JPS59226802A - Edge detector of optical measuring equipment - Google Patents

Edge detector of optical measuring equipment

Info

Publication number
JPS59226802A
JPS59226802A JP10247783A JP10247783A JPS59226802A JP S59226802 A JPS59226802 A JP S59226802A JP 10247783 A JP10247783 A JP 10247783A JP 10247783 A JP10247783 A JP 10247783A JP S59226802 A JPS59226802 A JP S59226802A
Authority
JP
Japan
Prior art keywords
measured
light
edge
receiving elements
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10247783A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kuwabara
義治 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP10247783A priority Critical patent/JPS59226802A/en
Publication of JPS59226802A publication Critical patent/JPS59226802A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To detect an edge with high precision without any influence of variation in the quantity of laser light, etc., by composing a photodetector of two photodetecting elements divided in the direction where an image of a body to be measured travels, and calculating the difference between the output signals of both elements. CONSTITUTION:The photodetector 26 consists of the two photodetecting elements 26A and 26B divided in the direction where the image 24A of the body 24 to be measured travels. When a scanning laser beam reaches an edge part, part of a spot 20A is cut off. The output signals of the photodetecting elements 26A and 26B are differentiated by differentiation circuits 46A and 46B, and a differential circuit 48 calculates their difference. The cross point 54 of the signal waveform 48A at this time and a reference voltage from a reference voltage generator 52 is calculated and a pulse signal 56 is outputted at this time to detect the edge of the body 24 to be measured. Consequently, the edge is detected with high precision without any influence of variation in the quantity of laser light.

Description

【発明の詳細な説明】 この発明は、平行走査光線ビームを利用して被測定物の
寸法等を測一定する光学式測定機器における1ツジ検出
装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a one-point detection device in an optical measuring instrument that measures the dimensions of an object to be measured using a parallel scanning light beam.

従来、回転走査光線ビーム(レーザビーム)をコリメー
タレンズによりこのコリメータレンズと集光レンズ間を
通る平行走査光線ビームに変換し、該コリメータレンズ
と集光レンズの間に被測定物を置き、この被測定物によ
って前記平行走査光線ビームが遮られて生じる暗部また
は明部の時間の長さから被測定物の寸法を測定する光学
式測定機器があった。
Conventionally, a rotating scanning light beam (laser beam) is converted into a parallel scanning light beam passing between the collimator lens and a condensing lens by a collimator lens, and an object to be measured is placed between the collimator lens and the condensing lens. There has been an optical measuring instrument that measures the dimensions of an object to be measured based on the length of time of a dark or bright area that occurs when the parallel scanning light beam is interrupted by the object.

これは、例えば第1図に示す如く、レーザ管10からレ
ーザビーム12f固定ミラー14に向けて発振し、この
固定ミラー14により反射されたレーザビーム12を回
転ミラー16によって走査ビーム17に変換し、この走
査ビーム17をコリメータレンズ18によって平行走査
光線ビーム20に変換し、この平行走査光線ビーム20
により」リメータレンス18と集光レンズ22の間に配
置した被測定物24を高速走査し、その時被測定物24
によって生じる影像による暗部または明部の時間の長さ
から、被測定物24の走査方向くY方向)1法を測定づ
るものである。すなわち、平行走査光線ビーム20の明
暗は、集光レンズ22の焦点1η置にある受光器26の
出力電圧の変化となって検出され、該受光器26からの
信号は、プリアンプ28に入力され、ここで増幅された
後、セラメン1〜選択回路30に送られる。このセグメ
ンI−選択回路30は、受光器26の出力電圧から被測
定物24が走査され−Cいる時間tの間だけゲート回路
32を開くための電圧Vを発生して、ゲート回路32に
出力するようにされている。このゲート回路32には、
クロックパルス発振器34からタロツクパルスCPが入
力されているので、ゲート回路からは被測定物24の走
査方向寸法(例えば外径)に対応した時間tに対応する
クロックパルスPを計数回路36に入力でる。計数回路
36は、このクロックパルスPを計数して、デジタル表
示器38に計数信号を出力し、デジタル表示器38は被
測定物24の走査方向寸法すなわち外径をデジタル表示
することになる。一方、前記回転ミラー16は、前記ク
ロックパルス発振器34出力と同期して正弦波を発生す
る同期正弦波発振器40およびパワーアンプ42の出力
により同期駆動されている同期モータ44により、前記
クロックパルス発振器34出力のクロックパルスCPと
同期して回転され、測定精度を維持するようにされてい
る。
For example, as shown in FIG. 1, a laser beam 12f is oscillated from a laser tube 10 toward a fixed mirror 14, and the laser beam 12 reflected by the fixed mirror 14 is converted into a scanning beam 17 by a rotating mirror 16. This scanning beam 17 is converted into a parallel scanning light beam 20 by a collimator lens 18, and this parallel scanning light beam 20 is converted into a parallel scanning light beam 20.
The object to be measured 24 placed between the remetering lens 18 and the condensing lens 22 is scanned at high speed.
1 method (in the scanning direction (Y direction) of the object to be measured 24) is measured from the length of time of the dark or bright portion of the image produced by the method. That is, the brightness or darkness of the parallel scanning light beam 20 is detected as a change in the output voltage of the light receiver 26 located at the focal point 1η of the condensing lens 22, and the signal from the light receiver 26 is input to the preamplifier 28. After being amplified here, it is sent to the ceramic 1 to selection circuit 30. This segment I-selection circuit 30 generates a voltage V for opening the gate circuit 32 only during the time t during which the object under test 24 is scanned from the output voltage of the photoreceiver 26, and outputs it to the gate circuit 32. It is made to be. This gate circuit 32 includes
Since the tarock pulse CP is inputted from the clock pulse oscillator 34, the clock pulse P corresponding to the time t corresponding to the scanning direction dimension (for example, outer diameter) of the object 24 to be measured can be inputted to the counting circuit 36 from the gate circuit. The counting circuit 36 counts the clock pulses P and outputs a counting signal to the digital display 38, and the digital display 38 digitally displays the dimension in the scanning direction, that is, the outer diameter of the object 24 to be measured. On the other hand, the rotating mirror 16 is driven by the clock pulse oscillator 34 by a synchronous motor 44 that is driven synchronously by the output of a power amplifier 42 and a synchronous sine wave oscillator 40 that generates a sine wave in synchronization with the output of the clock pulse oscillator 34. It is rotated in synchronization with the output clock pulse CP to maintain measurement accuracy.

このような高速度走査型レーザ測長機は、移動する物体
、高温物体の長さ、厚み等を非接触で高精度に測定でき
るので広く利用されつつある。
Such high-speed scanning laser length measuring machines are becoming widely used because they can measure the length, thickness, etc. of moving objects and high-temperature objects with high precision in a non-contact manner.

しかしながら、上記のような高速度走査型レーザ測長様
におけるレーザビーム12の径は、0.8〜lll1m
程度であり、このままでは、最大限111111の測定
誤差を生じ得ることになる。
However, the diameter of the laser beam 12 in the above-mentioned high-speed scanning laser length measurement is 0.8 to 11 m.
If left as is, a measurement error of up to 111111 may occur.

従って、従来は、例えば被測定物24の境界(エツジ)
近傍においてレーザビームの径を小さくJるために、該
エツジ部分を焦点位置とするレンズを用いて、測定づる
手段がとられていたが、この場合でも、レーザビーム1
2の径を0.08 ++o++以下にすることは困難で
あり、従って、レーザビームの径による測定誤差は、最
大o、os mm生じてしまうことになる。
Therefore, conventionally, for example, the boundary (edge) of the object to be measured 24
In order to reduce the diameter of the laser beam in the vicinity, measurement methods have been taken using a lens that focuses on the edge portion, but even in this case, the laser beam 1
It is difficult to reduce the diameter of 2 to 0.08++o++ or less, and therefore, the measurement error due to the diameter of the laser beam will occur at a maximum of o, os mm.

これに対して、受光器26における出力信号を、参照電
圧とのクロスポイントにより被測定物のエツジを検出す
ると、測定誤差は最大1μm程度にjることができるが
、回転ミラー16あるいは被測定物24の反射率の変動
等によるレーザビーム12の光量変化や、」リメータレ
ンズ18から被測定物24までの距離の変化等により、
前記測定誤差は変動してしまうという問題点がある。
On the other hand, if the edge of the object to be measured is detected by the cross point of the output signal from the photoreceiver 26 and the reference voltage, the measurement error can be reduced to about 1 μm at maximum. Due to changes in the light intensity of the laser beam 12 due to changes in the reflectance of the laser beam 24, changes in the distance from the remeter lens 18 to the object to be measured 24, etc.
There is a problem that the measurement error fluctuates.

また、受光素子の出力15号を2階微分して波形信号を
冑、これと参照電圧との比較によってエツジを検出する
ものがあるが、受光素子と被測定物の影像との相対移動
速度の大小によって、検出されるエツジの位置が異なる
ことがあり、さらに、前記と同様にレーザビーム12の
光量等の変動によりエツジ以外の個所でみかけのエツジ
が検出されてしまうことがあるという問題点がある。
There is also a method that detects edges by second-order differentiating the output No. 15 of the light-receiving element, obtaining a waveform signal, and comparing this with a reference voltage. The position of the detected edge may differ depending on its size, and furthermore, as mentioned above, due to fluctuations in the light intensity of the laser beam 12, an apparent edge may be detected at a location other than the edge. be.

本発明は前記問題点に鑑みてなされたものであって、レ
ーザビームの光量変化或いはコリメータレンズから被測
定物までの距離の変化に影響されることなく、高精度で
、かつ高速走査により被測定物のエツジを検出できるよ
うにした光学式測定機器に43けるエツジ検出装置を提
供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and is capable of measuring the object to be measured with high precision and high speed scanning without being affected by changes in the light intensity of the laser beam or changes in the distance from the collimator lens to the object to be measured. It is an object of the present invention to provide an edge detection device for an optical measuring instrument capable of detecting the edges of an object.

この発明は、光線ビームにより、被測定物を一方向にか
つ平行に相対的に走査し、走置後の前記光線ビームを受
光器によって受け、該受光器の出力信号に基づき、前記
被測定物によってlll1記光線ビームの一部が遮られ
て生じる影像による暗部または明部の時間の長さを検出
して被測定物の走査方向1」法を求めるようにした光学
式測定機器におけるエツジ検出装置において、前記受光
器を、前記被測定物の影像が進む方向に、2分割された
2つの受光要素から形成するとともに、これらの受光要
素の出力信号を各々微分する微分回路と、これら微分回
路の出力信号の差を演算する差動回路と、この差動回路
からの出力1g号を参照信号と比較して、被測定物のエ
ツジとなる1点を判別する判定回路と、を設けることに
よって上記目的を達成するものである。
This invention scans the object to be measured relatively in one direction and in parallel with a light beam, receives the light beam after scanning by a light receiver, and detects the object to be measured based on the output signal of the light receiver. An edge detection device for an optical measuring instrument that detects the length of time of a dark or bright area due to an image caused by a part of a light beam being blocked by an object to be measured in a scanning direction. The light receiver is formed of two light receiving elements divided into two in the direction in which the image of the object to be measured travels, and a differentiating circuit for differentiating the output signals of these light receiving elements, respectively, and a differentiating circuit for differentiating the output signals of these light receiving elements, respectively; By providing a differential circuit that calculates the difference between output signals, and a determination circuit that compares the output 1g from this differential circuit with a reference signal and determines one point that is an edge of the object to be measured, the above-mentioned problem can be achieved. It accomplishes its purpose.

またこの発明は、前記2つの受光要素の一部を、前記被
測定物の影像が進む方向と直交し、かつ、該2つの受光
要素の境界となる基準線を相互に越えC配置することに
よって上記目的を達成するものである。
The present invention also provides a method for disposing a portion of the two light receiving elements so as to be perpendicular to the direction in which the image of the object to be measured crosses a reference line that is a boundary between the two light receiving elements. This aims to achieve the above objectives.

以下本発明の実施例を図面を参照して説明づる。Embodiments of the present invention will be described below with reference to the drawings.

ここで、この実施例において、前記第1図に示される従
来の光学式測定装置と同一または相当部分には第1図と
同一の符号を付することにより説明を省略するものとづ
る。
Here, in this embodiment, the same or corresponding parts as those of the conventional optical measuring device shown in FIG. 1 will be designated by the same reference numerals as in FIG. 1, and the explanation thereof will be omitted.

この実施例は、第2図および第3図に示されるように、
前記第1図に示されると同様の光学式測定装置において
、前記セグメント選択回路30の入力側に、前記受光器
26を、前記被測定物24の影像24Aが進む方向に2
分割された2つの受光要素26A、26Bから形成する
とともに、これらの受光要素26A、26Bの出力信号
を各々微分する微分回路46A、46Bと、これら微分
回路46A、46Bの出力信号の差を演算づる差動回路
48と、この差動回路48からの出力信号を参照信号と
比較して、被測定物24のエツジとなる1点を判別する
判定回路50とを設けて、エツジ検出装置51を構成し
たものである。
This embodiment, as shown in FIGS. 2 and 3,
In the optical measuring device similar to that shown in FIG.
Differentiating circuits 46A and 46B are formed from two divided light receiving elements 26A and 26B and differentiating the output signals of these light receiving elements 26A and 26B, respectively, and the difference between the output signals of these differentiating circuits 46A and 46B is calculated. An edge detection device 51 is configured by providing a differential circuit 48 and a determination circuit 50 that compares the output signal from the differential circuit 48 with a reference signal to determine one point that is an edge of the object to be measured 24. This is what I did.

前記受光器26の受光平面形状は、第3図に示されるよ
うに、被測定物24の影像の進行方向に対して直角の境
界線26Cによって分けられた2つの矩形からなる四角
形状とされ、それぞれの矩形は受光要素26A、26B
をそれぞれ構成している。
As shown in FIG. 3, the light-receiving plane shape of the light receiver 26 is a quadrangular shape consisting of two rectangles separated by a boundary line 26C perpendicular to the traveling direction of the image of the object to be measured 24, Each rectangle is a light receiving element 26A, 26B.
are composed of each.

第2図の符号28A、28Bは受光要素26A、26B
の出力信号を増幅してエツジ検出装置51の微分回路4
6A、46Bに出力するプリアンプ。
Symbols 28A and 28B in FIG. 2 are light receiving elements 26A and 26B.
The differential circuit 4 of the edge detection device 51 amplifies the output signal of
Preamplifier that outputs to 6A and 46B.

52は参照電圧発生器を示し、この参照電圧発生器は、
li1〕記判定回路50に対して符号52Aで示される
波形の参照電圧を出力し、前記判定回路50はこの参照
電圧の信号と、前記差動回路48がらの15号とのクロ
スポイント54を検知して、その時点でのパルス信号5
6を出力するようにされCいる。
52 indicates a reference voltage generator, and this reference voltage generator is:
li1] A reference voltage having a waveform indicated by the symbol 52A is output to the determination circuit 50, and the determination circuit 50 detects a cross point 54 between the signal of this reference voltage and No. 15 of the differential circuit 48. Then, the pulse signal 5 at that point
6 is output.

次に上記実施例の作用を説明づる。Next, the operation of the above embodiment will be explained.

まず、平11走査光線ビーム2oが被測定物24のない
部分を走査している状態では、該平行走査光線ビーム2
0は、第4図(A)において示されるようにそのビーム
径φの全範囲で受光器26に到達覆る。
First, in a state in which the parallel scanning light beam 2o is scanning a portion where there is no object to be measured 24, the parallel scanning light beam 2o
0 reaches and covers the light receiver 26 over the entire range of the beam diameter φ, as shown in FIG. 4(A).

この状態での受光要素26A、26Bにおける出力信号
の波形27A、27Bは第3図で示されるようにla 
l’ 1 Jの平坦な波形となる。
In this state, the waveforms 27A and 27B of the output signals from the light receiving elements 26A and 26B are la
It becomes a flat waveform of l' 1 J.

平行走査光線ビーム20が被測定物24のエツジ部分に
さしかがると、第4図(B)、(C)に示されるように
、ビームスポット2OAの一部から全部に至るまで徐々
に遮られ、これにより生じた影像24Aにより各々の受
光要素26Aの出力信号は値「1」か゛ら「0」に減少
する。
When the parallel scanning light beam 20 approaches the edge portion of the object to be measured 24, as shown in FIGS. The resulting image 24A causes the output signal of each light-receiving element 26A to decrease from the value "1" to "0".

この時、影像24Aは、受光要素26Bに対して受光要
素26Aよりも遅れてその受光面に到達するために、こ
れら受光要素26A、26Bの出力信号の立ち下がりも
第3図に示されるようにその波形27A、27Bに時間
的ずれを生じることになる。
At this time, since the image 24A reaches the light-receiving surface of the light-receiving element 26B later than the light-receiving element 26A, the output signals of the light-receiving elements 26A and 26B also fall as shown in FIG. A time lag will occur between the waveforms 27A and 27B.

これら受光要素26A、26Bの出力信号波形27A、
27Bは、微分回路46A146′Bによってそれぞれ
微分されることにより、信号波形47A、47Bのごと
くなる。
Output signal waveform 27A of these light receiving elements 26A, 26B,
27B are differentiated by differentiating circuits 46A and 146'B, respectively, to obtain signal waveforms 47A and 47B.

微分回路46A、46Bの出力信号を差動回路48Aに
よってこれらの差を求めると、信号波形48Aで示され
る出力信号が得られる。
When the difference between the output signals of the differentiating circuits 46A and 46B is determined by the differential circuit 48A, an output signal shown by a signal waveform 48A is obtained.

この差動回路48の出力信号を、波形52Aで示される
参照電圧発生器52からの参照電圧に対して判定回路5
0でクロスポイント54を求め、このクロスポイント5
4の時間をパル21g号56を判定回路50から出力す
れば、これが被測定物24のエツジの位置を示づことに
なる。
The determination circuit 5 compares the output signal of the differential circuit 48 with the reference voltage from the reference voltage generator 52 shown by a waveform 52A.
0 to find the cross point 54, and this cross point 5
If the pulse 21g number 56 is output from the determination circuit 50 at a time of 4, this will indicate the position of the edge of the object to be measured 24.

また、被測定物24の影像24Aが相対的に移動して、
受光要素26A、26Bに到達する影像が暗から明にな
った時も、前記と同様にクロスポイント54の時点でパ
ルス信号56を出力し、これが、被測定物24の他方の
エツジの位置を示すことになる。
Moreover, the image 24A of the object to be measured 24 moves relatively,
When the image reaching the light receiving elements 26A, 26B changes from dark to bright, the pulse signal 56 is output at the cross point 54 in the same way as described above, and this indicates the position of the other edge of the object to be measured 24. It turns out.

従って、被測定物24の一方のエツジから他方のエツジ
に至る2つのパルス信@56間の時間tから、前記第1
図の光学式測定装置におけると同様の手順で、被測定物
24の走査方向の寸法が検出されることになる。
Therefore, from the time t between the two pulse signals @56 from one edge of the object to be measured 24 to the other edge, the first
The dimension of the object to be measured 24 in the scanning direction is detected by the same procedure as in the optical measuring device shown in the figure.

この実施例においては、例えば、平行走査光線ビーム2
0が被測定物24のエツジを検出していない状態におい
て、該平行走査光線ビーム20の光量に変動があった場
合でも、この光量の変動は受光要素26A、26Bにそ
れぞれ捉えられ、これらが微分回路46A、46Bを経
て差動回路48に至る時に、該光量変動が相殺されるた
めに、擬似的なエツジ検出とはならない。
In this embodiment, for example, parallel scanning light beam 2
Even if there is a change in the light intensity of the parallel scanning light beam 20 in a state where the edge of the object to be measured 24 is not detected, this change in light intensity is captured by the light receiving elements 26A and 26B, and these changes are differentiated. When the light reaches the differential circuit 48 via the circuits 46A and 46B, the fluctuation in the amount of light is canceled out, so that pseudo edge detection does not occur.

従って、平行走査光線ビーム20が被測定物24のエツ
ジ部分に到達した時に゛のみエツジ検出作用がなされる
ことになる。
Therefore, the edge detection function is performed only when the parallel scanning light beam 20 reaches the edge portion of the object 24 to be measured.

尚上記実施例は、受光器26の受光要素26A、26B
を、被測定物の影像24Aの移動方向に対して直角方向
の境界線26Cによって分割したものであるが、本発明
はこれに限定されるものでなく、例えば、第5図(A)
で示されるように、境界線26Gが影像24Aの進行方
向に対して傾斜づるようにしてもよい。
In the above embodiment, the light receiving elements 26A and 26B of the light receiver 26
is divided by a boundary line 26C in a direction perpendicular to the moving direction of the image 24A of the object to be measured; however, the present invention is not limited thereto; for example, as shown in FIG.
As shown in , the boundary line 26G may be inclined with respect to the advancing direction of the image 24A.

この場合は、第5図(、B)〜(D)に示されるように
、受光要素26A、26Bの各々における明から暗また
は暗から明への出力信号の立ち下がりまたは立ち上がり
の傾きが大きくなるので、時間軸に対してクロスポイン
ト54の検出範囲をより狭く、すなわち、エツジの位置
をより精密に検出できることになる。
In this case, as shown in FIGS. 5(,B) to (D), the slope of the fall or rise of the output signal from bright to dark or from dark to bright in each of the light receiving elements 26A and 26B becomes large. Therefore, the detection range of the cross point 54 can be made narrower with respect to the time axis, that is, the edge position can be detected more precisely.

また、上記第5図に示される実施例は、受光要素2−6
A、26Bの境界線26Cを斜めに構成したものである
が、これは、2つの受光要素26A126Bの一部を、
前記被測定物24の影@24Aが進む方向と直交し、か
つ、該2つの受光要素26A、26Bの境界となる基準
線を相互に越えて配置づるものであればよく、従って、
境界#I26Cは傾斜直線状でなくともよい。
Further, in the embodiment shown in FIG. 5, the light receiving element 2-6
The boundary line 26C between the two light receiving elements 26A and 26B is arranged diagonally.
It is sufficient that the shadow @24A of the object to be measured 24 is disposed perpendicularly to the direction in which the shadow @24A moves and beyond the reference line that serves as the boundary between the two light receiving elements 26A and 26B.
Boundary #I26C does not have to be an inclined straight line.

また上記実施例は、被測定物24を静止させて、これに
対して、平行走査光線ビーム20を走査方向に移動する
ようにしたものであるが、本発明はこれに限定されるも
のでなく、被測定物に対して光線ビームが走査方向に相
対的に移動するものであればよく、従って、光線ビーム
側を固定し、これに対して被測定物を移動させるもの、
あるいは、被測定物と光線ビームが共に移動りるように
したものそれぞれに適用されるものである。
Further, in the above embodiment, the object to be measured 24 is kept stationary and the parallel scanning light beam 20 is moved in the scanning direction, but the present invention is not limited to this. , it is sufficient that the light beam moves relative to the object to be measured in the scanning direction; therefore, the light beam side is fixed and the object to be measured is moved relative to it;
Alternatively, it is applicable to each object in which the object to be measured and the light beam move together.

本発明は上記のように構成したので、簡単な構成により
、被測定物のエツジを正確に検出することが−(ぎ、し
かも、光量の変化或いは被測定物と」リメータレンズと
の距離の変化に影響されることなく、被測定物のエツジ
を検出することができるという優れた効果を有する。
Since the present invention is configured as described above, it is possible to accurately detect the edges of the object to be measured with a simple configuration. This has the excellent effect of being able to detect the edges of the object to be measured without being affected by this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光学式測定装置を示すブロック図、第2
図は本発明に係る光学式測定機器におけるエツジ検出装
置の実施例を示すブロック図、第3図は同実施例の要部
を拡大して示すブロック図、第4図(A)、(B)、(
C)は同実施例における受光器の平面形状と影像との関
係を示す説明図、第5図(A)は本発明の第2実施例に
おける受光器の平面形状を示づ平面図、第5図(B)〜
(D)は同第2実施例の受光器における出力信号および
これを微分した信号ならびに差動信号を示″g線図であ
る。 12・・・レーザビーム、 18・・・コリメータレンズ、 20・・・平行走査光線ビーム、 22・・・集光レンズ、 24・・・被測定物、 24A・・・影像、 26・・・受光器、 26A、26B・・・受光要素、 26C・・・境界線、 46A、46B・・・微分回路、 48・・・差動回路、 50・・・判定回路、 51・・・エツジ検出装置、 52・・・参照電圧発生器、 54・・・クロスポイント。 代理人  松 山 圭 佑 (ほか1り 第4図 第5図
Figure 1 is a block diagram showing a conventional optical measuring device, Figure 2 is a block diagram showing a conventional optical measuring device.
The figure is a block diagram showing an embodiment of an edge detection device in an optical measuring instrument according to the present invention, FIG. 3 is a block diagram showing an enlarged main part of the same embodiment, and FIGS. 4(A) and (B) ,(
C) is an explanatory diagram showing the relationship between the planar shape of the light receiver and the image in the same embodiment, and FIG. 5(A) is a plan view showing the planar shape of the light receiver in the second embodiment of the present invention. Figure (B) ~
(D) is a g-line diagram showing an output signal, a differentiated signal, and a differential signal in the light receiver of the second embodiment. 12. Laser beam, 18. Collimator lens, 20. ... Parallel scanning light beam, 22 ... Condenser lens, 24 ... Measured object, 24A ... Image, 26 ... Light receiver, 26A, 26B ... Light receiving element, 26C ... Boundary Lines, 46A, 46B... Differential circuit, 48... Differential circuit, 50... Judgment circuit, 51... Edge detection device, 52... Reference voltage generator, 54... Cross point. Agent: Keisuke Matsuyama (and 1 other person, Figure 4, Figure 5)

Claims (2)

【特許請求の範囲】[Claims] (1)光線ビームにより、被測定物を一方向にかつ平行
に相対的に走査し、走査後の前記光線ビームを受光器に
よって受シブ、該受光器の出力1z号に基づき、前記被
測定物によって前記光線ビームの一部が遮られて生じる
影像による暗部または明部の時間の長さを検出して被測
定物の走査方向寸法を求めるようにしI〔光学式測定機
器におけるエツジ検出装置において、ii1′J記受光
器を、前記被測定物の影像が進む方向に、2分割された
2つの受光要素から形成づるとともに、これらの受光要
素の出力15号を各々微分する微分回路と、これら微分
回路の出力信号の差を演算する差動回路と、この差動回
路からの出力信号を参照信号と比較して、被測定物のエ
ツジとなる1点を判別する判定回路と、を設けたことを
特徴とづる光学式測定機器におけるエツジ検出装置。
(1) The object to be measured is relatively scanned in one direction and in parallel with a light beam, the light beam after scanning is received by a light receiver, and the object to be measured is scanned based on the output No. 1z of the light receiver. The dimension of the object to be measured in the scanning direction is determined by detecting the length of time of a dark part or a bright part caused by a part of the light beam being blocked by the image. ii1'J The photoreceptor is formed from two light-receiving elements divided into two in the direction in which the image of the object to be measured advances, and a differentiation circuit for differentiating the output No. 15 of these light-receiving elements, respectively, and a differential circuit for differentiating the output No. 15 of these light-receiving elements, A differential circuit that calculates the difference between the output signals of the circuit and a determination circuit that compares the output signal from the differential circuit with a reference signal and determines one point that is an edge of the object to be measured is provided. An edge detection device in an optical measuring instrument characterized by:
(2)前記2つの受光要素の一部を、前記被測定物の影
像が進む方向と直交し、かつ、該2つの受光要素の境界
となる基準線を相互に越えて配置したことを特徴とする
特許請求の範囲第1項記載の光学式測定機器におけるエ
ツジ検出装置。
(2) Parts of the two light-receiving elements are arranged perpendicularly to the direction in which the image of the object to be measured moves and beyond a reference line that serves as a boundary between the two light-receiving elements. An edge detection device in an optical measuring instrument according to claim 1.
JP10247783A 1983-06-08 1983-06-08 Edge detector of optical measuring equipment Pending JPS59226802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10247783A JPS59226802A (en) 1983-06-08 1983-06-08 Edge detector of optical measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10247783A JPS59226802A (en) 1983-06-08 1983-06-08 Edge detector of optical measuring equipment

Publications (1)

Publication Number Publication Date
JPS59226802A true JPS59226802A (en) 1984-12-20

Family

ID=14328532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10247783A Pending JPS59226802A (en) 1983-06-08 1983-06-08 Edge detector of optical measuring equipment

Country Status (1)

Country Link
JP (1) JPS59226802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814624A (en) * 1985-10-09 1989-03-21 Veltze Janusz A Method and apparatus for measuring the position of an object boundary
JP2020169934A (en) * 2019-04-05 2020-10-15 株式会社ミツトヨ Optical measuring device and optical measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814624A (en) * 1985-10-09 1989-03-21 Veltze Janusz A Method and apparatus for measuring the position of an object boundary
JP2020169934A (en) * 2019-04-05 2020-10-15 株式会社ミツトヨ Optical measuring device and optical measuring method
CN111795642A (en) * 2019-04-05 2020-10-20 株式会社三丰 Optical measuring device and optical measuring method
US11530911B2 (en) 2019-04-05 2022-12-20 Mitutoyo Corporation Optical measuring device and optical measuring method

Similar Documents

Publication Publication Date Title
JPS6134410A (en) Optical measuring apparatus
US4652765A (en) Edge detecting device in optical measuring instrument
US4277176A (en) Method and apparatus for checking the width and parallelism of margins following the centering of a print with respect to a support
JP3614741B2 (en) Defect detection optical system and the surface defect inspection apparatus
US4822171A (en) Method and apparatus for measuring the wall thickness of transparent objects
US4652738A (en) Edge detecting device in optical measuring instrument
US4097160A (en) Method for inspecting object defection by light beam
US4778271A (en) Photoeletric type measuring method and device
EP0211654B1 (en) Sheet coating thickness measuring apparatus
JPS59226802A (en) Edge detector of optical measuring equipment
JPS6365885B2 (en)
RU2281349C2 (en) Method for measuring melt level at growing crystals
JPH02300617A (en) Shape measuring instrument
JPH09210639A (en) Outer diameter measuring device
JPS61234306A (en) Optical measuring apparatus
JPS5826325Y2 (en) position detection device
JPH0720564Y2 (en) Optical dimension measuring device
JPH02157613A (en) Distance measuring instrument
JPS6248163B2 (en)
JPH0419455Y2 (en)
JPS61118606A (en) Optical dimension measuring machine
JP2857515B2 (en) Optical position measuring device
JPS58218604A (en) Method and apparatus for photoelectric type measurement
JPS6243502A (en) Optical measuring instrument
JPS63191909A (en) Optical scanning type measuring instrument