating the measured object with one light spot at one time;
An optical scanning means for sequentially moving a light spot to a different point on the object to be measured with time, and an image plane for bringing a portion of the object to be measured irradiated with the light spot into fields of view from different directions. A plurality of PSD cameras each having a two-dimensional PSD arranged therein, and a calculation unit for obtaining a three-dimensional position of a light spot on the measured object based on signals obtained by the plurality of PSD cameras. Characteristic three-dimensional shape measuring device.
JP7481197A 1997-03-27 1997-03-27 Measuring apparatus for three-dimensional shape Pending JPH10267624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7481197A JPH10267624A (en) 1997-03-27 1997-03-27 Measuring apparatus for three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7481197A JPH10267624A (en) 1997-03-27 1997-03-27 Measuring apparatus for three-dimensional shape

Publications (1)

Publication Number Publication Date
JPH10267624A true JPH10267624A (en) 1998-10-09

Family

ID=13558076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7481197A Pending JPH10267624A (en) 1997-03-27 1997-03-27 Measuring apparatus for three-dimensional shape

Country Status (1)

Country Link
JP (1) JPH10267624A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010087493A (en) * 2000-03-07 2001-09-21 황상기 A survey equipment and method for rock excavation surface
EP1336302A2 (en) * 2000-08-24 2003-08-20 OG Technologies, Inc. Engine bearing inspection system
US6980301B2 (en) 2002-07-25 2005-12-27 Cubic Co., Ltd Method and apparatus for three-dimensional surface morphometry
KR100695018B1 (en) 2005-10-05 2007-03-14 (주)희송지오텍 Multi-photo system for calculating 3d coordinates
JP2007198841A (en) * 2006-01-25 2007-08-09 Soatec Inc Optical measuring method and apparatus
CN108340071A (en) * 2017-01-24 2018-07-31 株式会社迪思科 Light spot shape detection device
CN108562229A (en) * 2018-06-08 2018-09-21 厦门麦克玛视电子信息技术有限公司 A kind of die forming detection device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010087493A (en) * 2000-03-07 2001-09-21 황상기 A survey equipment and method for rock excavation surface
EP1336302A2 (en) * 2000-08-24 2003-08-20 OG Technologies, Inc. Engine bearing inspection system
EP1336302A4 (en) * 2000-08-24 2006-01-11 Og Technologies Inc Engine bearing inspection system
US6980301B2 (en) 2002-07-25 2005-12-27 Cubic Co., Ltd Method and apparatus for three-dimensional surface morphometry
KR100695018B1 (en) 2005-10-05 2007-03-14 (주)희송지오텍 Multi-photo system for calculating 3d coordinates
JP2007198841A (en) * 2006-01-25 2007-08-09 Soatec Inc Optical measuring method and apparatus
CN108340071A (en) * 2017-01-24 2018-07-31 株式会社迪思科 Light spot shape detection device
CN108340071B (en) * 2017-01-24 2021-06-08 株式会社迪思科 Light spot shape detection device
CN108562229A (en) * 2018-06-08 2018-09-21 厦门麦克玛视电子信息技术有限公司 A kind of die forming detection device

Similar Documents

Publication Publication Date Title
US4355904A (en) Optical inspection device for measuring depthwise variations from a focal plane
US7701592B2 (en) Method and apparatus for combining a targetless optical measurement function and optical projection of information
US8467072B2 (en) Target apparatus and method of making a measurement with the target apparatus
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JPH045508A (en) Method and device for detecting shape of body
JPH0812127B2 (en) Curvature radius measuring device and method
JPH10267624A (en) Measuring apparatus for three-dimensional shape
JPH11344305A (en) Position detecting apparatus
US4973152A (en) Method and device for the noncontact optical measurement of paths, especially in the triangulation method
JPH0791930A (en) Three-dimensional scanner
US7212294B2 (en) Method for determination of the level of two or more measurement points, and an arrangement for this purpose
JP2008196970A (en) Shape measurement method and instrument
JPH08261734A (en) Shape measuring apparatus
JP3176734B2 (en) Optical position measuring device
JPH07332954A (en) Method and apparatus for measuring displacement and inclination
JPH0798429A (en) Range finder
JPH03128409A (en) Three-dimensional shape sensor
JPH0436629A (en) Beam shape measuring instrument of scanning optical system
JPH06137827A (en) Optical level difference measuring apparatus
JPH109842A (en) Method for enhancing accuracy of rectilinear meter utilizing laser beam
JP2591143B2 (en) 3D shape measuring device
JPH08166209A (en) Polygon mirror evaluating device
JP2000258339A (en) Birefringence-measuring device
JP2866566B2 (en) 3D shape input device
JPH10281732A (en) Dimension measuring equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040213

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Effective date: 20050905

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004