JPS60173429A - Method and device for measuring dispersion of polarized wave - Google Patents

Method and device for measuring dispersion of polarized wave

Info

Publication number
JPS60173429A
JPS60173429A JP1942284A JP1942284A JPS60173429A JP S60173429 A JPS60173429 A JP S60173429A JP 1942284 A JP1942284 A JP 1942284A JP 1942284 A JP1942284 A JP 1942284A JP S60173429 A JPS60173429 A JP S60173429A
Authority
JP
Japan
Prior art keywords
light
polarization
optical fiber
maintaining optical
reflecting mirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1942284A
Other languages
Japanese (ja)
Inventor
Kazumasa Takada
和正 高田
Juichi Noda
野田 壽一
Yutaka Sasaki
豊 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1942284A priority Critical patent/JPS60173429A/en
Publication of JPS60173429A publication Critical patent/JPS60173429A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To offer the method and device for measuring the dispersion of a polarized wave easily with high precision by using a light source with short coherent length and detecting difference in propagation speed due to the polarization dispersion in a polarized wave holding optical fiber to be measured through a Michelson interferometer as the movement extent of a reflecting mirror. CONSTITUTION:Light from a semiconductor laser 1 is admitted in the polarized wave holding optical fiber 6 to be measured and waves in two orthogonal modes of the polarized wave holding optical fiber, i.e. modes H11X and HE11 are excited almost to the same intensity and multiplexed at the projection terminal of the fiber 6 to obtain linear polarized light, which is split by a half-mirror 9 in two orthogonal directions, reflected totally by reflecting mirrors 10 and 11 respectively, and multiplexed by the half-mirror 9 again. One of the reflecting mirrors 10 and 11, i.e. 11 is moved and the polarized wave dispersion of the optical fiber 6 is calculated from the distance between two positions of the reflecting mirrors which cause interference.

Description

【発明の詳細な説明】 (技術分野) 本発明は偏波保持光ファイバにおいて、偏波を保持する
二つのモード間の群遅延時間差(偏波分散)を容易にし
かも高精度に測定する方法および装置に関するものであ
る。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for easily and highly accurately measuring the group delay time difference (polarization dispersion) between two polarization-maintaining modes in a polarization-maintaining optical fiber; It is related to the device.

(従来技術) 従来の偏波保持光ファイバの偏波分散測定装置としては
、光パルスを利用した装置と、トワイマン・グリーン干
渉計を利用した装置がある。前者では、長尺ファイバの
偏波分散をリアルタイムに、しかも容易に測定できると
いう利点があるが、超短光パルス発生用の光源や、これ
を受光する高速光検出器が必要であるという欠点がある
(Prior Art) Conventional polarization dispersion measuring devices for polarization-maintaining optical fibers include devices that use optical pulses and devices that use a Twyman-Green interferometer. The former has the advantage of being able to easily measure the polarization dispersion of long fibers in real time, but has the disadvantage of requiring a light source to generate ultrashort optical pulses and a high-speed photodetector to receive the pulses. be.

−ブ)、1々省の装置では、通常、数mの偏波保持光フ
ァイバの偏波分散を数%の精度で測定することができる
か、測定手順はがなり複雑である。Jなわら測定前に、
1〜ワイマン・グリーン干渉計の二つのアームの光路長
が一致(るように、二つの全反射鏡の位置を調節してお
く。次に被測定用の偏波保持光ファイバを設定し、該干
渉計のそれぞれのアームを伝搬したl−1[: 、 、
、およびi−I E 1 、モードの光が最大に干渉す
るように、一方の全反!)11Nを移動させ、この全反
射鏡の移動距離より被測定偏波保持光ファイバの偏波分
散をめることになる。
-b) With a small scale device, the polarization dispersion of a polarization-maintaining optical fiber of several meters can usually be measured with an accuracy of several percent, but the measurement procedure is extremely complicated. J Before measuring,
1. Adjust the positions of the two total reflection mirrors so that the optical path lengths of the two arms of the Wyman-Green interferometer match.Next, set up the polarization-maintaining optical fiber to be measured, and l-1 [: , ,
, and i-I E 1 , one total inversion so that the light of the modes interferes maximally! )11N, and the polarization dispersion of the polarization-maintaining optical fiber to be measured can be determined from the moving distance of this total reflection mirror.

またT Vカメラを用いて二つのモードの干渉が最大と
なる位置をみつ番プることがら、使用する光源には、コ
ヒーレント艮が短く、しがも出力の大きなものが必要と
なる欠点もある。
Furthermore, although a TV camera is used to find the position where the interference between the two modes is maximum, the light source used has a short coherent beam and requires a high output light source. .

(発明の目的) 本発明はこれらの欠点を解決するために、50〜100
μm程度のコヒーレンi〜長をもつ干渉性の低い光源を
用い被測定偏波保持光フアイバ中での偏波分故による伝
搬速度差をマイケルソン干渉泪により、反射鏡の移動ω
として検出しようとするものであり、その目的は偏波保
持光ファイバの偏波分散を、簡便に、しかも高精度に測
定できる方法および装置を提供リ−ることにある。以下
図面により本発明の詳細な説明する。
(Object of the invention) In order to solve these drawbacks, the present invention aims to
Using a low-coherence light source with a coheren i~ length on the order of μm, the propagation velocity difference due to polarization separation in the polarization-maintaining optical fiber to be measured is calculated by Michelson interference, and the movement of the reflecting mirror ω
The purpose is to provide a method and apparatus that can easily and accurately measure the polarization dispersion of a polarization-maintaining optical fiber. The present invention will be explained in detail below with reference to the drawings.

(ブを明の構成および作用) 第1図(A>は本発明の一実施例を示し、1は半導体レ
ーザ(波長1.3μm)、2は対物レンズ、3は1/4
波長板、4は偏光子、5は対物レンズ、6は被測定応力
付与形偏波保持光ファイバ(PANDA光ファイバ)〔
参考文献: ’y’ 、 3asaki 。
(Structure and operation of light) Fig. 1 (A> shows one embodiment of the present invention, 1 is a semiconductor laser (wavelength 1.3 μm), 2 is an objective lens, 3 is 1/4
Wave plate; 4 is a polarizer; 5 is an objective lens; 6 is a stress-applied polarization-maintaining optical fiber (PANDA optical fiber) to be measured;
References: 'y', 3asaki.

etal、“8 km long polarizat
ionmaintaining fiber with
 highly 5table+)OrariZati
On 5tate 、 ” E 1etrOn、 I−
ett 、 。
etal, “8 km long polarizat
ion maintaining fiber with
highly 5table+) OrariZati
On 5tate, ” E 1etrOn, I-
ett, .

Vol、19. No、”19.1)L792−794
(1983))、7は対物レンズ、8は検光子、9は半
透鏡、10.11は全反射鏡、12はGe−ホトダイオ
ード、13は増幅器、14はACボルトメータ、15は
し]−ダである。なお、第1図(B)は第1図(A)の
被測定偏波保持光ファイバの入力側における(1−波を
保持する主軸に対して45°方向に入(21−dる直線
偏光とトIE モートと1−(E yモードの11 1
1 方向を示す図であり、第1図(C)は第1図(A)の検
光子を被測定偏波保持光ファイバの偏波を保持する主軸
に対して456の方向に向(プたときの出方向を示す図
である。
Vol, 19. No, “19.1) L792-794
(1983)), 7 is an objective lens, 8 is an analyzer, 9 is a semi-transparent mirror, 10.11 is a total reflection mirror, 12 is a Ge-photodiode, 13 is an amplifier, 14 is an AC voltmeter, 15 is a It is. Note that FIG. 1(B) shows the linearly polarized light (21-d) entering the input side of the polarization-maintaining optical fiber to be measured in FIG. To IE Mort and 1-(E y mode 11 1
1 direction, and FIG. 1(C) is a diagram showing the analyzer of FIG. 1(A) in the direction of 456 with respect to the principal axis that maintains the polarization of the polarization-maintaining optical fiber to be measured. It is a diagram showing the direction of time.

これを動作するには、まず半導体レーザの注入電流をし
きい値以上にしてレーザ発振させて系のアライメン1〜
を取る。すなわら、レーザからの出力光を対物レンズ2
で平行光にし、1/4波長板3で円偏波にし、偏光子4
を用い−C特定の方向の直線偏光をつくり、対物レンズ
5で集光し、第1図(B)に示すように、被測定用偏波
保持光ファイバの偏波を保持づ゛る主軸に対して45°
方向に入射させ、HE モードとトIFyモードを同時
tこ励11 11 起する。該光ファイバ出用端において、第1図(C)に
示すように、検光子8の方向として、−波を保持する主
軸に対して45°の方向に向りてお(ので、該光フアイ
バ伝搬後のl−I E および1−(E、、1 モードの光は、偏波が一致した状rIQで合波される。
To operate this, first, the injection current of the semiconductor laser is set above the threshold value to cause the laser to oscillate, and the system alignment 1 to 1 is performed.
I take the. In other words, the output light from the laser is passed through the objective lens 2.
to parallel light, 1/4 wavelength plate 3 to circularly polarize light, polarizer 4
-C is used to create linearly polarized light in a specific direction, condensing it with the objective lens 5, and directing it to the main axis that maintains the polarization of the polarization-maintaining optical fiber to be measured, as shown in Figure 1 (B). 45° to
direction, and simultaneously excite the HE mode and the IFy mode. At the output end of the optical fiber, as shown in FIG. After propagation, the l-I E and 1-(E,,1 modes of light are combined at rIQ with matching polarizations.

合波光はマイケルソン干渉itに向かわしめ、ハーフミ
ラ−9で二つに分かれ、それそ゛れのアーム内の全反射
鏡10.Il’r及射され、ハーフミラ−9C再び合波
させる。
The combined light is directed to the Michelson interference IT, is split into two by a half mirror 9, and is split into two by a total reflection mirror 10 in each arm. Il'r is irradiated and the beam is combined again by half mirror 9C.

このようにアライメントを行った後、半導体レーザの注
入電流をしきい舶以下にし、半導体レーザからの出力光
が被測定用−ノアイバに入射した状態で、マイケルソン
干渉計の一方のアームの全反射鏡11を10μm/秒程
度の一定速度で移動させ、干渉強度をGe−ホトダイオ
ード12C受光し、このときのAC成分をACポル1〜
メーター4で測定し、これをし」−ダ15上に記録させ
る。
After alignment is performed in this way, the injection current of the semiconductor laser is lowered to below the threshold, and with the output light from the semiconductor laser incident on the Noiba under test, total reflection is performed on one arm of the Michelson interferometer. The mirror 11 is moved at a constant speed of about 10 μm/sec, the interference intensity is received by the Ge-photodiode 12C, and the AC component at this time is
Measure with meter 4 and record this on meter 15.

このようにすると、以下に示す原理により、しローダ上
に表われる二つのピーク間の距離により偏波分散をめる
ことが可能となる。すなわち、注入電流Iがしきい値1
th以下の半導体レーザからの出力光のコヒーレント長
はI=0.81.hで50μmであり、これは出力光が
50μmの波束の集りと考えてよい。被測定偏波保持光
ファイバの二つのモード間の群遅延時間差(偏波分散)
により該光フアイバ出射光は、第2図(A)に示すよう
に、偏波分散DLだけ時間的にずれた二つの波束より構
成される。ここでDは単位長さあたりの群遅延時間、L
はファイバ長である。そこでマイケルソン干渉計により
、二つのアームを通過させ、一方のアームの全反射鏡を
移動させて可変的に時間的なずれを与えると、第2図に
示すように、一方のアームを伝搬した波束(A>に対し
て、他方のアーム(全反射鏡の移動するアーム)を伝搬
した波束は(B)、(C)、、(D)のようになり、時
間差1”=−DL、T=O,T=DLに対応するそれぞ
れの全反tiJ鏡の位置で互いに干渉することになり、
この干渉光の大きざをACボルトメータで測定させ、こ
れをレコーダ上に記録させることから、レコーダ上に表
われる二つのピーク間の光路差が偏波分散DLに相当す
る。
In this way, the polarization dispersion can be determined by the distance between the two peaks appearing on the loader according to the principle described below. That is, the injection current I is equal to the threshold value 1
The coherent length of the output light from the semiconductor laser below th is I=0.81. h is 50 μm, which can be considered to be a collection of wave packets whose output light is 50 μm. Group delay time difference between two modes of polarization-maintaining optical fiber under test (polarization dispersion)
As a result, the light emitted from the optical fiber is composed of two wave packets temporally shifted by the polarization dispersion DL, as shown in FIG. 2(A). Here, D is the group delay time per unit length, L
is the fiber length. Therefore, by using a Michelson interferometer to pass through two arms and moving the total reflection mirror of one arm to give a variable time shift, the signal propagated through one arm as shown in Figure 2. With respect to the wave packet (A>), the wave packets propagated through the other arm (the moving arm of the total reflection mirror) are as shown in (B), (C), , (D), and the time difference is 1" = -DL, T They will interfere with each other at the positions of the respective full anti-tiJ mirrors corresponding to =O, T=DL,
Since the magnitude of this interference light is measured with an AC voltmeter and recorded on a recorder, the optical path difference between the two peaks appearing on the recorder corresponds to the polarization dispersion DL.

第3図はこのようにして生じた干渉ピークを示す図であ
る。ファイバ長は13.511であり、全反射鏡の移動
速度は56.8μyn/Sであった。
FIG. 3 is a diagram showing interference peaks generated in this manner. The fiber length was 13.511, and the moving speed of the total reflection mirror was 56.8 μyn/S.

この測定例では最大ピークと一方の側のピークとの光路
差は5.5II11であり、偏波分散はigpsである
ことがわかる。
In this measurement example, it can be seen that the optical path difference between the maximum peak and the peak on one side is 5.5II11, and the polarization dispersion is igps.

第4図は2種類のPANDAファイバを用いC行った偏
波分散のファイバ長依存性を示す。各ファイバ長に対し
て2%の精度で偏波分散をめることができた。最小検出
感度はo、ipsであった。
FIG. 4 shows the fiber length dependence of polarization dispersion measured using two types of PANDA fibers. We were able to determine polarization dispersion with an accuracy of 2% for each fiber length. The minimum detection sensitivity was o, ips.

なお第4図中に示すλは波長、Δは被測定PANDAフ
ァイバの非屈折率差である。
Note that λ shown in FIG. 4 is the wavelength, and Δ is the non-refractive index difference of the PANDA fiber to be measured.

ここで光源として半導体レーザを用いたことの意味は、
半導体レーザからの出射光が注入電流が発振しきい値を
越えてレーザ発振している状態ではコヒーレント長が長
く、干渉性が高いためにマイケルソン干渉計の光学的な
配置を調整するのに適しており、また注入電流を発振し
きい値以下にした場合には、コヒーレント長が50μm
程度となっ゛C本発明の測定方法に適していることにな
る。
The meaning of using a semiconductor laser as a light source here is:
When the injected current exceeds the oscillation threshold and the laser oscillates, the emitted light from the semiconductor laser has a long coherent length and high coherence, making it suitable for adjusting the optical arrangement of the Michelson interferometer. Furthermore, when the injection current is lower than the oscillation threshold, the coherent length is 50 μm.
Therefore, it is suitable for the measurement method of the present invention.

光学系の配置が調整された後は、LEDや白色光源等の
一般にコヒーレント長が知いどされる光源により測定が
可能となる。
After the arrangement of the optical system is adjusted, measurement can be performed using a light source whose coherence length is generally known, such as an LED or a white light source.

(発明の効果) 以上説明したように、本発明では、]ヒーレント長の短
い光源を使用し、マイケルソン干渉計と光検出器を用い
ることから、簡便に、しかも高精度に偏波保持光ファイ
バの偏波分散を測定できるという利点がある。
(Effects of the Invention) As explained above, the present invention uses a light source with a short heeling length, a Michelson interferometer, and a photodetector, so that polarization-maintaining optical fibers can be easily and precisely It has the advantage of being able to measure polarization dispersion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明の実施例図、 第1図(B)は第1図(A>の被測定偏波保持光ファイ
バの入力端における偏波を保持する主軸に対して45°
方向に入射する直線偏光とHE モ1 一ドとl−I E yモードの方向を示す図、l] 第1図(C)は第1図(A >の検光子を被測定偏波保
持光ファイバの偏波を保持する主軸に対して45°の方
向に向けたとぎの出射光の偏光方向と第2図(A)、(
B)、(C)、<D>は本発明に関する測定oI理の説
明図、 第3図は偏波分散の測定例を承り図、 第4図は偏波分散の測定におりるファイバ長依存性を示
す図である。 1・・・半導体レーザ 2・・・対物レンズ3・・・1
/4波長板 4・・・偏光子5・・・対物レンズ 6・
・・被測定偏波保持光ファイバ(PANDAファイバ) 7・・・対物レンズ 8・・・検光子 9・・・半透鏡 10,11・・・全役o1鏡12・・
・Ge−ホトダイオード 13・・・増幅器 14・・・ACボルトメータ15・
・・レコーダ。 第2図 −DL ODL 2DL B!fM 第1M eg!硬m)
Figure 1 (A) is an embodiment of the present invention, Figure 1 (B) is 45° to the main axis that maintains polarization at the input end of the polarization-maintaining optical fiber to be measured in Figure 1 (A>).
Figure 1 (C) shows the polarization-maintaining light incident on the analyzer in Figure 1 (A). Figure 2 (A) and (
B), (C), and <D> are explanatory diagrams of the measurement oI principle related to the present invention. Figure 3 is a diagram showing an example of measurement of polarization dispersion. Figure 4 is the dependence on fiber length in measurement of polarization dispersion. FIG. 1...Semiconductor laser 2...Objective lens 3...1
/4 wavelength plate 4...Polarizer 5...Objective lens 6.
...Polarization-maintaining optical fiber to be measured (PANDA fiber) 7...Objective lens 8...Analyzer 9...Semi-transparent mirror 10, 11...Full role O1 mirror 12...
・Ge-photodiode 13...Amplifier 14...AC voltmeter 15・
...Recorder. Figure 2-DL ODL 2DL B! fM 1st M eg! hard m)

Claims (1)

【特許請求の範囲】 1、干渉性の低い光源から発する光を被測定偏波保持光
ファイバに導入して、該偏波保持光ファイバの直交する
二つのモードであるHE モードとHEyモードを同程
度の強度11 11 に励起U、該偏波保持光ファイバの出射端において両モ
ードを再び合波して直線偏光とし、この直線偏光を半透
鏡により互いに直交する二つの方向に分離し、分離した
光を1組の反射鏡により全反射して前記半透鏡により再
び合波させ、1組の反射鏡の片側の反射鏡を移動し干渉
を起こす反射鏡の二つの位置の間の距離から、被測定偏
波保持光ファイバの偏波分散を測定することを特徴とす
る偏波分散測定方法。 2、干渉性の低い光を発する光源と、該光源からの光を
直線偏光とする偏光子と、偏光子を通過した直線偏光を
被測定偏波保持光ファイバに導入するレンズ系と、被測
定偏波保持光ファイバからの出射光を平行光線になおす
レンズ系と、平行光になおした出射光を直線偏光とする
検光子と、検光子を通過した直線偏光を分離干渉させる
マイケルソン干渉計とを有し、マイケルソン干渉計を構
成する反射鏡の一方が直線可動機構を有し、干渉光を検
出する光検出器を備えたことを特徴とする偏波分散測定
装置。
[Claims] 1. Light emitted from a light source with low coherence is introduced into a polarization-maintaining optical fiber to be measured, and the HE mode and HEy mode, which are two orthogonal modes of the polarization-maintaining optical fiber, are synchronized. Excitation U is applied to an intensity of about 11 11 , both modes are combined again at the output end of the polarization-maintaining optical fiber to form linearly polarized light, and this linearly polarized light is separated into two mutually orthogonal directions by a semi-transparent mirror. The light is totally reflected by a set of reflecting mirrors and recombined by the semi-transparent mirror, and the reflected light is calculated from the distance between the two positions of the reflecting mirrors that cause interference by moving one of the reflecting mirrors of the set of reflecting mirrors. A polarization dispersion measurement method characterized by measuring polarization dispersion of a polarization-maintaining optical fiber. 2. A light source that emits light with low coherence, a polarizer that converts the light from the light source into linearly polarized light, a lens system that introduces the linearly polarized light that has passed through the polarizer into the polarization-maintaining optical fiber to be measured, and A lens system that converts the output light from a polarization-maintaining optical fiber into parallel light, an analyzer that converts the parallel output light into linearly polarized light, and a Michelson interferometer that separates and interferes the linearly polarized light that has passed through the analyzer. 1. A polarization dispersion measuring device, characterized in that one of the reflecting mirrors constituting the Michelson interferometer has a linear movable mechanism, and is equipped with a photodetector for detecting interference light.
JP1942284A 1984-02-07 1984-02-07 Method and device for measuring dispersion of polarized wave Pending JPS60173429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1942284A JPS60173429A (en) 1984-02-07 1984-02-07 Method and device for measuring dispersion of polarized wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1942284A JPS60173429A (en) 1984-02-07 1984-02-07 Method and device for measuring dispersion of polarized wave

Publications (1)

Publication Number Publication Date
JPS60173429A true JPS60173429A (en) 1985-09-06

Family

ID=11998824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1942284A Pending JPS60173429A (en) 1984-02-07 1984-02-07 Method and device for measuring dispersion of polarized wave

Country Status (1)

Country Link
JP (1) JPS60173429A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250546A (en) * 1987-03-13 1988-10-18 トムソン−セエスエフ Method of detecting polarized coupling in birefringence optical system and application of said method in assembling of optical system element
JPH0650847A (en) * 1992-08-03 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for measuring resonator dispersion
FR2738634A1 (en) * 1995-09-13 1997-03-14 Photonetics Polarisation mode dispersion measuring device for optical fibre characterisation
KR100612826B1 (en) * 2000-03-11 2006-08-14 삼성전자주식회사 Apparatus and method for measuring polarization mode dispersion values of an optical fiber transmission link

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250546A (en) * 1987-03-13 1988-10-18 トムソン−セエスエフ Method of detecting polarized coupling in birefringence optical system and application of said method in assembling of optical system element
JP2559248B2 (en) * 1987-03-13 1996-12-04 トムソン−セエスエフ Detector for localized polarization coupling in birefringent optics
JPH0650847A (en) * 1992-08-03 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for measuring resonator dispersion
FR2738634A1 (en) * 1995-09-13 1997-03-14 Photonetics Polarisation mode dispersion measuring device for optical fibre characterisation
US5712704A (en) * 1995-09-13 1998-01-27 Photonetics Appliance for measuring polarization mode dispersion and corresponding measuring process
KR100612826B1 (en) * 2000-03-11 2006-08-14 삼성전자주식회사 Apparatus and method for measuring polarization mode dispersion values of an optical fiber transmission link

Similar Documents

Publication Publication Date Title
JPH08240792A (en) Beam outputting device and beam outputting method
CN109724648B (en) Device and method for synchronously measuring temperature and strain based on orthogonal polarization dual-wavelength laser multi-longitudinal-mode self-mixing effect
CN110441032A (en) A kind of method of interferometer and measurement polarization maintaining optical fibre and polarizer polarization coupled
JPH03180704A (en) Laser interference gauge
US4283144A (en) Method of fiber interferometry zero fringe shift referencing using passive optical couplers
JPS61219803A (en) Apparatus for measuring physical quantity
JPS60173429A (en) Method and device for measuring dispersion of polarized wave
JPH0695114B2 (en) Voltage detector
US4832492A (en) Heterodyne michelson interferometer for polarization measurements
RU2638582C1 (en) Two-channel interferometric system for investigating shock-wave processes
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JP2767000B2 (en) Waveguide dispersion measurement method and apparatus
JPS5948668A (en) Optical fiber speedometer
JPH03118477A (en) Laser doppler vibrometer using beam branching optical system
JP2592254B2 (en) Measuring device for displacement and displacement speed
JPH0118371B2 (en)
JPS60107603A (en) Connecting method of polarization maintaining optical fiber
JPH0755571A (en) Plarization dispersion measuring instrument
JPH0617851B2 (en) Method and apparatus for measuring mode birefringence of birefringent fiber
JPH055056B2 (en)
JP3320835B2 (en) Distance control method and distance control device between optical probe and measured object, and electrical physical quantity measurement device
JPH08304027A (en) Method and apparatus for measurement of very small displacement amount
JPS61148332A (en) Mode refractive index measuring apparatus
JPS58151509A (en) Optical measuring method of surface roughness
JPH05264687A (en) Optical magnetic field sensor