JPS6014106A - Method and device for measuring dimension - Google Patents

Method and device for measuring dimension

Info

Publication number
JPS6014106A
JPS6014106A JP12285283A JP12285283A JPS6014106A JP S6014106 A JPS6014106 A JP S6014106A JP 12285283 A JP12285283 A JP 12285283A JP 12285283 A JP12285283 A JP 12285283A JP S6014106 A JPS6014106 A JP S6014106A
Authority
JP
Japan
Prior art keywords
measured
gap
measuring member
light
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12285283A
Other languages
Japanese (ja)
Other versions
JPH0547763B2 (en
Inventor
Yasukazu Fujimoto
靖一 藤本
Takeshi Noguchi
武 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Koyo Automatic Machine Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Koyo Automatic Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd, Koyo Automatic Machine Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP12285283A priority Critical patent/JPS6014106A/en
Publication of JPS6014106A publication Critical patent/JPS6014106A/en
Publication of JPH0547763B2 publication Critical patent/JPH0547763B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve the measurement precision by arranging a measuring member so that it faces a face to be measured of a cylindrical object with a proper gap between them and scanning this gap with a spot light and detecting a prescribed higher harmonic component of the optical signal transmitted through the gap. CONSTITUTION:A cylindrical object 1 to be measured is placed on an attaching base 2, and a measuring member 4 having a knife edge 3 faces the object 1 from above with a proper gap between them. The laser light emitted from a gas laser 8 as a light source scans the gap as a scanning beam through an oscillating mirror 12. The light transmitted through the gap is made incident to a photoelectric multiplier 7 through a light receiving optical system 6 and is converted to an electrical signal. This electrical signal is amplified in a preamplifier 18 and is inputted to a lock-in amplifier 19. The amplifier 19 detects and outputs a prescribed higher harmonic component out of Fourier series components of the electric signal. This output signal corresponds to the width of the gap, and dimensions of the outside diameter of the object 1 to be measured are calculated on a basis of this value.

Description

【発明の詳細な説明】 この発明は寸法測定方法とその装置、殊に円筒面からな
る被測定面を有する被測定物に適した電気光学的寸法測
定方法とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dimension measuring method and apparatus, and more particularly to an electro-optical dimension measuring method and apparatus suitable for an object to be measured having a cylindrical surface to be measured.

ローラ、シャフト等の外径寸法を測定する方法として、
被測定面にゲージを直接接触させる方法と、接触させな
い方法とがある。
As a method to measure the outer diameter dimensions of rollers, shafts, etc.
There are methods in which the gauge is brought into direct contact with the surface to be measured, and methods in which it is not brought into contact.

ゲージを直接接触させる方法として、電気ゲージ方式が
知られているが、接触部に表面キズが発生し易く、その
結果、繰p返し精度に問題がある。
An electric gauge method is known as a method of directly contacting the gauge, but surface scratches are likely to occur at the contact portion, resulting in a problem in repeatability.

非接触方式として、エアーゲージ方式があるが、精度的
にラフであって、例えばサブミクロンオーダの測定がで
きない。
As a non-contact method, there is an air gauge method, but its accuracy is rough and cannot measure, for example, on the submicron order.

一方、レーザー光による干渉シマを利用したレーザー測
長機等が知られているが、その調整が複雑であシ、コー
ナーキューブのような反射体の取付けが必要であって、
微細部の測定には不向きである。
On the other hand, laser length measuring machines that utilize interference fringes caused by laser light are known, but their adjustment is complicated and requires the installation of a reflector such as a corner cube.
It is not suitable for measuring minute parts.

この発明は、如上のレーザー干渉計のように干渉シマを
利用する上での制限や、測定者の個人差によシ測定精度
が左右されるというような不都合がなく、高い測定精度
をうろことのできる寸法測定方法とその装置を提供する
ことを目的とするものであって、被測定物の測定面に、
適正な対向スキマを形成して測定部材を配設し、前記ス
キマをスポット光で走査せしめ、該スキマを透過した光
を光電変換し、その出力電気信号のフーリエ級数成分の
うちの所定高調波成分を検波することにより、その検波
出力と前記スキマ幅との間に成立つ関係に基づいて被測
定物寸法を測定することを特徴とするものである。
This invention does not have the limitations of using interference fringes or the inconvenience that measurement accuracy is affected by the individual differences of the measurer, unlike the laser interferometer mentioned above, and can achieve high measurement accuracy. The purpose of this invention is to provide a method and device for measuring the dimensions of the object to be measured.
A measuring member is disposed with an appropriate opposing gap formed, the gap is scanned with a spot light, the light transmitted through the gap is photoelectrically converted, and a predetermined harmonic component of the Fourier series component of the output electric signal is detected. The present invention is characterized in that the dimensions of the object to be measured are measured based on the relationship established between the detected output and the gap width.

以下この発明を図示の実施例に基づいて詳細に説明する
。第1図ないし第4図に示す実施例は、例えば針状ころ
軸受のころの外径を測定する場合を示すものであって、
被測定物1としてのころを■ブロック等からなる取付金
2に載置し、その上方より適正スキマ幅Δz4−もって
ナイフェツジ3を有する測定部材4を対向させる。この
対向スキマ幅Δ2は、被測定物1の直径のバラツキ(真
円度のバラツキ)よシも大きい寸法に設定するものであ
シ、図示しない取付部材に測定部材4を保持させると共
に、セツティング位置調節用電気マイクロ・プローブ5
等を測定部材4の上端に押し当て最適位置にセラFする
The present invention will be explained in detail below based on illustrated embodiments. The embodiments shown in FIGS. 1 to 4 show a case where, for example, the outer diameter of a roller of a needle roller bearing is measured.
A roller as an object to be measured 1 is placed on a mounting bracket 2 made of a block or the like, and a measuring member 4 having a knife 3 is opposed from above with an appropriate clearance width Δz4-. This facing gap width Δ2 is set to be larger than the variation in diameter (variation in circularity) of the object to be measured 1. Electric micro probe for position adjustment 5
etc. to the upper end of the measuring member 4 to set it at the optimum position.

前記対向スキマ幅Δ2における被測定物1の中心と測定
部材4のナイフェツジ3とを結ぶ面に直交する方向より
走査レーザー光等のスポット光をもって前記スキマを走
査し、この光走査によシ前記スキマを透過した光を、集
光レンズ61L T 6 b等からなる受光光学系6を
経て光電子増倍管7に入射し、光電変換して透過光強度
に相当する電気信号を得、この電気信号と前記スキマ幅
Δ2との間に成立つ関係に基づいて実際のスキマ幅Δz
l算出し、それによって被測定物1の外径寸法を測定す
るようにしたものである。
The gap is scanned with a spot light such as a scanning laser beam from a direction perpendicular to a plane connecting the center of the object 1 to be measured and the knife 3 of the measuring member 4 in the opposing gap width Δ2, and this light scanning causes the gap to be The transmitted light enters a photomultiplier tube 7 through a light receiving optical system 6 consisting of a condensing lens 61L T 6 b, etc., and undergoes photoelectric conversion to obtain an electric signal corresponding to the intensity of the transmitted light. The actual clearance width Δz is determined based on the relationship established between the clearance width Δ2 and the clearance width Δ2.
l is calculated, and the outer diameter of the object to be measured 1 is measured based on the calculated value.

被測定物1とナイフェツジ3との対向スキマを走査する
スポット光は、He−Nθガスレーザー8を光源とする
レーザー光であって、ピンホール9を通過させることに
よシそのビーム径を適度に細くシ、ビームスプリッタ−
10で2方向に分光し、直進する光を、反射ミラー11
′jfc介して振動ミラー12に入射させる。振動ミラ
ー12は、所定周波数fRで振動させ、その反射光を走
査ビームとして前記対向スキマの走査を行う。
The spot light that scans the opposing gap between the object to be measured 1 and the knife 3 is a laser light whose light source is a He-Nθ gas laser 8, and the beam diameter is adjusted to an appropriate value by passing through a pinhole 9. Thin beam splitter
10 splits the light into two directions, and the light traveling straight is reflected by a reflecting mirror 11.
'jfc to the vibrating mirror 12. The vibrating mirror 12 is vibrated at a predetermined frequency fR, and uses the reflected light as a scanning beam to scan the opposing gap.

ビームスプリッタ−10で光路を直角に変えた分光は、
フォトダイオード13で光電変換し、その出力を後述の
出力補正用信号として供する。
The spectrum obtained by changing the optical path at right angles with the beam splitter 10 is
The photodiode 13 performs photoelectric conversion, and the output thereof is provided as an output correction signal to be described later.

振動ミラー12で反射されるレーザー光は、振動ミラー
12によシ扇状の所定角度範囲で反射方向を変化させら
れるが、振動ミラー12と前記対向スキマとの間に、振
動ミラー・レンズ間圧熱全自己の焦点距離と等しくして
配置したレンズ14を設け、振動ミラー12からの反射
光が、被測定物1とナイフェツジ3との対向方向(X軸
方向)に対して直交し、前記スキマを横切る向き(X軸
方向)に該スキマを走査する平行走査ビームに変換され
るようにしである。
The direction of the laser beam reflected by the vibrating mirror 12 is changed by the vibrating mirror 12 within a predetermined fan-shaped angle range, but there is pressure between the vibrating mirror and the lens between the vibrating mirror 12 and the opposing gap. A lens 14 is provided, which is arranged to have a focal length equal to that of the entire self, so that the reflected light from the vibrating mirror 12 is perpendicular to the direction in which the object to be measured 1 and the knife blade 3 face each other (X-axis direction), and the gap is This is so that it is converted into a parallel scanning beam that scans the gap in a transverse direction (X-axis direction).

振動ミラー12は、これに付属する図示しないタコ・ゼ
ネレータと発振ドライバ15で構成する発振回路の一部
をなし、振動ミラー12の自己共振周波数f8で振動す
る。
The vibrating mirror 12 forms part of an oscillation circuit including an attached tacho generator (not shown) and an oscillation driver 15, and vibrates at the self-resonant frequency f8 of the vibrating mirror 12.

被測定物1は、その取付台2に載置する一方、必要があ
ればスライド基台16を図示しない駆動手段により被測
定物1の軸方向(X軸方向)にスライドさせ、対向スキ
マの規定位置で光走査を行うようにする。
The object to be measured 1 is placed on its mounting base 2, and if necessary, the slide base 16 is slid in the axial direction (X-axis direction) of the object to be measured 1 by a drive means (not shown) to define the opposing gap. Optical scanning is performed at the position.

この場合、実施例ではナイフェツジ3’lx軸方向に対
して固定しであるが、これはナイフェツジ3のX軸方向
の長さが被測定物lの長さとほぼ同一長さに設定されて
いるような場合は、測定部材4を保持する図示しない保
持部をスライド基台16上に設け、被測定物lと同方向
に移動させるようにしてもよく、また他の例では、被測
定物WをX軸方向にスリして固定し、光学系とナイフェ
ツジと’6x軸方向にスライドさせる構成とすることも
できる。
In this case, in the embodiment, the knife 3' is fixed with respect to the lx-axis direction, but this is because the length of the knife 3 in the X-axis direction is set to be approximately the same length as the length of the object to be measured l. In such a case, a holding part (not shown) for holding the measuring member 4 may be provided on the slide base 16 so that the measuring member 4 can be moved in the same direction as the object to be measured. It is also possible to have a configuration in which the optical system and the knife are slid in the x-axis direction, and the optical system and the knife are slid and fixed in the x-axis direction.

受光光学系6と光電子増倍管7との間には、6.328
A波長光を透過する干渉フィルタ17を介在させ、周囲
から混入する外光の影響を最小限に抑える。
Between the light receiving optical system 6 and the photomultiplier tube 7, there is a distance of 6.328 mm.
An interference filter 17 that transmits A-wavelength light is interposed to minimize the influence of external light entering from the surroundings.

光電子増倍管7より出力した電気信号は、プリアンプ1
8によシ第3図に示すような信号波形Vに増幅した後、
次段のロックインアンプ19に入力する。
The electrical signal output from the photomultiplier tube 7 is sent to the preamplifier 1.
After amplifying the signal waveform V as shown in Fig. 3 according to 8,
It is input to the lock-in amplifier 19 at the next stage.

第3図の信号波形Vのピーク値Vpeakと、パルス幅
V widthとは、前記対向スキマ幅Δ2と密接圧関
係する。この関係はスキマ幅Δ2に比して走査光のビー
ム径を十分に大きくするときに顕著にあられれ、この実
施例の場合、対向スキマ幅Δ2が0.01μm〜10μ
mに対して、走査光のビ−ム径ヲ0.2〜0.5蕪とし
ておシ、前記条件全十分満足している。
The peak value Vpeak and the pulse width Vwidth of the signal waveform V in FIG. 3 are closely related to the opposing gap width Δ2. This relationship becomes remarkable when the beam diameter of the scanning light is made sufficiently large compared to the gap width Δ2, and in the case of this example, the opposing gap width Δ2 is 0.01 μm to 10 μm.
If the beam diameter of the scanning light is set to 0.2 to 0.5 m, all of the above conditions are fully satisfied.

プリアンプ18で増幅した電気信号は、次段のロックイ
ンアンプ19に入力されるが、電気パルス列の7一リエ
級数成分のうち所定高調波成分を検波してロックインア
ンプ19から出力する。(実施例では2次の高調波を出
力する。)ロックインアンプ19には、別に発振器ドラ
イバ15から出力される振動ミラー12の振動周波数f
8の2倍の周波数の信号を参照信号として入力する。従
って対向スキマ幅Δ2の部分の光走査に対応するロック
インアンプ19の出力V outは、前記スキマ幅Δ2
との間に、 vout=−!ΔZ sin 2 π/2・・・・・・
・・・(1)Ko:定数 の関係分有する。
The electrical signal amplified by the preamplifier 18 is input to the lock-in amplifier 19 at the next stage, and a predetermined harmonic component among the 7-Lier series components of the electrical pulse train is detected and output from the lock-in amplifier 19. (In the embodiment, the second harmonic is output.) The lock-in amplifier 19 also has a vibration frequency f of the vibration mirror 12 output from the oscillator driver 15.
A signal with a frequency twice that of 8 is input as a reference signal. Therefore, the output V out of the lock-in amplifier 19 corresponding to the optical scanning of the portion of the opposing gap width Δ2 is the gap width Δ2.
Between, vout=-! ΔZ sin 2 π/2・・・・・・
...(1) Ko: Has a constant relationship.

次段の出力補正部20では、ロックインアンプ19の出
力Vout’i入力する一方、フォトダイオード13の
出力を、プリアンプ21で増幅後、出力補正用信号とし
て入力し、He−Neガスレーザー8の光強度ゆらぎに
起因する出力V outの変動分を出力補正用信号に基
づいて補正する。
In the output correction section 20 at the next stage, the output Vout'i of the lock-in amplifier 19 is input, while the output of the photodiode 13 is amplified by the preamplifier 21 and input as an output correction signal, and the output of the He-Ne gas laser 8 is inputted. A variation in the output V out due to light intensity fluctuation is corrected based on the output correction signal.

被測定物1は第4図示の如く、図示しない駆動装置によ
って図中矢符に示す如く回転させられるが、X−Y記録
計22のX−人力として回転角θに比例する電圧をロー
タリーエンコーダー23或はポテンショメータ等により
入力し、Y−人力には、出力補正部20の出力Vout
’i入力する。これによシ第5図に示すような記録波形
を得た。すなわちロックインアンプ19の出力Vout
(実際は出力補正部20の出力)から前記対向スキマ幅
Δz4測定することができる。
As shown in the fourth figure, the object to be measured 1 is rotated as shown by the arrow in the figure by a drive device (not shown). is inputted by a potentiometer etc., and the output Vout of the output correction section 20 is inputted to Y-human power.
'iEnter. As a result, a recorded waveform as shown in FIG. 5 was obtained. That is, the output Vout of the lock-in amplifier 19
The opposing gap width Δz4 can be measured from (actually, the output of the output correction section 20).

なおこのように、非常に高い精度で寸法測定が行われる
結果、被測定物取付台2上に載置した被測定物の装着状
態が良好に保たれなければならないが、第4図の実施例
は、このような目的に対応して、取付台2に圧電素子2
4を装着し、信号発生器25、増幅器26を介して圧電
素子24を駆動する。すなわち適当な周波数で取付台2
全励振し、取付台2上の被測定物1の装着を良好にし再
現性を向上することができる〇 第6図に示す実施例は、被測定物1と取付台2との間に
付着するゴミ、或は油膜等による影響を相殺するように
した場合の一例を示している。すなわち取付台2′に光
を透過する窓2aを開設し、被測定物lの垂直方向の直
径線上に対向、する2個の測定部材4 、4”ii配装
し、各ナイフェツジ3゜3′との対向スキマを2条のス
ポット光により走査すると共に、2組の受光光学系6 
、6’、2組の図示しない光電子増倍管を配置する。而
して上方の対向スキマ、受光光学系、光電子増倍管、ロ
ックインアンプからの出力’fr:VxzT方からのそ
れを■2とするとき、信号処理方法としてvl+■2′
f:加算回路にて作9 Voutとする。
In addition, as a result of dimension measurement being performed with extremely high precision in this way, the mounting condition of the object to be measured placed on the object to be measured mount 2 must be maintained in good condition. For this purpose, a piezoelectric element 2 is installed on the mounting base 2.
4 is attached, and the piezoelectric element 24 is driven via a signal generator 25 and an amplifier 26. In other words, at an appropriate frequency, the mounting base 2
It is possible to fully excite the object 1 to be measured on the mount 2 and improve reproducibility. In the embodiment shown in FIG. An example is shown in which the influence of dust, oil film, etc. is offset. That is, a window 2a that transmits light is provided in the mounting base 2', two measurement members 4, 4"ii are arranged facing each other on the diameter line in the vertical direction of the object to be measured, and each knife 3°3' At the same time, two sets of light receiving optical systems 6 scan the gap facing the
, 6', two sets of photomultiplier tubes (not shown) are arranged. Therefore, when the output from the upper opposed gap, the light receiving optical system, the photomultiplier tube, and the lock-in amplifier 'fr:VxzT is defined as ■2, the signal processing method is vl+■2'.
f: Created by the adder circuit and set to 9 Vout.

すなわち、被測定物と取付台との間に微小ゴミ゛が噛み
込まれたとき、被測定物に僅かな浮上りが発生するが、
この浮上りに起因して上方の透過光による出力v1が小
さくなる反面、下方の透過光による出力v2はその分だ
け大きくなシ、ゴミ、油膜、或は被測定物の駆動(移動
)機構の不完全等による測定誤差を相殺することができ
、該誤差を極力小さくしてオンラインでの測定を可能と
することができる。
In other words, when minute dust gets caught between the object to be measured and the mounting base, the object to be measured will float slightly;
Due to this floating, the output v1 due to the upper transmitted light becomes smaller, but the output v2 due to the lower transmitted light becomes correspondingly larger. Measurement errors due to imperfections can be canceled out, and the errors can be minimized to enable online measurement.

以上の各実施例は、いずれも針状ころのような円筒状物
体の外径を測定する場合について示したが、これは第7
図に示すよう九、円筒形内径面を有する円環状被測定物
IAの内径を測定する場合についても同様に実施可能で
あり、この場合、測定部材にナイフェツジを使用する代
りに、前記内径に対し微小対向スキマを形成する直径が
既知のボール3Affi使用する。測定方法は図からも
明らかなように、前述の各実施例と全く同様であり、さ
らに微小ゴミ等の影響を考慮するときは、第8図に示す
如く、円環状被測定物の直径線上の2個所に対向スキマ
を形成するようにセットすればよなお前記各実施例にお
いて、走査光としてレーザー光を採用すれば、測定精度
の上で有利ではあるが、必ずしもこのようなコヒーレン
ト光を用いる必要はない。
In each of the above embodiments, the outer diameter of a cylindrical object such as a needle roller is measured.
As shown in the figure, it is also possible to measure the inner diameter of an annular object to be measured IA having a cylindrical inner diameter surface.In this case, instead of using a knife as the measuring member, A ball 3Affi with a known diameter is used to form a minute opposing gap. As is clear from the figure, the measurement method is exactly the same as in each of the above-mentioned embodiments, and when considering the influence of minute dust etc., as shown in Fig. 8, the measurement method is In each of the above embodiments, it is advantageous in terms of measurement accuracy to use laser light as the scanning light, but it is not always necessary to use such coherent light. There isn't.

この発明は以上のように1特に円筒状被測定面を有する
被測定物の寸法測定を、きわめて高い精度をもって実現
することができ、実施例の場合、1/100μm、t−
ダーのスキマ計測が可能であることが確認された。
As described above, the present invention can measure the dimensions of objects to be measured, especially those having cylindrical surfaces to be measured, with extremely high accuracy.
It was confirmed that it is possible to measure the gap between the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の系統図、第2図(a) 
、 (b)は対向スキマ部を拡大して示す正面図と側面
図、第3図は光電変換して得られる電気信号の波形図、
第4図は他の実施例要部の正面図、第5図は光走査位置
とロックインアンプ出方との関係より得る特性図、第6
図(a) 、 (b) 、第7図(a) 、 (b)i
dそれぞれ他の実施例要部の正面図と側面図、第8図(
a) 、 (b)はさらに他の実施例の正面図と平面図
である。 1、IA・・・被測定物、2,2′・・・取付台、3,
3′・・・ナイフェツジ、3A・・・ボール、j+4’
・・・測定部材、6,6′・・・受光光学系、7・・・
光電子増倍管、8・・・Hθ−Neガスレーザー、9・
・・ピンボール、1゜・・・ビームスプリッタ−112
・・・振動ミラー、14・・・レンズ、16・・・スラ
イド基台、19°°゛ロツクインアンプ、2o・・・出
方補正部、22・・・x−y記録計、Δ2・・・対向ス
キマ幅 出願人 光洋精工株式会社 第1図 第2図 (Q) (b) ↑ 第3図 第4図 1同す入山(θ)→ 第7図 (a) (b) 第8図 (0) (b)
Figure 1 is a system diagram of an embodiment of this invention, Figure 2 (a)
, (b) is a front view and side view showing an enlarged view of the opposing gap, FIG. 3 is a waveform diagram of an electric signal obtained by photoelectric conversion,
Fig. 4 is a front view of the main parts of another embodiment, Fig. 5 is a characteristic diagram obtained from the relationship between the optical scanning position and the lock-in amplifier output direction, and Fig. 6 is a characteristic diagram obtained from the relationship between the optical scanning position and the lock-in amplifier output direction.
Figures (a), (b), Figure 7 (a), (b)i
d Front view and side view of main parts of other embodiments, Fig. 8 (
a) and (b) are a front view and a plan view of still another embodiment. 1, IA...Object to be measured, 2, 2'...Mounting base, 3,
3'... Naifetsuji, 3A... Ball, j+4'
...Measurement member, 6, 6'... Light receiving optical system, 7...
Photomultiplier tube, 8...Hθ-Ne gas laser, 9.
...Pinball, 1゜...Beam splitter-112
... Vibrating mirror, 14... Lens, 16... Slide base, 19°° lock-in amplifier, 2o... Output correction section, 22... x-y recorder, Δ2... - Opposing clearance width Applicant Koyo Seiko Co., Ltd. Figure 1 Figure 2 (Q) (b) ↑ Figure 3 Figure 4 Figure 1 Same entry (θ) → Figure 7 (a) (b) Figure 8 ( 0) (b)

Claims (1)

【特許請求の範囲】 (1)被測定物と測定部材との間に被測定物の寸法のバ
ラツキよυ大きい対向スキマな形成する如く測定部材を
セットする過程と、前記スキマをスポット光により所定
周期を走査する光走査過程と、光走査によυ前記スキマ
を透過した元金光電変換する光電変換過程と、光電変換
により得られる電気信号のツーIJ 工級数成分のうち
所定高調波成分を検波する検波過程と含み、検波出力と
前記スキマ幅との間に成立つ関係に基づき被測定物寸法
を測定することを特徴とする寸法測定方法(2)被測定
物取付台と、該取付台上の被測定物に対向して適正スキ
マを形成する測定部材と、スポット光を照射する投光手
段と、前記スキマにスポット光を照射し所定周期で該ス
キマを走査する光走査手段と、前記スキマを透過した光
を光電変換する光電変換手段と、光電変換手段の出力電
気信号を受けその電気信号のフーリエ級数成分のうち所
定高調波成分を検波するロックインアンプと、ロックイ
ンアンプの出力を前記スキマの各光走査位置に対応させ
て読みとる測定値判断手段とを含む寸法測定装置 (3)被測定物が円筒形被測定外径面を有し、測定部材
が前記外径面に適正スキマをもって対向させられるナイ
フェツジを有する特許請求の範囲(2)記載の寸法測定
装置 (4)被測定物が円筒形被測定内径面を有し、測足部材
が前記内径面に適正スキマを形成して挿入される球状外
径面を有する特許請求の範囲(2)記載の寸法測定装置 (5)被測定物の直径線上の2個所に前記スキマを形成
する如く前記測定部材を形成し、前記2個所の対向スキ
マのそれぞれに対応する2組の光走査手段と光電変換手
段とを設け、2組の光電変換手段の出力電気信号をロッ
クインアンプ九入力して合算すべくした特許請求の範囲
(2)から(4)までのいずれか1つに記載の寸法測定
装置
[Scope of Claims] (1) A process of setting the measuring member so as to form a facing gap between the object to be measured and the measuring member that is larger than the variation in the dimensions of the object to be measured, and a process of setting the measuring member so as to form a facing gap between the object to be measured and the measuring member, and determining the gap by a spot light. An optical scanning process of scanning the period, a photoelectric conversion process of photoelectrically converting the source metal that passes through the gap by optical scanning, and a detection of a predetermined harmonic component among the two IJ series components of the electrical signal obtained by the photoelectric conversion. A dimension measuring method characterized in that the dimensions of the object to be measured are measured based on the relationship established between the detection output and the gap width (2) a mounting stand for the object to be measured, and a step on the mounting stand; a measuring member that forms an appropriate gap facing the object to be measured; a light projection device that irradiates a spot light; a light scanning device that irradiates the gap with a spot light and scans the gap at a predetermined period; a lock-in amplifier that receives an output electric signal from the photoelectric conversion means and detects a predetermined harmonic component among the Fourier series components of the electric signal; (3) The object to be measured has a cylindrical outer diameter surface to be measured, and the measuring member has an appropriate clearance on the outer diameter surface. (4) The dimension measuring device according to claim (2), which has knife blades that are opposed to each other. (5) The measuring member is formed so as to form the gaps at two locations on the diameter line of the object to be measured; Claim (2) in which two sets of optical scanning means and photoelectric conversion means are provided corresponding to each of the opposing gaps, and the output electric signals of the two sets of photoelectric conversion means are input to nine lock-in amplifiers and summed. The dimension measuring device according to any one of (4) to
JP12285283A 1983-07-05 1983-07-05 Method and device for measuring dimension Granted JPS6014106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12285283A JPS6014106A (en) 1983-07-05 1983-07-05 Method and device for measuring dimension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12285283A JPS6014106A (en) 1983-07-05 1983-07-05 Method and device for measuring dimension

Publications (2)

Publication Number Publication Date
JPS6014106A true JPS6014106A (en) 1985-01-24
JPH0547763B2 JPH0547763B2 (en) 1993-07-19

Family

ID=14846232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12285283A Granted JPS6014106A (en) 1983-07-05 1983-07-05 Method and device for measuring dimension

Country Status (1)

Country Link
JP (1) JPS6014106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0216587A2 (en) * 1985-09-13 1987-04-01 Tesa Metrology Limited Improvements to optical measurement apparatus
US20130128285A1 (en) * 2010-07-29 2013-05-23 Panart Khajornrungruang System and method for measuring length of gap between rotating tool and workpiece

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0216587A2 (en) * 1985-09-13 1987-04-01 Tesa Metrology Limited Improvements to optical measurement apparatus
US20130128285A1 (en) * 2010-07-29 2013-05-23 Panart Khajornrungruang System and method for measuring length of gap between rotating tool and workpiece
US8755055B2 (en) * 2010-07-29 2014-06-17 Kyushu Institute Of Technology System and method for measuring length of gap between rotating tool and workpiece

Also Published As

Publication number Publication date
JPH0547763B2 (en) 1993-07-19

Similar Documents

Publication Publication Date Title
US4046477A (en) Interferometric method and apparatus for sensing surface deformation of a workpiece subjected to acoustic energy
CA2007190C (en) Laser optical ultrasound detection
Deferrari et al. Vibrational displacement and mode‐shape measurement by a laser interferometer
CA1224935A (en) Optical interferometric reception of ultrasonic energy
CN1644296B (en) Laser machining apparatus
US20040027578A1 (en) Method and apparatus for ultrasonic laser testing
US5135307A (en) Laser diode interferometer
US4129041A (en) Method and apparatus for receiving ultrasonic waves by optical means
US5202740A (en) Method of and device for determining the position of a surface
GB2117511A (en) Laser beam alignment detection
JPS6022614A (en) Optical device for measuring shape
JPH08304050A (en) Magnetic film defect inspection device for magnetic disk
JPS6014106A (en) Method and device for measuring dimension
WO2000000783A1 (en) Method and apparatus for ultrasonic laser testing
US3506839A (en) Contactless probe system
JPS6334963B2 (en)
JPS5856094B2 (en) Microvibration measuring device
JP2592254B2 (en) Measuring device for displacement and displacement speed
JPS6344166B2 (en)
JPH0720094A (en) Ultrasonic oscillation measuring apparatus
JPS61210902A (en) Specimen height measuring instrument
JP2816514B2 (en) Optical measuring device
KR950019660A (en) Non-contact internal defect flaw detection method and device
JPS60224044A (en) Surface inspecting device by light heterodyne interference method
Yandayan A Laser Doppler System for In-Process Measurement of Diameters on CNC Turning Machines