JP2592254B2 - Measuring device for displacement and displacement speed - Google Patents

Measuring device for displacement and displacement speed

Info

Publication number
JP2592254B2
JP2592254B2 JP62161890A JP16189087A JP2592254B2 JP 2592254 B2 JP2592254 B2 JP 2592254B2 JP 62161890 A JP62161890 A JP 62161890A JP 16189087 A JP16189087 A JP 16189087A JP 2592254 B2 JP2592254 B2 JP 2592254B2
Authority
JP
Japan
Prior art keywords
light
interferometer
measuring
displacement
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62161890A
Other languages
Japanese (ja)
Other versions
JPS646705A (en
Inventor
哲也 猪目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62161890A priority Critical patent/JP2592254B2/en
Publication of JPS646705A publication Critical patent/JPS646705A/en
Application granted granted Critical
Publication of JP2592254B2 publication Critical patent/JP2592254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被測定物体の変位量及び変位速度を光学的に
検出する変位量及び変位速度測定装置である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a displacement and displacement speed measuring device for optically detecting the displacement and displacement speed of an object to be measured.

〔従来の技術〕[Conventional technology]

従来、サブミクロンメートル以下の変位量を測定する
方法としてHe−Neレーザ等の気体レーザを光源とし、レ
ーザ光を空間伝搬させることにより、基準光と被測定物
から反射された光とを干渉させ、位相差に応じた信号を
検出する方法が一般的である。その光学系の1例を第3
図に示す。これにおいて、レーザ光源(1)から発した
光は空間を伝搬し、干渉計(2)内で2方向の光に分割
された1方向の光は基準光として干渉計内で反射を繰り
返し他の方向に分割された光は測定光として被測定物体
に装着された測定用反射鏡(3)で反射し、干渉計
(2)内で基準光と干渉し、その干渉光は光検知器
(4)に入射し、基準光と測定光の位相差を検知するこ
とによって被測定物の変位量が測定される。
Conventionally, a gas laser such as a He-Ne laser is used as a light source as a method of measuring a displacement amount of sub-micrometer or less, and the laser light is spatially propagated to cause interference between reference light and light reflected from an object to be measured. In general, a method of detecting a signal corresponding to a phase difference is used. One example of the optical system is the third
Shown in the figure. In this case, the light emitted from the laser light source (1) propagates in space, and the one-way light split into two directions in the interferometer (2) is repeatedly reflected in the interferometer as reference light, and is reflected in other directions. The light split in the direction is reflected as a measuring light by a measuring reflecting mirror (3) mounted on an object to be measured, and interferes with a reference light in an interferometer (2). ), And the amount of displacement of the measured object is measured by detecting the phase difference between the reference light and the measurement light.

実際の測定に際しては、レーザ光源(1)の干渉計
(2)及び測定用反射鏡(3)の相対的な微小振動によ
り測定値が不安定となり測定精度が低下する。
At the time of actual measurement, the measured value becomes unstable due to relative minute vibration of the interferometer (2) of the laser light source (1) and the measuring reflecting mirror (3), and the measuring accuracy is reduced.

そのため同一の測定用定盤に3者をのせて測定するこ
とが望ましい。これはレーザ光源、干渉計、測定用反射
鏡及び被測定物からなる測定系を配置するために広い空
間が必要であることを意味する。
Therefore, it is desirable to carry out the measurement by placing three persons on the same measurement surface plate. This means that a large space is required for disposing a measurement system including a laser light source, an interferometer, a measurement reflecting mirror, and an object to be measured.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の変位量測定は、上述の如く、レーザ光源、干渉
計、測定用反射鏡が不可欠となる。また、レーザ光源、
干渉計、測定用反射鏡の大きさは数百ミリメータから数
十ミリメータのオーダーとなり、さらに広い空間を必要
とする。さらに、空間を光が直進伝搬するため光学系の
配置に工夫が必要となり、配置方向によっては広い空間
が必要となる。
As described above, the conventional displacement measurement requires a laser light source, an interferometer, and a reflecting mirror for measurement. Also, a laser light source,
The size of the interferometer and the measuring mirror is on the order of hundreds of millimeters to tens of millimeters, and requires a larger space. Further, since light travels straight through the space, it is necessary to devise an arrangement of the optical system, and a wide space is required depending on the arrangement direction.

上記の問題点に加えて限られた空間内で光軸合せをし
なければならず、光軸合せに時間を必要とする。また、
光が大気中を伝搬するため、光路途中の空気のゆらぎに
より測定精度が低下するなど多くの問題があった。
In addition to the above problems, the optical axis must be aligned in a limited space, and the optical axis alignment requires time. Also,
Since light propagates in the atmosphere, there are many problems such as a decrease in measurement accuracy due to fluctuations of air in the optical path.

〔問題点を解決するための手段〕[Means for solving the problem]

上記の問題点を解決するため、測定用反射鏡の前面付
近で構成要素となる光学部品を光ファイバで接続させ、
その中で光の分岐、反射、偏光状態の変化、干渉を行い
レーザ光源と干渉計が相対的に振動しても、測定精度に
悪影響を与えない様にする。光を測定用反射鏡に出射す
る測定用プローブ部及び測定用反射鏡を数十ミリメータ
以下にし、必要空間を狭くする。また、レーザ光源と干
渉計間を光ファイバで接続することにより測定の際レー
ザ光源と干渉計間の光軸合せを不要にし、測定用プロー
ブと測定用反射鏡との光軸合せだけにする。
In order to solve the above-mentioned problems, optical components as components near the front surface of the measuring reflector are connected by an optical fiber,
In this case, even if the laser light source and the interferometer relatively vibrate by splitting, reflecting, changing the polarization state, or interfering with light, the measurement accuracy is not adversely affected. The measuring probe section and the measuring reflecting mirror that emit light to the measuring reflecting mirror are reduced to several tens of millimeters or less to reduce the required space. Further, by connecting the laser light source and the interferometer with an optical fiber, the alignment of the optical axis between the laser light source and the interferometer becomes unnecessary at the time of measurement, and only the alignment of the optical axis between the measuring probe and the measuring mirror is performed.

〔実施例〕〔Example〕

以下、本発明の実施例を具体的に述べる。 Hereinafter, examples of the present invention will be specifically described.

第1図は変位量測定装置の構成を示している。 FIG. 1 shows the configuration of the displacement measuring device.

レーザ光源(1)から発したコヒーレント光を光ファ
イバ(8a)に通し、コリメートレンズ(5a)で平行光に
する。この平行光をビームスリッタ(7a)で2つの偏光
に分割する。分割された1つの光は集光レンズ(6a)に
より集光され光ファイバ(8b)を通り、測定用プローブ
(15)に入る。コリメートレンズ5bにより平行光にされ
ビームスリッタ(7b)を通り波長板(10b)を通過し
て、被測定物に固定された測定用反射鏡(3)で反射さ
れ、反射光は再度波長板(10b)を通過することにより
入射した時と直交する偏光となりビームスリッタ(7b)
で反射され反射鏡又はプリズム(16)により反射され、
集光レンズ(6b)で光ファイバ(8b)中に集光される。
光ファイバ(8b)を通過した光は干渉計(14)に入射す
る。
The coherent light emitted from the laser light source (1) passes through an optical fiber (8a) and is made parallel by a collimating lens (5a). This parallel light is split into two polarized lights by a beam slitter (7a). One of the split lights is condensed by the condenser lens (6a), passes through the optical fiber (8b), and enters the measurement probe (15). The light is collimated by the collimating lens 5b, passes through the beam splitter (7b), passes through the wave plate (10b), is reflected by the measuring reflector (3) fixed to the object to be measured, and the reflected light is again reflected by the wave plate (10). By passing through 10b), it becomes a polarization orthogonal to that of the incident light, and becomes a beam slitter (7b)
Reflected by the reflecting mirror or prism (16),
The light is focused into the optical fiber (8b) by the focusing lens (6b).
The light that has passed through the optical fiber (8b) enters the interferometer (14).

まず、コリメートレンズ(5c)で平行光になり偏光子
(9b)で他の偏光を除去され、波長板(10c)で円偏光
に変換され、ビームスプリッタ又はハーフミラ(12)に
より位相検知器(13)に入る。一方、ビームスプリッタ
(7a)で分割された他方の光は、偏光子(9a)を通り,
波長板(10a)により上述の円偏光と反対回りの円偏光
に変換され光減衰器(11)により光強度のレベル調整を
した後、上述の円偏光と干渉した干渉光は、位相検知器
(13)に入る。測定鏡を通る光は測定用プローブ(15)
の端面と測定鏡(3)の間の距離が変化することにより
位相が変化し、干渉光は位相の変化に対応して、偏波面
の角度を変える。この角度を位相検知で測定することに
よって位相を検知し、測定鏡(3)と測定用プローブ
(15)間の変位量を測定する。測定用プローグ(15)及
び測定用反射鏡(3)は、数十ミリメータ以下の大きさ
にする。
First, it becomes parallel light by the collimator lens (5c), other polarized light is removed by the polarizer (9b), is converted to circularly polarized light by the wave plate (10c), and is phase-detected by the beam splitter or half mirror (12). )to go into. On the other hand, the other light split by the beam splitter (7a) passes through the polarizer (9a),
After being converted into circularly polarized light in the opposite direction to the above-mentioned circularly polarized light by the wave plate (10a) and adjusting the light intensity level by the optical attenuator (11), the interference light that has interfered with the circularly polarized light is converted into a phase detector ( 13) Enter. Light passing through the measuring mirror is a measuring probe (15)
The phase changes due to the change in the distance between the end face and the measuring mirror (3), and the interference light changes the angle of the polarization plane in accordance with the change in the phase. The phase is detected by measuring this angle by phase detection, and the displacement between the measuring mirror (3) and the measuring probe (15) is measured. The size of the measuring prog (15) and the measuring reflecting mirror (3) should be several tens of millimeters or less.

第2図は、上述した光ファイバで接続されたレーザ光
源(1)、干渉計(14)及び測定用プローグ(15)と、
被測定物に取付けた測定用反射鏡(3)を使用し位相検
知器の部分を偏光子(9c)と光パルスカウンター(17)
とした被測定物変位速度計であり、各光路を光ファイバ
で構成したものであって被測定物の変位速度は次の関係
式から求めることができる。
FIG. 2 shows a laser light source (1), an interferometer (14) and a measuring probe (15) connected by the above-mentioned optical fiber,
Using a measuring reflector (3) attached to the device under test, the phase detector is replaced with a polarizer (9c) and an optical pulse counter (17).
The displacement velocity of the object to be measured can be obtained from the following relational expression, in which each optical path is constituted by an optical fiber.

υ:被測定物の変位速度 λ:使用する光の波長 T:光パルスをカウントした時間 P:T時間内の光パルスの数 〔発明の効果〕 レーザ光源と干渉計を光ファイバで接続することによ
り、レーザ光源と干渉計が相対的に多少振動しても測定
精度に影響を与えない。測定用プローブ及び測定用反射
鏡に数十ミリメータ以下の大きさにし、必要空間を狭く
できる。また、レーザ光源と干渉計間を光ファイバで接
続することにより測定の際、レーザ光源と干渉計間の光
軸合せを不要にし測定用プローブと測定用反射鏡との光
軸合せだけにできる。さらに、光が空間を伝搬する距離
が短いため空気のゆらぎによる測定精度の低下を防ぐこ
とができる。測定用プローブは狭い箇所に固定できるた
め、複雑に入り組んだ所にある被測定物でも変位量を測
定でき、従来法と比較してより広い被測定物を高精度で
測定できる。
υ: Displacement velocity of the object to be measured λ: Wavelength of light used T: Time counted light pulse P: Number of light pulse within T time [Effect of the invention] Connecting laser light source and interferometer by optical fiber Therefore, even if the laser light source and the interferometer are relatively slightly vibrated, the measurement accuracy is not affected. The required space can be narrowed by reducing the size of the measuring probe and the measuring reflecting mirror to several tens of millimeters or less. Also, by connecting the laser light source and the interferometer with an optical fiber, the alignment of the optical axis between the laser light source and the interferometer is not required at the time of measurement, and only the alignment of the optical axis between the measuring probe and the measuring mirror can be performed. Further, since the distance over which the light propagates in the space is short, it is possible to prevent a decrease in measurement accuracy due to the fluctuation of air. Since the measurement probe can be fixed to a narrow place, the displacement can be measured even for a complexly-measured object, and a wider object can be measured with higher accuracy than the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明実施例に係る変位量測定装置の構成を示
すブロックダイヤグラム、第2図は本発明実施例による
変位速度測定装置の構成を示すブロックダイヤグラム、
第3図は従来の変位量測定装置の構成を示すブロックダ
イヤグラムである。 1:レーザ光源 2:干渉計 3:測定用反射鏡 4:光検知器 5a,5b,5c:コリメートレンズ 6a,6b:集光レンズ 7a,7b:ビームスリッタ 8a,8b:光ファイバ 9a,9b:偏光子 10a,10b:波長板 11:光減衰器 13:位相検知器 14:干渉計 15:測定用プローブ
FIG. 1 is a block diagram showing a configuration of a displacement amount measuring device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a configuration of a displacement speed measuring device according to an embodiment of the present invention,
FIG. 3 is a block diagram showing the configuration of a conventional displacement measuring device. 1: Laser light source 2: Interferometer 3: Measurement mirror 4: Optical detector 5a, 5b, 5c: Collimating lens 6a, 6b: Condensing lens 7a, 7b: Beam slitter 8a, 8b: Optical fiber 9a, 9b: Polarizer 10a, 10b: Wave plate 11: Optical attenuator 13: Phase detector 14: Interferometer 15: Probe for measurement

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源と干渉計と測定用プローブからなり、
光源からのコヒーレント光を干渉計で2つの直交する偏
波光に分割して一方を基準光、他方を測定光とし、該測
定光を測定用プローブを介して被測定物体に照光して反
射光を受光し、この反射光と上記基準光とを各々反対に
回転する円偏光又は楕円偏光に変換して互いに干渉さ
せ、得られた干渉光の主偏光面の角度によって被測定物
体の変位量を測定するようにした装置において、上記光
源のコヒーレント光を干渉計に導出する間、干渉計から
測定光を測定用プローブに導出する間、及び測定用プロ
ーブから反射光を干渉計に導出する間の各光路を光ファ
イバで構成したことを特徴とする変位量測定装置。
A light source, an interferometer and a measuring probe,
The coherent light from the light source is split into two orthogonally polarized lights by an interferometer, one of which is used as a reference light, and the other is used as a measurement light. The reflected light and the reference light are converted into circularly polarized light or elliptically polarized light, which rotate in opposite directions, and interfere with each other. The displacement of the measured object is measured by the angle of the main polarization plane of the obtained interference light. In the apparatus, the coherent light of the light source is guided to the interferometer, the measurement light is guided to the measurement probe from the interferometer, and the reflected light is guided to the interferometer from the measurement probe. A displacement measuring device, wherein an optical path is constituted by an optical fiber.
【請求項2】光源と干渉計と測定用プローブからなり、
光源からのコヒーレント光を干渉計で2つの直交する偏
波光に分割して一方を基準光、他方を測定光とし、該測
定光を測定用プローブを介して被測定物体に照光して反
射光を受光し、この反射光と上記基準光とを各々反対に
回転する円偏光又は楕円偏光に変換して互いに干渉さ
せ、得られた干渉光の主偏光面の回転角度を検知して被
測定物体の変位速度を測定するようにした装置におい
て、上記光源のコヒーレント光を干渉計に導出する間、
干渉計から測定光を測定用プローブに導出する間、及び
測定用プローブから反射光を干渉計に導出する間の各光
路を光ファイバで構成したことを特徴とする変位速度測
定装置。
2. A light source, an interferometer and a measuring probe,
The coherent light from the light source is split into two orthogonally polarized lights by an interferometer, one of which is used as a reference light, and the other is used as a measurement light. The reflected light and the reference light are converted into circularly polarized light or elliptically polarized light that rotate in opposite directions to interfere with each other, and the rotation angle of the main polarization plane of the obtained interference light is detected to detect the rotation angle of the measured object. In a device adapted to measure the displacement velocity, while deriving the coherent light of the light source to the interferometer,
A displacement velocity measuring device, wherein each optical path is formed by an optical fiber while a measuring light is led out to an interferometer from a measuring probe and a reflected light is led out to the interferometer from the measuring probe.
JP62161890A 1987-06-29 1987-06-29 Measuring device for displacement and displacement speed Expired - Fee Related JP2592254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62161890A JP2592254B2 (en) 1987-06-29 1987-06-29 Measuring device for displacement and displacement speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62161890A JP2592254B2 (en) 1987-06-29 1987-06-29 Measuring device for displacement and displacement speed

Publications (2)

Publication Number Publication Date
JPS646705A JPS646705A (en) 1989-01-11
JP2592254B2 true JP2592254B2 (en) 1997-03-19

Family

ID=15743945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62161890A Expired - Fee Related JP2592254B2 (en) 1987-06-29 1987-06-29 Measuring device for displacement and displacement speed

Country Status (1)

Country Link
JP (1) JP2592254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072743B (en) * 2009-11-24 2012-09-05 陈法胜 Method for size detection and post-treatment of sheeted molded polymer material and detection and post-treatment machine for implementing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568345B1 (en) * 2001-11-21 2006-04-05 주식회사 포스코 Apparatus for measuring speed of strip using single mode optical fiber
CN116298382A (en) * 2023-05-17 2023-06-23 山东省科学院海洋仪器仪表研究所 All-fiber photon counting coherent Doppler ocean flow field velocity measurement system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843656A (en) * 1971-10-04 1973-06-23
JPS6018727A (en) * 1983-07-12 1985-01-30 Hitachi Cable Ltd Optical interferometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072743B (en) * 2009-11-24 2012-09-05 陈法胜 Method for size detection and post-treatment of sheeted molded polymer material and detection and post-treatment machine for implementing method

Also Published As

Publication number Publication date
JPS646705A (en) 1989-01-11

Similar Documents

Publication Publication Date Title
US5187543A (en) Differential displacement measuring interferometer
JP2997047B2 (en) Optical measuring device
US3847485A (en) Optical noncontacting surface sensor for measuring distance and angle of a test surface
US5164791A (en) Minute displacement detector using optical interferometry
WO2022105532A1 (en) Heterodyne fiber interferometer displacement measuring system and method
US4798468A (en) Interference apparatus for detecting state of wave surface
JPH0342622B2 (en)
EP1225420A2 (en) Laser-based interferometric measuring apparatus and method
JP2691781B2 (en) Laser Doppler vibrometer using beam splitting optical system
US5220397A (en) Method and apparatus for angle measurement based on the internal reflection effect
JP2592254B2 (en) Measuring device for displacement and displacement speed
JPH04326005A (en) Straightness measuring apparatus
US4832492A (en) Heterodyne michelson interferometer for polarization measurements
JP3131242B2 (en) Method of measuring incident angle of light beam, measuring device and method of using the device for distance measurement
KR20090121885A (en) A system for simultaneous measurement of linear and angilar displacement
JP2696117B2 (en) Laser Doppler vibrometer using beam splitting optical system
JP3439803B2 (en) Method and apparatus for detecting displacement or change in position of an object from the focal point of an objective lens
EP0050144B1 (en) Process for measuring motion- and surface characterizing physical parameters of a moving body
JP3045567B2 (en) Moving object position measurement device
JP3495918B2 (en) Optical component eccentricity measuring method and eccentricity measuring device
JPH0754802Y2 (en) Contact type profilometer
JPS60173429A (en) Method and device for measuring dispersion of polarized wave
JPH0712545A (en) Interatomic-force-microscope detection apparatus by differential heterodyne interferometer using optical-fiber array
SU1610260A1 (en) Method and apparatus for determining profile of surface of articles
JPS60100002A (en) Optical interferometer using optical fiber maintaining plane of polarization

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees