JPH055056B2 - - Google Patents

Info

Publication number
JPH055056B2
JPH055056B2 JP59004528A JP452884A JPH055056B2 JP H055056 B2 JPH055056 B2 JP H055056B2 JP 59004528 A JP59004528 A JP 59004528A JP 452884 A JP452884 A JP 452884A JP H055056 B2 JPH055056 B2 JP H055056B2
Authority
JP
Japan
Prior art keywords
polarization
light
linearly polarized
optical fiber
maintaining optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59004528A
Other languages
Japanese (ja)
Other versions
JPS60147627A (en
Inventor
Kazumasa Takada
Juichi Noda
Katsunari Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP452884A priority Critical patent/JPS60147627A/en
Publication of JPS60147627A publication Critical patent/JPS60147627A/en
Publication of JPH055056B2 publication Critical patent/JPH055056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/331Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by using interferometer

Description

【発明の詳細な説明】 〔発明の属する分野〕 本発明は直線偏光または楕円偏光を長距離にわ
たつて安定に保持する偏波保持光フアイバにおい
て、フアイバ長手方向の、偏波を保持する二つの
主軸のモード間のモード結合量(一方のモードか
ら他方のモードへ変換される量をいう。)を、高
精度にしかも簡便に測定する方法および装置に関
するものである。
Detailed Description of the Invention [Field of the Invention] The present invention relates to a polarization-maintaining optical fiber that stably maintains linearly polarized light or elliptically polarized light over long distances. The present invention relates to a method and apparatus for easily and highly accurately measuring the amount of mode coupling between modes of a principal axis (referring to the amount converted from one mode to another mode).

〔従来技術の説明〕[Description of prior art]

従来のこの種の装置としては、後方レーリ散乱
光を利用したものがある。この従来装置の特徴は
光源にQスイツチNd 3+:YAGレーザを使用し、
このYAGレーザからの高出力光で偏波保持光フ
アイバの一方のモードを励起し、光フアイバ長手
方向にわたる各点でモード結合により励起された
他方のモードからの後方レーリ散乱光を受光し、
この後方レーリ散乱光の光フアイバ長手方向のパ
ワーの値からモード結合量を求めるものである。
As a conventional device of this type, there is one that utilizes backward Rayleigh scattering light. The feature of this conventional device is that it uses a Q-switch N d 3+ :YAG laser as the light source.
One mode of the polarization-maintaining optical fiber is excited with high-output light from this YAG laser, and back Rayleigh scattered light from the other mode excited by mode coupling is received at each point along the length of the optical fiber.
The amount of mode coupling is determined from the value of the power of this backward Rayleigh scattered light in the longitudinal direction of the optical fiber.

しかし、単一モード光フアイバにおける後方レ
ーリ散乱光のパワーは、後方レーリ散乱光を引き
おこす光パワーに対して−50dBほど小さい値で
あり、モード結合量が−10dB以下である低クロ
ストークの偏波保持光フアイバでは、そのモード
結合の長手方向の分布を測定することは検出すべ
き光パワーのレベルが低すぎて不可能であつた。
However, the power of the backward Rayleigh scattered light in a single mode optical fiber is about -50 dB smaller than the optical power that causes the backward Rayleigh scattered light, and the polarized light with low crosstalk with a mode coupling amount of less than -10 dB In a holding optical fiber, it has been impossible to measure the longitudinal distribution of its mode coupling because the level of optical power to be detected is too low.

〔発明の目的〕[Purpose of the invention]

本発明は、モード結合量の小さい偏波保持光フ
アイバで、フアイバ長手方向のモード間の結合量
を高精度に、しかも簡便に測定する方法および装
置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for easily and highly accurately measuring the amount of coupling between modes in the longitudinal direction of the fiber in a polarization-maintaining optical fiber with a small amount of mode coupling.

〔発明の特徴〕[Features of the invention]

本発明の第一の発明は、偏波保持光フアイバの
特性測定方法であつて、被測定偏波保持光フアイ
バの一端からその偏波保持光フアイバの直交する
二つの主軸のうちの一方の主軸の直線偏光を入射
光として与え、この偏波保持光フアイバの他端に
得られる出射光の上記二つの主軸の直線偏光を検
出して、この偏波保持光フアイバの上記二つの主
軸のモード結合特性を測定する方法において、 上記出射光を上記二つの主軸の直線偏光毎に空
間的に分離し、その一方の直線偏光をほぼ直角に
回転させてからその他方の直線偏光と合波させ、
その二つの主軸の直線偏光が分離されてから合波
されるまでの通路の相対長さを一定速度で変化さ
せながら、合波された光の干渉による強度変化の
波高値を上記相対的な距離に対して観測すること
を特徴とする。
A first aspect of the present invention is a method for measuring the characteristics of a polarization-maintaining optical fiber, in which one of the two orthogonal main axes of the polarization-maintaining optical fiber is measured from one end of the polarization-maintaining optical fiber to be measured. The linearly polarized light of the two principal axes of the polarization-maintaining optical fiber is detected by providing the linearly polarized light of the two principal axes of the output light obtained at the other end of the polarization-maintaining optical fiber as the input light, and the mode coupling of the two principal axes of the polarization-maintaining optical fiber is performed. In the method of measuring the characteristics, the emitted light is spatially separated into linearly polarized lights of the two principal axes, one of the linearly polarized lights is rotated at a nearly right angle, and then combined with the other linearly polarized light,
While changing the relative length of the path from when the linearly polarized lights of the two main axes are separated until they are combined at a constant speed, the peak value of the intensity change due to interference of the combined light is calculated based on the above relative distance. It is characterized by observing against.

本発明の第二の発明は、偏波保持光フアイバの
特性測定装置であつて、光源と、この光源の出力
光を被測定偏波保持光フアイバの直交する二つの
主軸のうちの一方の主軸の偏光方向に偏光させて
その偏波保持光フアイバの一端に入射させる手段
と、この被測定偏波保持光フアイバの他端に現れ
る出射光の上記二つの主軸の直線偏光の強度を比
較する手段とを備えた偏波保持光フアイバの特性
測定装置において、 上記比較する手段は、上記出射光を上記二つの
主軸の直線偏光に分離する偏光プリズムと、この
偏光プリズムの二つの直線偏光の一方の偏光角度
をほぼ直角に回転させる手段と、この手段を通過
した上記一方の直線偏光と他方の直線偏光とを合
波させるハーフミラーと、上記偏光プリズムで分
離された二つの直線偏光が上記ハーフミラー上で
合成されるまでのその二つの直線偏光の通路の相
対的な距離を一定速度で変化させる手段と、上記
ハーフミラーにより合波された光の干渉による強
度変化の波高値を上記相対的な距離に対して観測
記録する手段とを備えたことを特徴とする。
A second invention of the present invention is a polarization-maintaining optical fiber characteristic measuring device, which includes a light source and an output light of the light source that is connected to one of the two orthogonal main axes of the polarization-maintaining optical fiber to be measured. means for polarizing the light in the polarization direction of and inputting the polarized light into one end of the polarization-maintaining optical fiber; and means for comparing the intensities of the linearly polarized light of the two principal axes of the output light appearing at the other end of the polarization-maintaining optical fiber to be measured. In the polarization-maintaining optical fiber characteristic measuring apparatus, the comparing means includes a polarizing prism that separates the emitted light into linearly polarized light of the two main axes, and one of the two linearly polarized lights of the polarizing prism. means for rotating the polarization angle to approximately a right angle; a half mirror for combining the one linearly polarized light and the other linearly polarized light that have passed through the means; and the half mirror for combining the two linearly polarized lights separated by the polarizing prism. means for changing the relative distance of the paths of the two linearly polarized lights at a constant speed until they are combined; The present invention is characterized by comprising a means for observing and recording distance.

その光源は干渉性の低い光源を使用することが
望ましい。
It is desirable to use a light source with low coherence.

〔実施例による説明〕[Explanation based on examples]

第1図は本発明の実施例装置の構成図である。
1はスーパルミネツセントダイオード(super
luminescent diode)を用いた干渉性の低い光源
である。2は偏光子、3は対物レンズである。4
は被測定偏波保持光フアイバ、5は対物レンズ、
6はロツシヨンプリズムによる偏光プリズム、7
は1/2波長板、8は全反射鏡、9はハーフミラー、
10は全反射鏡、11はゲルマニウム・ホトダイ
オードによる光検出器、12は増幅器、13は交
流電圧計、14はレコーダである。
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention.
1 is a superluminescent diode (super
This is a low-coherence light source using a luminescent diode. 2 is a polarizer, and 3 is an objective lens. 4
is the polarization-maintaining optical fiber to be measured, 5 is the objective lens,
6 is a polarizing prism using a rotation prism, 7
is a 1/2 wavelength plate, 8 is a total reflection mirror, 9 is a half mirror,
10 is a total reflection mirror, 11 is a photodetector using a germanium photodiode, 12 is an amplifier, 13 is an AC voltmeter, and 14 is a recorder.

光源1の出力光は偏光子2を介して対物レンズ
3から、被測定偏波保持光フアイバ4の一端に入
射させる。この被測定偏波保持光フアイバ4の他
端に現れる出射光は、対物レンズ5を介して、偏
光プリズム6に入射する。ここで出射光は偏波モ
ード毎に分岐されて、その一方の出射光は1/2波
長板7を介して、全反射鏡8に反射させて、他方
の出射光は直接に、それぞれハーフミラー9に入
射する。このハーフミラー9を通過した上記一方
の出射光は、全反射鏡10に反射させる。この構
造はトワイマンダリーン形の干渉計と同等の構造
である。この全反射鏡10は入射光の方向(矢印
方向)の距離が変化できるように構成されてい
る。上記ハーフミラー9を通過した上記一方の出
射光、およびこの全反射鏡10に反射されてこの
ハーフミラー9に反射された上記他方の出射光
は、光検知器11に入力するように構成される。
Output light from a light source 1 is made to enter one end of a polarization-maintaining optical fiber 4 to be measured from an objective lens 3 via a polarizer 2 . The emitted light appearing at the other end of the polarization-maintaining optical fiber 4 to be measured enters a polarizing prism 6 via an objective lens 5. Here, the emitted light is split for each polarization mode, one of the emitted lights is reflected by a total reflection mirror 8 via a 1/2 wavelength plate 7, and the other emitted light is reflected directly by a half mirror. 9. The above-mentioned one outgoing light that has passed through this half mirror 9 is reflected by a total reflection mirror 10. This structure is equivalent to a Twymandalene interferometer. This total reflection mirror 10 is configured so that the distance in the direction of incident light (arrow direction) can be changed. The one output light that has passed through the half mirror 9 and the other output light that has been reflected by the total reflection mirror 10 and reflected by the half mirror 9 are configured to be input to a photodetector 11. .

これを動作するには、まず光源1からの出射光
のうちの特定の方向の直線偏光を偏光子2を用い
て取り出し、対物レンズ3により被測定用偏波保
持光フアイバ4の偏波を保持する二つの主軸の偏
光モードのうち一方のモード(HEX 11モードとす
る)を励起させる。被測定用偏波保持光フアイバ
内の伝搬光を対物レンズ5を用いて平行光にし、
偏光プリズム6により、被測定用偏波保持光フア
イバのHEX 11モードとこれと直交する偏波を有す
る他方の主軸のモードHEX 11モードの両モードを
伝搬した光とを空間的に分離させる。
To operate this, first, out of the light emitted from the light source 1, linearly polarized light in a specific direction is extracted using a polarizer 2, and the polarization of the polarization-maintaining optical fiber 4 to be measured is maintained using the objective lens 3. One of the two principal axis polarization modes (referred to as the HE X 11 mode) is excited. The light propagating in the polarization-maintaining optical fiber to be measured is made into parallel light using the objective lens 5,
The polarizing prism 6 spatially separates the light propagating both the HE X 11 mode of the polarization-maintaining optical fiber to be measured and the HE .

第1図では、HEX 11モードを伝搬した光は紙面
に平行な直線偏光として直進してハーフミラー9
を透過した後に全反射鏡10で反射し、再びハー
フミラー9の方向へ進み、ここで反射し、光検出
器11の方向へ進む。一方HEY 11モードで伝搬し
た光は紙面に垂直な直線偏光として偏光プリズム
6で屈折し、1/2波長板7で紙面に平行な直線偏
光となつた後に、ハーフミラー9を透過して、先
のHEY 11モードの光と合波させる。
In Figure 1, the light propagating in the HEX 11 mode travels straight as linearly polarized light parallel to the plane of the paper and passes through the half mirror 9.
After passing through, it is reflected by the total reflection mirror 10 and travels again toward the half mirror 9, where it is reflected and travels toward the photodetector 11. On the other hand, the light propagated in the HE Y 11 mode is refracted by the polarizing prism 6 as linearly polarized light perpendicular to the plane of the paper, becomes linearly polarized light parallel to the plane of the paper by the half-wave plate 7, and then passes through the half mirror 9. Combine with the previous HE Y 11 mode light.

全反射鏡10は一定の速度(10μm/s)で移
動させる。これにより両モード(HEX 11モードと
HEY 11モード)によりそれぞれ伝搬した光の合波
光の干渉強度が交互に変化することになる。この
強度が変化する合波光の交流成分を光検出器を用
いて交流電流に変換し、増幅器12で増幅し、交
流電圧計13を用いてこの電流の波高値(二乗平
均平方根)を測定する。これをレコーダ14に記
録させる。
The total reflection mirror 10 is moved at a constant speed (10 μm/s). This allows both modes (HE X 11 mode and
HE Y 11 mode), the interference intensity of the combined light of the respective propagated lights changes alternately. The AC component of the combined light whose intensity changes is converted into an AC current using a photodetector, amplified by an amplifier 12, and the peak value (root mean square) of this current is measured using an AC voltmeter 13. This is recorded on the recorder 14.

全反射鏡10の各位置に対応する上記交流電流
値の値が、以下に説明する通りフアイバ各点での
HEX 11とHEY 11モード間のモード結合係数に比例し
ているので、フアイバ内のモード結合分布を求め
ることが可能である。
The above AC current value corresponding to each position of the total reflection mirror 10 is determined at each point of the fiber as explained below.
Since it is proportional to the mode coupling coefficient between the HE X 11 and HE Y 11 modes, it is possible to determine the mode coupling distribution within the fiber.

被測定用偏波保持光フアイバの入射端におい
て、HEX 11モードのみを励起したときの光フアイ
バ出射端(フアイバ長L)でのHEX 11モード、
HEY 11モードの電場CX,CYは、 CX(L,t)=E0exp〔j(ω0t−βXL)〕×f〔t−
X/dωL〕……(1・1) CY(L,t)=−jE0 〓 〓K ΓKexp〔j(ω0t−βXZK−βY(L−ZK)〕×f〔t
−dβX/dωZK−dβY/dω(L−ZK)〕 ……(1・2) となる。ここで E0,ω0は入射電場の振幅(定数)、中心周波
数、 βX,βYはHEX 11モード、HEY 11モードの伝搬定
数、 dβX/dω,dβY/dωはそれぞれの伝搬定数のω=ω
0に おける微係数、 ZKはHEX 11とHEY 11モード間の結合をおこす地点
のフアイバ入射端からの距離、 ΓKはモード結合係数 jは虚数単位 f(t)は包絡線 を示す。したがつて、上記例示の通り、HEX 11
HEY 11モードを伝搬した光を空間的に分離し、全
反射鏡を移動させて、両モード光に互いにTだけ
の時間差を与えて合波させたときの干渉強度は次
式のようになる。
HE X 11 mode at the output end of the optical fiber (fiber length L) when only the HE X 11 mode is excited at the input end of the polarization maintaining optical fiber to be measured
The electric fields C X and C Y of HE Y 11 mode are as follows : C
_ _ _ _ _ _ _ _ _ ×f[t
−dβ _ _ _ Here, E 0 , ω 0 are the amplitudes (constants) of the incident electric field, the center frequency, β X , β Y are the propagation constants of the HE X 11 mode and HE Y 11 mode, and Propagation constant ω=ω
The differential coefficient at 0 , Z K is the distance from the input end of the fiber to the point where coupling occurs between the HE Therefore, as shown in the example above, HE
When the light propagating in the HE Y 11 mode is spatially separated, the total reflection mirror is moved, and both mode lights are combined with a time difference of T from each other, the interference intensity is as follows: .

I=<|CX(L,t+T)+CY(L,t)|2>=<|C
X(L,t+T)|2>+<|CY(L,t)|2> +2Re{CX(L,t+T)CY(L,t)*}<|CX
L,t+T)|2>{1+2Re〔ν(T)〕}……(2) ここでHEX 11とHEY 11のモード結合は十分弱いので <|CX(L,t+T)|2>><|CY(L,t)|2> が成立するものとした。ここで、ν(T)は次式で与
えられる。
I=<|C X (L, t+T) + C Y (L, t) | 2 >=<|C
X (L, t+T) | 2 > + < | C Y (L, t) | 2 > +2Re {C X (L, t + T) C Y (L, t) * }< | C X (
L,t+T) | 2 > {1+2Re[ν(T)]}...(2) Here, the mode coupling between HE X 11 and HE Y 11 is sufficiently weak, so <|C X (L,t+T)| 2 >><|C Y (L,t)| 2 > is assumed to hold. Here, ν(T) is given by the following equation.

ν(T)=jexp(jω0T)・ 〓 〓K ΓKexp〔jΔβ(L−ZK)〕・F〜〔T+D(L−ZK
〕……(3) ここで、 Δβ=βY−βX D=dβY/dω−dβX/dω F〜(r)=<f(t+τ)f*(t)>/<f(t)
f(t)*> である。
ν(T)=jexp(jω 0 T)・ 〓 〓 K Γ K exp〔jΔβ(L−Z K )〕・F〜[T+D(L−Z K )
]...(3) Here, ΔβY −β X D=dβ Y −dβ
f(t) * >.

したがつて、光源として、スーパールミネツセ
ントダイオードのような可干渉性の低い、すなわ
ちコヒーレンス時間の短いものを使用した場合で
は|ν(T)|は TK=−D(L−ZK) に対してのみピーク値|ΓK|を取る。これはF〜
(r)はτ=0以外はゼロとなるためである。したが
つて、全反射鏡10を一定速度で移動させること
により、Tは一定の速さで変化する。このため、
(3)式よりτ(T)は時間的に一定の周期で変化する。
交流電圧計13は周期的に変化するτ(T)の振幅
(二乗平均平方根)を測定することになる。した
がつて TK=−D(L−ZK) に対応する場所で交流電圧計13は|ΓK|に比
例したピーク値を取るので、これらピーク値によ
り、モード結合係数|ΓK|のフアイバ長手方向
の分布を求めることが可能となる。
Therefore, when using a light source with low coherence, that is, a short coherence time, such as a superluminescent diode, |ν(T)| becomes T K = −D (L−Z K ) Take the peak value |Γ K | only for . This is F~
This is because (r) is zero except for τ=0. Therefore, by moving the total reflection mirror 10 at a constant speed, T changes at a constant speed. For this reason,
From equation (3), τ(T) changes at a constant period over time.
The AC voltmeter 13 measures the amplitude (root mean square) of τ(T) which changes periodically. Therefore, since the AC voltmeter 13 takes a peak value proportional to |Γ K | at the location corresponding to T K = -D(L-Z K ), these peak values determine the mode coupling coefficient |Γ K | It becomes possible to determine the distribution in the fiber longitudinal direction.

上述の(2)式より、 TK=−D(L−ZK) での交流電圧計からの出力はPX|ΓK|に比例す
る。
From the above equation (2), the output from the AC voltmeter at T K =-D(L-Z K ) is proportional to P XK |.

ここで、PXはHEX 11モードを伝搬する光のパワ
ーであつて、入射光のパワーにほぼ一致する。も
つとも実際には、光フアイバ内の損失により1dB
程度減少する。
Here, P X is the power of light propagating in the HEX 11 mode, and is approximately equal to the power of the incident light. However, in reality, the loss is 1 dB due to the loss within the optical fiber.
degree decreases.

本装置に使用した交流電圧計13は、光フアイ
バへの0.1μWの入射パワーに対しても、波高値を
観測することが可能であつた。このことから、1
mWの光入射に対しては、 |ΓK|=10-4mW/1(mW)=10-4 までの値を観測することが可能である。
The AC voltmeter 13 used in this device was able to observe the peak value even with an incident power of 0.1 μW to the optical fiber. From this, 1
For light incidence of mW, it is possible to observe values up to |Γ K |=10 −4 mW/1 (mW)=10 −4 .

Z=ZK におけるモード結合係数ΓKから求まるモード結
合量は|ΓK2であるので、本装置によりフアイ
バ長手方向にわたつて−80dBのモード結合の値
まで求めることが可能となつた。
Since the amount of mode coupling determined from the mode coupling coefficient Γ K at Z=Z K is |Γ K | 2 , it has become possible to determine the mode coupling value up to -80 dB in the longitudinal direction of the fiber using this device.

なお、本装置では光源1としてスーパルミネツ
セント・ダイオードを用いているが、高輝度の白
色光源でも本測定に適用できる。
Note that although a superluminescent diode is used as the light source 1 in this device, a high-intensity white light source can also be applied to this measurement.

第2図は、1Km長の応力付与形偏波保持光フア
イバについて、伝搬光のゆらぎの測定結果を示す
図である。この光フアイバは略称PANDAフアイ
バであつて、Δ=0.6%、ビート長2mm、クロス
トーク−30.5dB、損失1.3dB/Km、波長1.3μmで
測定したものである。スーパルミネツセントダイ
オードの波長は1.3μmであり、フアイバ入射パワ
ーは1mW、コヒーレント長は50μmである。第
2図のフアイバ長0mは、光フアイバ線引き時の
最初の部分を示し、1.0Km地点が線引きの最後の
部分である。第2図より、線引きの最初の部分で
は、PANDAフアイバの周期的な導波路ゆらぎに
より1dBの直交偏波成分の変動が存在することが
わかる。
FIG. 2 is a diagram showing the measurement results of the fluctuation of propagating light for a 1 km long stress-applied polarization-maintaining optical fiber. This optical fiber, abbreviated as PANDA fiber, was measured at Δ=0.6%, beat length 2 mm, crosstalk -30.5 dB, loss 1.3 dB/Km, and wavelength 1.3 μm. The wavelength of the superluminescent diode is 1.3 μm, the fiber input power is 1 mW, and the coherent length is 50 μm. The fiber length of 0 m in FIG. 2 indicates the first part of the optical fiber when it is drawn, and the 1.0 km point is the final part of the drawing. From FIG. 2, it can be seen that in the first part of the line drawing, there is a 1 dB variation in orthogonal polarization components due to periodic waveguide fluctuations of the PANDA fiber.

また、フアイバ線引きの最後の部分では導波路
ゆらぎが大きくなり、最初の部分と比較して6dB
大きい直交偏波成分が発生していることがわか
る。
Additionally, the waveguide fluctuation is larger at the last part of the fiber drawing, by 6 dB compared to the first part.
It can be seen that large orthogonal polarization components are generated.

なおPANDAフアイバについては、 Y.Sasaki,T.Hosaka K.Takada,T.Noda,
“8Km long polarization maintaining
fiberwith highly stable palarization state,”
Electron.Lett,vol.19,No.19,PP.792−794
(1983) に詳しい記載がある。
Regarding PANDA fiber, Y.Sasaki, T.Hosaka K.Takada, T.Noda,
“8Km long polarization maintaining
fiberwith highly stable palarization state,”
Electron.Lett, vol.19, No.19, PP.792−794
(1983) has a detailed description.

また上記列で光源として用いたスーパルミネツ
セントダイオードについては、 I.P.Kaminov,et.al,“Lateral confinement
In Ga AsP superluminescent diode at 1.3μ
m,”IEEE J.Quantum Electron.,vol.QE−19,
PP.78−82.Jan.1983 に詳しい記載がある。
Regarding the superluminescent diode used as a light source in the above column, see IPKaminov, et.al, “Lateral confinement
In Ga AsP superluminescent diode at 1.3μ
m,”IEEE J.Quantum Electron., vol.QE−19,
There is a detailed description in PP.78-82.Jan.1983.

〔効果の説明〕[Explanation of effects]

以上説明したように、本発明によれば、被測定
偏波保持光フアイバの出射光の測定について、二
つの主軸の偏光に分離し、この偏光の干渉を利用
して比較測定を行うので、モード結合量を高精度
に、かつ簡便に測定することができる。本発明の
方法によれば、モード結合量は−80dB程度まで
検出することができる。
As explained above, according to the present invention, the output light of the polarization-maintaining optical fiber to be measured is separated into two principal axes of polarized light, and comparative measurements are performed using the interference of these polarized lights. The amount of binding can be measured easily and with high precision. According to the method of the present invention, the amount of mode coupling can be detected up to about -80 dB.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例構成図。第2図
は1Km長の応力付与形偏波保持光フアイバ中のゆ
らぎの測定結果を示す図。 1……光源、2……偏光子、3……対物レン
ズ、4……被測定用偏波保持光フアイバ、5……
対物レンズ、6……偏光プリズム、7……1/2波
長板、8……全反射鏡、9……ハーフミラー、1
0……全反射鏡、11……光検出器、12……増
幅器、13……交流電圧計、14……レコーダ。
FIG. 1 is a configuration diagram of an embodiment of the apparatus of the present invention. Figure 2 shows the measurement results of fluctuations in a 1 km long stress-applied polarization-maintaining optical fiber. DESCRIPTION OF SYMBOLS 1...Light source, 2...Polarizer, 3...Objective lens, 4...Polarization-maintaining optical fiber for measurement, 5...
Objective lens, 6...Polarizing prism, 7...1/2 wavelength plate, 8...Total reflection mirror, 9...Half mirror, 1
0...Total reflection mirror, 11...Photodetector, 12...Amplifier, 13...AC voltmeter, 14...Recorder.

Claims (1)

【特許請求の範囲】 1 被測定偏波保持光フアイバの一端からその偏
波保持光フアイバの直交する二つの主軸のうちの
一方の主軸の直線偏光を入射光として与え、 この偏波保持光フアイバの他端に得られる出射
光の上記二つの主軸の直線偏光を検出して、 この偏波保持光フアイバの上記二つの主軸のモ
ード結合特性を測定する方法において、 上記出射光を上記二つの主軸の直線偏光毎に空
間的に分離し、 その一方の直線偏光をほぼ直角に回転させてか
らその他方の直線偏光と合波させ、 その二つの主軸の直線偏光が分離されてから合
波されるまでの通路の相対長さを一定速度で変化
させながら、 合波された光の干渉による強度変化の波高値を
上記相対的な距離に対して観測する ことを特徴とする偏波保持光フアイバの特性測定
方法。 2 光源と、 この光源の出力光を被測定偏波保持光フアイバ
の直交する二つの主軸のうちの一方の主軸の偏光
方向に偏光させてその偏波保持光フアイバの一端
に入射させる手段と、 この被測定偏波保持光フアイバの他端に現れる
出射光の上記二つの主軸の直線偏光の強度を比較
する手段と を備えた偏波保持光フアイバの特性測定装置にお
いて、 上記比較する手段は、 上記出射光を上記二つの主軸の直線偏光に分離
する偏光プリズムと、 この偏光プリズムの二つの直線偏光の一方の偏
光角度をほぼ直角に回転させる手段と、 この手段を通過した上記一方の直線偏光と他方
の直線偏光とを合波させるハーフミラーと、 上記偏光プリズムで分離された二つの直線偏光
が上記ハーフミラー上で合成されるまでのその二
つの直線偏光の通路の相対的な距離を一定速度で
変化させる手段と、 上記ハーフミラーにより合波された光の干渉に
よる強度変化の波高値を上記相対的な距離に対し
て観測記録する手段と を備えたことを特徴とする偏波保持光フアイバの
特性測定装置。 3 光源は干渉性の低い光源である特許請求の範
囲第2項に記載の偏波保持光フアイバの特性測定
装置。
[Claims] 1. Linearly polarized light of one of the two orthogonal principal axes of the polarization-maintaining optical fiber is applied as incident light from one end of the polarization-maintaining optical fiber to be measured; In the method of measuring the mode coupling characteristics of the two principal axes of this polarization-maintaining optical fiber by detecting the linearly polarized light of the two principal axes of the emitted light obtained at the other end, spatially separate each linearly polarized light, rotate one linearly polarized light almost at right angles, and combine it with the other linearly polarized light.The two main axis linearly polarized lights are separated and then combined. A polarization-maintaining optical fiber characterized in that the peak value of the intensity change due to interference of the combined light is observed with respect to the above-mentioned relative distance while changing the relative length of the path to the polarization-maintaining optical fiber at a constant speed. Characteristic measurement method. 2. a light source; means for polarizing the output light of the light source in the polarization direction of one of the two orthogonal principal axes of the polarization-maintaining optical fiber to be measured, and causing the polarization to enter one end of the polarization-maintaining optical fiber; In a polarization-maintaining optical fiber characteristic measuring device comprising means for comparing the intensities of the linearly polarized light of the two principal axes of the output light appearing at the other end of the polarization-maintaining optical fiber to be measured, the comparing means comprises: a polarizing prism that separates the emitted light into the linearly polarized light of the two main axes; a means for rotating the polarization angle of one of the two linearly polarized lights of the polarizing prism to approximately a right angle; and one of the linearly polarized lights that has passed through the means. and the other linearly polarized light, and a constant relative distance between the paths of the two linearly polarized lights until the two linearly polarized lights separated by the polarizing prism are combined on the half mirror. Polarization-maintaining light characterized by comprising: means for changing the velocity; and means for observing and recording the peak value of the intensity change due to interference of the light combined by the half mirror with respect to the relative distance. Fiber characteristic measuring device. 3. The polarization-maintaining optical fiber characteristic measuring device according to claim 2, wherein the light source is a light source with low coherence.
JP452884A 1984-01-13 1984-01-13 Method and device for measuring characteristics of polarization maintaining optical fiber Granted JPS60147627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP452884A JPS60147627A (en) 1984-01-13 1984-01-13 Method and device for measuring characteristics of polarization maintaining optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP452884A JPS60147627A (en) 1984-01-13 1984-01-13 Method and device for measuring characteristics of polarization maintaining optical fiber

Publications (2)

Publication Number Publication Date
JPS60147627A JPS60147627A (en) 1985-08-03
JPH055056B2 true JPH055056B2 (en) 1993-01-21

Family

ID=11586543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP452884A Granted JPS60147627A (en) 1984-01-13 1984-01-13 Method and device for measuring characteristics of polarization maintaining optical fiber

Country Status (1)

Country Link
JP (1) JPS60147627A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269138A (en) * 1985-09-24 1987-03-30 Agency Of Ind Science & Technol Measuring method for optical fiber characteristic
FR2612304B1 (en) * 1987-03-13 1991-06-07 Thomson Csf METHOD OF DETECTING POLARIZATION COUPLINGS IN A BIREFRINGENT OPTICAL SYSTEM AND ITS APPLICATION TO THE ASSEMBLY OF THE COMPONENTS OF AN OPTICAL SYSTEM
CN107806981B (en) * 2017-11-15 2020-11-17 义乌兰思体育用品有限公司 Measuring device for beat length of polarization maintaining optical fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650213A (en) * 1979-09-28 1981-05-07 Aisin Seiki Co Ltd Coupling for cooling fan
JPS57211033A (en) * 1981-06-23 1982-12-24 Nippon Telegr & Teleph Corp <Ntt> Measuring method for group delay time difference of optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650213A (en) * 1979-09-28 1981-05-07 Aisin Seiki Co Ltd Coupling for cooling fan
JPS57211033A (en) * 1981-06-23 1982-12-24 Nippon Telegr & Teleph Corp <Ntt> Measuring method for group delay time difference of optical fiber

Also Published As

Publication number Publication date
JPS60147627A (en) 1985-08-03

Similar Documents

Publication Publication Date Title
US7177491B2 (en) Fiber-based optical low coherence tomography
Yang et al. Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy
CN106441353B (en) A kind of symmetry assessment device of optical fibre gyro ring polarization coupled
Martin et al. Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry
Knuhtsen et al. Fibre-optic laser Doppler anemometer with Bragg frequency shift utilising polarisation-preserving single-mode fibre
CN102288388A (en) Device and method for improving polarization-maintaining optical fiber polarization coupling measurement precision and symmetry
Levin et al. Fiber optic velocity interferometer with very short coherence length light source
Yu et al. Distributed measurement of polarization characteristics for a multifunctional integrated optical chip: A review
CN106441083B (en) Laser feedback interferometer
US4283144A (en) Method of fiber interferometry zero fringe shift referencing using passive optical couplers
JPS63307329A (en) Measurement of deviation and double refraction with single mode optical fiber
JPH055056B2 (en)
Tsubokawa et al. Evaluation of polarization mode coupling coefficient from measurement of polarization mode dispersion
CN114353778B (en) Method and device for realizing pi/2 initial phase locking in non-polarization-maintaining Sagnac type interferometer
US4832492A (en) Heterodyne michelson interferometer for polarization measurements
Wuilpart et al. Fully distributed polarization properties of an optical fiber using the backscattering technique
JPH0549057B2 (en)
Saunders et al. Precision interferometric measurement of dispersion in short single-mode fibers
JPS60173429A (en) Method and device for measuring dispersion of polarized wave
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
Waters et al. White light interferometer for measuring polarization extinction ratio
Du et al. Noise analysis of solid-core polarization-maintaining photonic interferometer fiber optic gyroscope
JPH0617851B2 (en) Method and apparatus for measuring mode birefringence of birefringent fiber
CN112484752A (en) Large-dynamic-range fiber optic gyroscope reflection characteristic testing device and method
JPH0682086B2 (en) Mode coupling evaluation device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term