JPH0436629A - Beam shape measuring instrument of scanning optical system - Google Patents

Beam shape measuring instrument of scanning optical system

Info

Publication number
JPH0436629A
JPH0436629A JP14154290A JP14154290A JPH0436629A JP H0436629 A JPH0436629 A JP H0436629A JP 14154290 A JP14154290 A JP 14154290A JP 14154290 A JP14154290 A JP 14154290A JP H0436629 A JPH0436629 A JP H0436629A
Authority
JP
Japan
Prior art keywords
lens
dimensional sensor
optical system
mirror
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14154290A
Other languages
Japanese (ja)
Inventor
Nobuo Oguma
小熊 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP14154290A priority Critical patent/JPH0436629A/en
Publication of JPH0436629A publication Critical patent/JPH0436629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To accurately measure the shape of a beam at a high speed by providing a mirror and a beam splitter between an ftheta lens and an inspection part. CONSTITUTION:A rotary polygon mirror 2 rotates clockwise as shown by an arrow A and the beam B emitted by a laser light source 1 for measurement is reflected by the rotary polygon mirror 2 and passes through the ftheta lens 3; and beams a1 - a3 are reflected by mirrors 4 - 7 and passed through BFs 8 and 9 to form an image at a point P on a two-dimensional sensor 11 through an objective 10 at the inspection part 15 fixed and arrayed. An A/D converting device 12 and a microcomputer 13 are connected to the two-dimensional sensor 11 and a display 14 is connected to the computer 13. Therefore, the brightness distribution shape of the light image formed at the point P on the two-dimensional sensor 11 is digitized by the A/D converter 12 and computer 13 and displayed 14. Consequently, the beam shape is accurately measured at the high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザプリンタ等の走査光学系におけるビー
ム形状測定装置に関し、レーザプリンタ等の走査光学系
のレンズ組立、検査調整に適用できるものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a beam shape measuring device for a scanning optical system such as a laser printer, and is applicable to lens assembly and inspection adjustment of a scanning optical system such as a laser printer. be.

〔従来の技術〕[Conventional technology]

このような走査光学系において、回動する投光側の光束
を測光素子を備えた受光側鏡胴の光軸に合致させ、ビー
ム形状を測定することは、例えば特開昭55−6771
0号公報に記載されている。
In such a scanning optical system, measuring the beam shape by aligning the rotating light beam on the light emitting side with the optical axis of the light receiving side lens barrel equipped with a photometric element is described in, for example, Japanese Patent Laid-Open No. 55-6771.
It is described in Publication No. 0.

また、本発明者は、走査光学系におけるビーム形状測定
装置に関して、種々の開発を行っている。
Further, the present inventor has been conducting various developments regarding beam shape measuring devices in scanning optical systems.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、回動する回転多面鏡の各走査位置の輝度測定
するため、fθレンズの背後に配置した対物レンズ、二
次元センサからなる検査部を移動することなく測定する
ことができる走査光学系におけるビーム形状測定装置を
提供することを目的とし、対物レンズ、二次元センサか
らなる検査部が移動しないため、回転多面鏡の回転と同
期して前記受光部の移動がなく、同期精度、移動による
位置づれ、移動による傾き等を考慮する必要がなく、ま
た、前記検査部を移動するに必要な測定時間を短縮する
ことができ、回転多面鏡の種々の回転速度による測定を
可能にし、移動に伴う測定誤差を解消でき、より精度良
く測定しうる手段を提供することを目的とするものであ
る。
In order to measure the brightness at each scanning position of a rotating polygon mirror, the present invention provides a scanning optical system that can perform measurements without moving an inspection unit consisting of an objective lens and a two-dimensional sensor placed behind an fθ lens. The purpose of the present invention is to provide a beam shape measuring device in There is no need to consider misalignment, inclination due to movement, etc., and the measurement time required to move the inspection section can be shortened, making it possible to perform measurements at various rotational speeds of the rotating polygon mirror. The purpose of this invention is to provide a means that can eliminate the accompanying measurement errors and perform measurements with higher accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記目的を達成するために、回転多面鏡、f
θレンズと、fθレンズから射出されるビーム輝度を測
定する対物レンズ、二次元センサからなる検査部とを備
える走査光学系のビーム形状測定装置において、前記f
θレンズと前記検査部との間には、fθレンズから射出
される各ビームの光路上に測定される光路長を等しくす
るように、ミラー、ビームスプリッタを設置し、各ビー
ムの光像を移動を要しない対物レンズ、二次元センサか
らなる検査部の二次元センサ上に結像し、各走査位置で
の輝度をマイクロコンピュータにより算出することを特
徴とするものである。
In order to achieve the above object, the present invention provides a rotating polygon mirror, f
In a beam shape measuring device of a scanning optical system comprising a θ lens, an objective lens for measuring the beam brightness emitted from the fθ lens, and an inspection section consisting of a two-dimensional sensor, the f
A mirror and a beam splitter are installed between the θ lens and the inspection section so that the optical path length measured on the optical path of each beam emitted from the fθ lens is equalized, and the optical image of each beam is moved. This is characterized in that the image is formed on a two-dimensional sensor of the inspection section, which is composed of an objective lens and a two-dimensional sensor, and the brightness at each scanning position is calculated by a microcomputer.

〔作 用〕[For production]

本発明の構成により、回転多面鏡、fθレンズからなる
走査光学系の各走査位置に対する輝度は、対物レンズ、
二次元センサからなる検査部を移動させることなく、短
時間で精度良く測定することができる。
With the configuration of the present invention, the brightness for each scanning position of the scanning optical system consisting of a rotating polygon mirror and an fθ lens is determined by the objective lens,
Measurements can be made with high accuracy in a short time without moving the inspection section consisting of a two-dimensional sensor.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図において、測定用レーザ光源1により発生したビ
ームBは、軸2aを中心に回転する多面鏡2.fθレン
ズ3を経て、ビームalya!a3のように走査される
In FIG. 1, a beam B generated by a measurement laser light source 1 is transmitted to a polygon mirror 2.0 which rotates around an axis 2a. After passing through the fθ lens 3, the beam alya! It is scanned like a3.

本発明において、fθレンズ3と固定して配置された対
物レンズ10と二次元センサ11とからなる検査部15
との間には、fθレンズ3を通過したビームa、が、第
一のミラー5により反射され、第一のビームスプリッタ
8.第二のビームスプリッタ9で夫々反射され、検査部
15の対物レンズ10により、二次元センサ11上の点
Pに結像する。また、fθレンズ3を通過したビームa
2は、第二のミラー4により反射され、第二のビームス
プリッタ9を通過して、同様に、検査部15の対物レン
ズ10により、二次元センサ11上の点Pに結像し、さ
らに、fθレンズ3を通過したビームa、は、第三のミ
ラー6、第四のミラー7で反射され、第一のビームスプ
リ、2夕8を透過し、第二のビームスプリッタ9で反射
され、検査部15の対物レンズ10により、二次元セン
サ11上の点Pに結像する。
In the present invention, an inspection section 15 consisting of an objective lens 10 and a two-dimensional sensor 11 fixedly arranged with an fθ lens 3
The beam a, which has passed through the fθ lens 3, is reflected by the first mirror 5, and is connected to the first beam splitter 8. The beams are reflected by the second beam splitter 9 and focused on a point P on the two-dimensional sensor 11 by the objective lens 10 of the inspection section 15 . Also, the beam a passing through the fθ lens 3
2 is reflected by the second mirror 4, passes through the second beam splitter 9, and is similarly focused on a point P on the two-dimensional sensor 11 by the objective lens 10 of the inspection section 15, and further, The beam a that has passed through the fθ lens 3 is reflected by the third mirror 6 and fourth mirror 7, passes through the first beam splitter 8, is reflected by the second beam splitter 9, and is inspected. An image is formed on a point P on the two-dimensional sensor 11 by the objective lens 10 of the section 15 .

fθレンズ3を経たビームax  、at  taxの
各光路長が等しくなるように、各ミラー4,5゜6.7
及び各ビームスプリッタ8,9が、いづれも固定して位
置するfθレンズ3と検査部15との間に設置されてい
る。
Each mirror 4, 5°6.7 so that the optical path lengths of the beams ax and attax passing through the fθ lens 3 are equal.
And each beam splitter 8, 9 is installed between the fθ lens 3 and the inspection section 15, both of which are fixedly located.

また、透過率と反射率の比を、ビームスプリッタ8では
、1対1、ビームスプリッタ9では、1対3とすること
により、ビームal  、az  、a、。
Further, by setting the ratio of transmittance to reflectance to be 1:1 in the beam splitter 8 and 1:3 in the beam splitter 9, the beams al, az, a,.

の光量を等しくすることができる。The amount of light can be made equal.

そして、回転多面鏡2が第1図の位置から時計方向Aに
回動し、測定用レーザ光源1により発生したビームBは
、回転多面鏡2からの反射ビームとしてfθレンズ3を
経て、そのうちのビームava2  、a2は夫々、設
置された各ミラー4゜5.6,7及び各ビームスプリッ
タ8,9によって、固定して配置された検査部15にお
いて、対物レンズlOで二次元センサ11上の点Pに結
像される。
Then, the rotating polygon mirror 2 rotates in the clockwise direction A from the position shown in FIG. The beams ava2 and a2 are transmitted to a point on the two-dimensional sensor 11 by the objective lens lO in the fixedly arranged inspection section 15 by the installed mirrors 4°5.6, 7 and the beam splitters 8, 9, respectively. The image is formed on P.

二次元センサ11には、A/D変換装置12、マイクロ
コンピュータ13が接続され、マイクロコンピュータ1
3には、デイスプレィ14が連結されている。
An A/D converter 12 and a microcomputer 13 are connected to the two-dimensional sensor 11.
3 is connected to a display 14.

したがって、二次元センサ11上の点Pに結像された光
像の輝度分布形状は、A/D変換装置12、マイクロコ
ンピュータ13により数値化されると共にデイスプレィ
14で表示される。
Therefore, the brightness distribution shape of the optical image formed on the point P on the two-dimensional sensor 11 is digitized by the A/D converter 12 and the microcomputer 13 and displayed on the display 14.

第2図には、光量の輝度分布曲線が示されており、輝度
が50%のビーム径d1とe −2%(約13.5%)
のビーム径d2とを計測することにより、ビームの形状
を算出し、表示する。
Figure 2 shows the brightness distribution curve of the light amount, and the beam diameter d1 and e -2% (approximately 13.5%) when the brightness is 50%.
By measuring the beam diameter d2, the shape of the beam is calculated and displayed.

このようにして、回転多面鏡の反射により走査される各
ビームの走査位置に対応して、各ビームの走査位置にお
ける輝度分布を正確に測定することができる。
In this way, it is possible to accurately measure the brightness distribution at the scanning position of each beam, corresponding to the scanning position of each beam scanned by the reflection of the rotating polygon mirror.

第2図(a) 、 (b)はデイスプレィ上に表示され
る主走査方向(X方向)と副走査方向(X方向)のビー
ム径の寸法により示された輝度分布である。
FIGS. 2(a) and 2(b) are luminance distributions shown by beam diameter dimensions in the main scanning direction (X direction) and the sub-scanning direction (X direction) displayed on the display.

■・・・レーザ光源、2・・・回転多面鏡、3・・・r
θレンズ、4〜9・・・ミラー及びビームスプリッタ、
10・・・対物レンズ、11・・・二次元センサ、15
・・・検査部。
■...Laser light source, 2...Rotating polygon mirror, 3...r
θ lens, 4 to 9...mirror and beam splitter,
10... Objective lens, 11... Two-dimensional sensor, 15
···Inspection unit.

〔効 果〕〔effect〕

本発明の構成により、複数の走査位置におけるビームを
移動することのない対物レンズと二次元センサからなる
検査部と、fθレンズと検査部との間に配置した光路長
を一定とするミラーとビームスプリッタにより、高速度
で且つ精度の良いビーム形状測定ができる利点を有する
According to the configuration of the present invention, there is an inspection section consisting of an objective lens and a two-dimensional sensor that does not move the beam at a plurality of scanning positions, and a mirror and a beam that keep the optical path length constant between the fθ lens and the inspection section. The splitter has the advantage of being able to measure the beam shape at high speed and with high precision.

Claims (1)

【特許請求の範囲】[Claims] 回転多面鏡、fθレンズと、fθレンズから射出される
ビーム輝度を測定する対物レンズ、二次元センサからな
る検査部とを備える走査光学系のビーム形状測定装置に
おいて、前記fθレンズと前記検査部との間には、fθ
レンズから射出される各ビームの光路上に測定される光
路長を等しくするように、ミラー、ビームスプリッタを
設置し、各ビームの光像を移動を要しない対物レンズ、
二次元センサからなる検査部の二次元センサ上に結像し
、各走査位置での輝度をマイクロコンピュータにより算
出することを特徴とする走査光学系におけるビーム形状
測定装置。
In a beam shape measuring device having a scanning optical system, which includes a rotating polygon mirror, an fθ lens, an objective lens for measuring the beam brightness emitted from the fθ lens, and an inspection section consisting of a two-dimensional sensor, the fθ lens and the inspection section Between fθ
A mirror and a beam splitter are installed on the optical path of each beam emitted from the lens so as to equalize the measured optical path length, and an objective lens that does not require movement of the optical image of each beam,
A beam shape measuring device in a scanning optical system, characterized in that an image is formed on a two-dimensional sensor of an inspection section consisting of a two-dimensional sensor, and the brightness at each scanning position is calculated by a microcomputer.
JP14154290A 1990-06-01 1990-06-01 Beam shape measuring instrument of scanning optical system Pending JPH0436629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14154290A JPH0436629A (en) 1990-06-01 1990-06-01 Beam shape measuring instrument of scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14154290A JPH0436629A (en) 1990-06-01 1990-06-01 Beam shape measuring instrument of scanning optical system

Publications (1)

Publication Number Publication Date
JPH0436629A true JPH0436629A (en) 1992-02-06

Family

ID=15294394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14154290A Pending JPH0436629A (en) 1990-06-01 1990-06-01 Beam shape measuring instrument of scanning optical system

Country Status (1)

Country Link
JP (1) JPH0436629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014583A (en) * 2001-07-04 2003-01-15 Ricoh Co Ltd Beam profile verification method
CN104280210A (en) * 2013-07-09 2015-01-14 上海和辉光电有限公司 Laser source quality detecting device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014583A (en) * 2001-07-04 2003-01-15 Ricoh Co Ltd Beam profile verification method
CN104280210A (en) * 2013-07-09 2015-01-14 上海和辉光电有限公司 Laser source quality detecting device and method

Similar Documents

Publication Publication Date Title
US7298468B2 (en) Method and measuring device for contactless measurement of angles or angle changes on objects
US20110235049A1 (en) Wavefront Sensing Method and Apparatus
JPH0593888A (en) Method and device for determining optical axis of off-set mirror
JPH03215813A (en) Angle detecting device
US4147433A (en) Contour inspection
JP2003065739A (en) Device for measuring angle of polygon mirror
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
JP2002296018A (en) Three-dimensional shape measuring instrument
US5383025A (en) Optical surface flatness measurement apparatus
JPH0436629A (en) Beam shape measuring instrument of scanning optical system
JPH10267624A (en) Measuring apparatus for three-dimensional shape
JP4148592B2 (en) Birefringence measuring method and birefringence measuring apparatus
JPH08261734A (en) Shape measuring apparatus
JP2008196970A (en) Shape measurement method and instrument
JP2003322587A (en) Surface shape measuring instrument
JP2005003667A (en) Reference axis setting optical system, eccentricity measuring machine and eccentricity-measuring method using the optical system
WO2024004166A1 (en) Distance measurement device
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
JP2003097924A (en) Shape measuring system and method using the same
JPH08166209A (en) Polygon mirror evaluating device
JPH0628820U (en) Focus adjustment device
SU1776989A1 (en) Angle-of-twist sensor
JPS60211304A (en) Measuring instrument for parallelism
JPH04344439A (en) Scanning face trip measurement in scanning optical system and its device
JPH0789043B2 (en) Shear ring interferometer