JPH0415882B2 - - Google Patents

Info

Publication number
JPH0415882B2
JPH0415882B2 JP60278811A JP27881185A JPH0415882B2 JP H0415882 B2 JPH0415882 B2 JP H0415882B2 JP 60278811 A JP60278811 A JP 60278811A JP 27881185 A JP27881185 A JP 27881185A JP H0415882 B2 JPH0415882 B2 JP H0415882B2
Authority
JP
Japan
Prior art keywords
width
cladding
substrate
signal
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60278811A
Other languages
Japanese (ja)
Other versions
JPS62137504A (en
Inventor
Susumu Okazaki
Arata Nemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP27881185A priority Critical patent/JPS62137504A/en
Publication of JPS62137504A publication Critical patent/JPS62137504A/en
Publication of JPH0415882B2 publication Critical patent/JPH0415882B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はICのリードフレームの素材の如く、
金属条の幅方向の一部に金属条の長手方向に他の
金属条を重ね合せた部分クラツド材の製造工程ま
たは検査工程に設けられ、基板部及び/又はクラ
ツド部の幅の測定に用いる装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to materials such as IC lead frame materials.
A device installed in the manufacturing process or inspection process of a partially clad material in which another metal strip is overlapped in the longitudinal direction of a part of a metal strip in the width direction, and used to measure the width of the substrate part and/or clad part. Regarding.

〔従来技術〕[Prior art]

従来、第2図に示す如き基板となる金属条の幅
方向の一部に他の金属条を基板条長手方向に重ね
合せたクラツド材{図中ア,ウは基板部、イはク
ラツド部を示す}の各部の幅は、クラツド材に光
を照射してクラツド材をイメージセンサカメラに
て撮像し、その反射光の輝度を表す撮像信号を適
当なレベルで2値化して、その2値化信号の信号
幅に基づいて算出されていた。
Conventionally, a cladding material is made by overlapping a part of a metal strip serving as a substrate in the width direction with another metal strip in the longitudinal direction of the substrate strip as shown in Fig. 2. The width of each part shown in It was calculated based on the signal width of the signal.

第10図は撮像信号を示す波形図であつて、図
中ア,イ,ウは第2図のア,イ,ウの各部に対応
しており、クラツド部イは基板部ア,ウに比べ輝
度レベルが高くなつており、また同じ部分であつ
ても輝度レベルにバラツキがある。
Fig. 10 is a waveform diagram showing the imaging signal, and in the figure, A, B, and C correspond to each part of A, B, and C in Fig. 2, and the clad part A is compared to the substrate parts A and C. The brightness level is increasing, and there are variations in the brightness level even in the same area.

また第11図a,bは、第10図を第10図に
破線で示す2種類(基板部用及びクラツド部用)
のレベルにて2値化して得た波形図であり、基板
部とクラツド部とでは反射光の輝度レベルが異な
ることを利用して、第11図エ,オの各部分の幅
を計測し、基板部全幅及びクラツド部イの幅を計
測していた。
In addition, Fig. 11 a and b show two types (for the substrate part and for the clad part), which are shown by broken lines in Fig. 10.
This is a waveform diagram obtained by binarizing at a level of The total width of the board part and the width of the cladding part A were measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上述した如き幅測定では、光源のクラ
ツド材に対する角度等の照射条件または製造条件
のバラツキにより、条毎または条の長手方向にお
ける反射光の輝度レベルのバラツキが起こり、例
えば第12図に示す如き輝度信号の波形図にな
る。そしてこれを2値化して得られる2値化波形
図においては基板部及びクラツド部の境界が明瞭
でなく、基板部をクラツド部(またはその逆)と
誤認して正確な幅測定値が得られないことがある
という欠点があつた。
However, in the width measurement as described above, due to variations in irradiation conditions such as the angle of the light source to the cladding material, or variations in manufacturing conditions, variations in the brightness level of the reflected light occur from strip to strip or in the longitudinal direction of the strip, for example, as shown in FIG. This is a waveform diagram of the luminance signal. In the binarized waveform diagram obtained by binarizing this, the boundary between the substrate part and the cladding part is not clear, and it is possible to misidentify the substrate part as the cladding part (or vice versa) and obtain an accurate width measurement value. The downside is that there are some things that aren't there.

また基板部とクラツド部とで2種類の2値化レ
ベルを設定るす必要があり、その作業が煩わしい
という難点があつた。
Furthermore, it is necessary to set two types of binarization levels for the substrate section and the cladding section, which is a troublesome task.

更にイメージセンサカメラのクラツド材に対す
る傾角の大きさによりクラツド材幅方向の感度が
異なり、測定誤差が生じることがあるが、これに
ついての対策は講じられていなかつた。
Furthermore, the sensitivity in the width direction of the cladding material varies depending on the angle of inclination of the image sensor camera with respect to the cladding material, which may cause measurement errors, but no countermeasures have been taken for this.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は斯かる事情に鑑みてなされたものであ
り、クラツド材の反射光の輝度を表す撮像信号を
微分してその微分信号を2値化し、クラツド材基
板部及びクラツド部のエツジを検知して基板部及
び/又はクラツド部の幅を測定することにより、
反射光の輝度レベルのバラツキに影響されること
なく常に正確な幅測定が行なえ、2値化レベルが
1種類で済み、更に顕微鏡を使用して測定した実
際値に幅計測器の出力値を一致させるべく、イメ
ージセンサカメラのクラツド材に対する角度を予
め光学的に調節することにより、光学的条件の不
良に因る測定誤差発生を防止できる部分クラツド
材の幅測定装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is capable of differentiating an imaging signal representing the brightness of reflected light from the cladding material, converting the differential signal into a binary value, and detecting edges of the cladding material substrate portion and the cladding portion. By measuring the width of the substrate part and/or cladding part,
Accurate width measurements can always be performed without being affected by variations in the brightness level of reflected light, only one binary level is required, and the output value of the width measuring device matches the actual value measured using a microscope. An object of the present invention is to provide a width measuring device for a partial cladding material that can prevent measurement errors due to poor optical conditions by optically adjusting the angle of an image sensor camera with respect to the cladding material in advance. .

本発明に係る部分クラツド材の幅測定装置は、
基板部となる金属条の幅方向の一部に他の金属条
を基板部長手方向にクラツド部として重ね合せた
部分クラツド材を少なくとも一次元のイメージセ
ンサにて撮像し、撮像信号に基づき基板部及び/
又はクラツド部の幅を測定する装置において、撮
像信号を微分する微分回路と、その微分信号を適
宜レベルで2値化する2値化回路と、その2値化
信号に基づき基板部及びクラツド部のエツジ部の
エツジ位置を検知して基板部及び/又はクラツド
部の幅を算出する幅算出部と、基板部とクラツド
部との境界を検知してクラツド部の幅を計測する
顕微鏡とを具備し、前記イメージセンサの部分ク
ラツド材に対する光学的角度合せを可能としてあ
ることを特徴とする。
The width measuring device for a partially clad material according to the present invention includes:
A partial cladding material in which another metal strip is superimposed in the longitudinal direction of the substrate as a cladding part on a part of the widthwise part of the metal strip serving as the substrate part is imaged by at least one-dimensional image sensor, and the substrate part is formed based on the imaged signal. as well as/
Or, in a device for measuring the width of the cladding part, there is a differentiation circuit that differentiates the imaging signal, a binarization circuit that binarizes the differential signal at an appropriate level, and a circuit that measures the width of the substrate part and the cladding part based on the binarized signal. It is equipped with a width calculation unit that detects the edge position of the edge portion and calculates the width of the substrate portion and/or the cladding portion, and a microscope that detects the boundary between the substrate portion and the cladding portion and measures the width of the cladding portion. , the image sensor is characterized in that the optical angle can be adjusted with respect to the partial cladding material.

〔作用〕[Effect]

本発明においては撮像信号の微分波形の2値化
処理信号を分析することにより、輝度レベルのバ
ラツキがあつても基板部及びクラツド部において
は2値化信号は0になり、クラツド材の端面位置
及び基板部とクラツド部との境界位置だけが複雑
なパルス波形になるので、輝度レベルの変化の影
響を受けずに正確な幅測定が行え、また顕微鏡の
利用により正確な角度合せが行える。
In the present invention, by analyzing the binary processed signal of the differential waveform of the imaging signal, even if there are variations in the brightness level, the binary signal becomes 0 in the substrate part and the cladding part, and the end face position of the cladding material is Since only the boundary position between the substrate portion and the cladding portion has a complex pulse waveform, accurate width measurement can be performed without being affected by changes in brightness level, and accurate angle adjustment can be performed using a microscope.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき説
明する。第1図は本発明装置の模式図であり、図
中1は図示しない駆動系の動作によるテーブルロ
ール2,2……の回転に伴なつてその長手方向
(図中白抜矢符方向)に搬送されるクラツド材で
ある。第2図はその斜視図を併せて示してあるク
ラツド材1は、基板が42%Ni−Fe合金からなり、
その表面の幅方向一部にAlを長手方向に重ね合
せたクラツド部1aを有している。
The present invention will be explained below based on drawings showing embodiments thereof. FIG. 1 is a schematic diagram of the apparatus of the present invention, and 1 in the figure shows the rotation of the table rolls 2, 2, etc. due to the operation of a drive system (not shown) in the longitudinal direction (in the direction of the white arrow in the figure). This is the clad material being transported. The clad material 1, whose perspective view is also shown in FIG. 2, has a substrate made of a 42% Ni-Fe alloy.
It has a clad part 1a in which Al is laminated in the longitudinal direction on a part of its surface in the width direction.

また図中3は光源、4は光源3から投射した光
によりクラツド材1表面を撮像するイメージセン
サカメラである。そしてイメージセンサカメラ4
から撮像画像のビデオ信号を微分回路5は受けて
それを微分処理し、微分回路5にて微分処理され
た信号は2値化回路6にてある適当なレベルで2
値化される。更に2値化回路6の処理信号に基づ
き幅算出部7にて基板部幅及びクラツド部幅が算
出されるようになつている。
Further, in the figure, 3 is a light source, and 4 is an image sensor camera that images the surface of the cladding material 1 using light projected from the light source 3. and image sensor camera 4
The differentiating circuit 5 receives the video signal of the captured image and performs differential processing on it, and the signal differentiated by the differentiating circuit 5 is converted into 2 at a certain appropriate level by the binarizing circuit 6.
Valued. Further, based on the processed signal of the binarization circuit 6, a width calculating section 7 calculates the substrate part width and the clad part width.

また幅算出部7にD/A変換器10を介在して
記録計11を接続してあり、連続的に基板部及び
クラツド部の幅の推移が記録できる。また幅算出
部7に算出値幅が許容範囲内かどうかを判定する
判定回路12、また判定回路12に警報器13を
接続してあり、基板部またはクラツド部の幅が異
常値を示した場合、警報信号が表示される。
Further, a recorder 11 is connected to the width calculating section 7 through a D/A converter 10, so that changes in the widths of the substrate portion and the cladding portion can be continuously recorded. In addition, a judgment circuit 12 is connected to the width calculation unit 7 to judge whether the calculated value width is within an allowable range, and an alarm 13 is connected to the judgment circuit 12. When the width of the substrate portion or the cladding portion shows an abnormal value, An alarm signal is displayed.

一方、幅測定用のイメージセンサカメラ4と同
様に、クラツド材1表面を撮像するイメージセン
サカメラ14がクラツド材1から適長離隔させて
設けてあり、イメージセンサカメラ14には前記
微分回路5、2値化回路6と同様の機能を有する
微分回路15、2値化回路16が接続されてい
る。またこの実施例では2値化回路16には2値
化回路16の処理信号に基づき表面欠陥を検出す
る欠陥検出器17が接続されている。イメージセ
ンサカメラ4,14は何れも2次元用のイメージ
センサであり、それらの走査方向はクラツド材1
の搬送方向に交叉するようになつている。
On the other hand, similarly to the image sensor camera 4 for width measurement, an image sensor camera 14 for taking an image of the surface of the cladding material 1 is provided at an appropriate distance away from the cladding material 1, and the image sensor camera 14 includes the differential circuit 5, A differentiation circuit 15 and a binarization circuit 16 having the same functions as the binarization circuit 6 are connected. Further, in this embodiment, a defect detector 17 is connected to the binarization circuit 16 for detecting surface defects based on the processed signal of the binarization circuit 16. The image sensor cameras 4 and 14 are both two-dimensional image sensors, and their scanning direction is based on the cladding material 1.
It is designed to intersect with the conveyance direction.

またクラツド材1搬送方向上流には、マイクロ
メータ9に連結する顕微鏡8がクラツド材1から
適長離隔させて設けてあり、顕微鏡8にてクラツ
ド材1を観察しながら顕微鏡8内の線に基板部と
クラツド部との境界を合せ(第9図参照)、次に
視野を移し、他方の境界に顕微鏡8内の線を合せ
て、マイクロメータ9にてクラツド部幅を計測す
るようになつている。
Further, a microscope 8 connected to a micrometer 9 is installed at an appropriate distance away from the clad material 1 upstream in the transport direction of the clad material 1. While observing the clad material 1 with the microscope 8, the substrate is The width of the cladding part is measured with the micrometer 9 by aligning the boundary between the cladding part and the cladding part (see Figure 9), then changing the field of view and aligning the line in the microscope 8 with the other boundary. There is.

次に本発明装置によつてクラツド材の幅測定を
行う場合の具体的作業手順について説明する。ま
ずイメージセンサカメラ4の位置合せについて説
明する。顕微鏡8にてクラツド材1を観察し、顕
微鏡8内の線に基板部とクラツド部との境界を順
次合せ(第9図参照)、マイクロメータ9にてク
ラツド部幅を計測する。そしてクラツド材1のそ
の計測部分の位置をイメージセンサカメラ4の視
野に移し、クラツド部幅計測値に前記幅算出部7
の出力値を等しくするように、イメージセンサカ
メラ4のクラツド材1に対する傾角(第1図中
θ)等の入射条件を調節すると共に、イメージセ
ンサカメラ4にて得られるビデオ画像においてス
キヤン開始からクラツド材1エツジまでの距離と
クラツド材1エツジからスキヤン終了までの距離
(後述する第3図においてa及びbの部分の距離)
が等しくなるようにイメージセンサカメラ4を位
置決めする。このような調整を行うのは、前者の
調節がイメージセンサカメラ4の幅方向の感度の
誤差をなくすため、後者の位置決めがレンズ収差
による測定誤差を防ぐためである。
Next, a detailed procedure for measuring the width of a cladding material using the apparatus of the present invention will be explained. First, alignment of the image sensor camera 4 will be explained. The cladding material 1 is observed with a microscope 8, the boundary between the substrate part and the cladding part is sequentially aligned with the line inside the microscope 8 (see FIG. 9), and the width of the cladding part is measured with a micrometer 9. Then, the position of the measured portion of the clad material 1 is moved to the field of view of the image sensor camera 4, and the width calculation unit 7
In order to equalize the output values of Distance from the 1st edge of the cladding material to the end of the scan (distance of parts a and b in Fig. 3, which will be described later)
The image sensor camera 4 is positioned so that the values are equal. This adjustment is performed because the former adjustment eliminates sensitivity errors in the width direction of the image sensor camera 4, and the latter positioning prevents measurement errors due to lens aberrations.

一方イメージセンサカメラ14については、反
射光がイメージセンサカメラ14内に入ればよく
特に微調整の必要はない。
On the other hand, regarding the image sensor camera 14, it is sufficient that the reflected light enters the image sensor camera 14, and there is no need for particular fine adjustment.

次にクラツド材1の基板部及びクラツド部の幅
を測定する手順について説明する。上述した如く
イメージセンサカメラ4が位置決めされ、テーブ
ルロール2,2……の回転に伴つてクラツド材1
が搬送される際に、光源3からクラツド材1表面
幅方向に光が照射され、イメージセンサカメラ4
にてクラツド材1表面が撮像される。第3図はイ
メージセンサカメラ4の撮像信号波形図の一例で
あつて、図中ア,イ,ウは第2図に斜視図で示す
クラツド材1の基板部ア、クラツド部イ、基板部
ウの各部分に対応しており、またaはスキヤン開
始点からクラツド材1エツジまでの部分(つまり
背景)、bはクラツド材1エツジからスキヤン終
了点までの部分(つまり背景)に対応している。
Next, a procedure for measuring the widths of the substrate portion and the cladding portion of the cladding material 1 will be explained. As described above, the image sensor camera 4 is positioned, and the clad material 1 is rotated as the table rolls 2, 2...
When the material is transported, light is emitted from the light source 3 in the width direction of the surface of the clad material 1, and the image sensor camera 4
The surface of the cladding material 1 is imaged. FIG. 3 is an example of an imaging signal waveform diagram of the image sensor camera 4, in which A, B, and C represent the substrate portion A, cladding portion A, and substrate portion U of the cladding material 1 shown in a perspective view in FIG. Also, a corresponds to the part from the scan start point to the 1st edge of the cladding material (in other words, the background), and b corresponds to the part from the 1st edge of the cladding material to the scan end point (in other words, the background). .

第3図の如き撮像信号は微分回路5に入力さ
れ、微分回路5にて微分処理される。第4図は第
3図の撮像信号を微分回路5にて微分して得られ
る微分信号波形図であり、基板部及びクラツド部
のエツジ位置{つまりクラツド材1のア,ウの端
面位置とア,イ及びイ,ウの境界位置)を除く部
分では、その変化量は輝度レベルのバラツキだけ
なので微分すれば第4図に示如く全て0に近い値
となる。
The image pickup signal as shown in FIG. 3 is input to the differentiating circuit 5, where it is subjected to differential processing. FIG. 4 is a differential signal waveform diagram obtained by differentiating the image pickup signal shown in FIG. , A, and the boundary positions of A and C), the amount of change is only the variation in the brightness level, so when differentiated, all values become close to 0 as shown in FIG. 4.

次に2値化回路6において第4図に示す如き微
分信号を第4図に破線で示すレベルで2値化して
第5図の如き2値化信号図を得る。第5図におい
てaはアの端面位置、bはアとイとの境界位置を
示す立上り信号、cはイとウとの境界位置、dは
ウの端面位置を示す立下り信号を示しており、こ
れ以外の部分は0になるから基端部及びクラツド
部のエツジ位置が正確に検知できる。次に幅算出
部7にて第5図の如き2値化信号図に基づきクラ
ツド部イ、基板部ア,ウの各部分の幅を算出す
る。
Next, in the binarization circuit 6, the differential signal as shown in FIG. 4 is binarized at the level shown by the broken line in FIG. 4 to obtain a binarized signal diagram as shown in FIG. In Fig. 5, a indicates the end face position of A, b indicates a rising signal indicating the boundary position between A and I, c indicates the boundary position between A and C, and d indicates a falling signal indicating the end face position of C. , and other parts are 0, so the edge positions of the proximal end and cladding can be detected accurately. Next, the width calculating section 7 calculates the widths of the respective parts of the clad part A, the substrate parts A and C based on the binary signal diagram as shown in FIG.

そして、その算出値はD/A変換されて記録計
11にデジタル記録されると共に、判定回路12
に入力され、許容範囲を超えていれば、警報信号
が警報器13により表示される。
Then, the calculated value is D/A converted and digitally recorded in the recorder 11, and the determination circuit 12
is input and exceeds the permissible range, an alarm signal is displayed by the alarm device 13.

なお基板部及びクラツド部の幅測定の手順につ
いて述べたが、本発明装置では基板部とクラツド
部との境界位置が明確に表示されるので、クラツ
ド部(Al層)のクラツド材全幅に対する位置ず
れも同時に検出できることは勿論である。
As described above, the procedure for measuring the width of the substrate and cladding parts is explained, but since the device of the present invention clearly displays the boundary position between the substrate part and the cladding part, it is possible to detect the positional deviation of the cladding part (Al layer) relative to the entire width of the cladding material. Of course, both can be detected at the same time.

次に表面欠陥を検出する動作内容について説明
する。前述の幅測定手順と同様に、クラツド材1
表面がイメージセンサカメラ14に撮像される。
第6図はその撮像信号波形図であり、図中ア,
イ,ウは第3図の対応と同じである。次に第6図
の如き撮像信号は微分回路15に入力され、微分
回路15にて微分処理される。第7図は第6図の
撮像信号を微分回路15にて微分して得られる微
分信号波形図、第8図は第7図に示す微分輝度信
号波形を2値化回路16にて第7図に破線で示す
レベル2値化して得られる2値化信号図である。
クラツド材1の検査表面が正常であれば、基板部
アの端面位置、基板部アとクラツド部イとの境界
位置を夫々示す立上り信号a,b及びクラツド部
イと基板部ウとの境界位置、基板部ウの端面位置
を夫々示す立下り信号c,dの4個の立上りまた
は立下り信号が見られるはずであるが、第8図に
は前記4個以外に立下り信号eが検出されてい
る。従つて欠陥検出器17にて、第7図に示す立
下り信号eに基づいて基板部アに存在する表面欠
陥が検出される。
Next, the details of the operation for detecting surface defects will be explained. Similar to the width measurement procedure described above, clad material 1
The surface is imaged by the image sensor camera 14.
FIG. 6 is a waveform diagram of the imaging signal, and in the figure A,
A and C are the same as in Figure 3. Next, the imaging signal as shown in FIG. 6 is input to the differentiating circuit 15, where it is subjected to differential processing. 7 is a differential signal waveform diagram obtained by differentiating the image pickup signal in FIG. 6 by the differentiating circuit 15, and FIG. FIG. 2 is a diagram of a binarized signal obtained by level binarization indicated by a broken line in FIG.
If the inspection surface of the cladding material 1 is normal, the rising signals a and b indicating the end face position of the substrate part A, the boundary position between the substrate part A and the cladding part A, and the boundary position between the cladding part A and the substrate part C, respectively. , four rising or falling signals, falling signals c and d, respectively indicating the position of the end surface of the substrate part C, should be seen, but in FIG. 8, a falling signal e other than the four mentioned above is detected. ing. Therefore, the defect detector 17 detects a surface defect existing on the substrate part A based on the falling signal e shown in FIG.

そして表面欠陥が欠陥検出器17に検出される
と、警報信号が警報器23に表示される。
When a surface defect is detected by the defect detector 17, an alarm signal is displayed on the alarm 23.

尚、本実施例では二次元のイメージセンサカメ
ラにて撮像する場合について説明したが、一次元
のイメージセンサカメラにおいても同様に行える
ことは勿論である。
In this embodiment, a case has been described in which a two-dimensional image sensor camera is used to capture an image, but it goes without saying that a one-dimensional image sensor camera can be used in the same manner.

〔効果〕〔effect〕

以上詳述した如く本発明装置では、クラツド材
の反射光の輝度を表す撮像信号の微分信号に基づ
き幅測定を行うので、輝度レベルのバラツキに関
係なく正確な幅測定が可能である。またモデル値
に合わせてイメージセンサ角度、位置合せを予め
行うので、イメージセンサのクラツド材幅方向の
誤差が消失できる。更に前述の実施例では基板
部、クラツド部の幅測定及び表面欠陥検出が同時
に行える等本発明は優れた効果を奏する。
As described in detail above, in the apparatus of the present invention, the width is measured based on the differential signal of the imaging signal representing the brightness of the reflected light of the cladding material, so accurate width measurement is possible regardless of variations in the brightness level. Furthermore, since the image sensor angle and position are adjusted in advance in accordance with the model values, errors in the width direction of the cladding material of the image sensor can be eliminated. Further, in the above-mentioned embodiments, the present invention has excellent effects such as being able to measure the width of the substrate portion and the cladding portion and detect surface defects at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の模式図、第2図はクラツ
ド材の斜視図、第3図、第6図は本発明装置に係
るクラツド材の撮像信号波形図、第4図、第7図
は第3図、第6図の微分信号波形図、第5図、第
8図は第4図、第7図の2値化処理信号図、第9
図は顕微鏡の視野の模式図、第10図、第12図
は従来装置に係るクラツド材の撮像信号波形図、
第11図は同じく2値化処理信号図である。 1……クラツド材、2……テーブルロール、3
……光源、4,14……イメージセンサカメラ、
8……顕微鏡、9……マイクロメータ。
Fig. 1 is a schematic diagram of the device of the present invention, Fig. 2 is a perspective view of the cladding material, Figs. Differential signal waveform diagrams in Figures 3 and 6, Figures 5 and 8 are binary processing signal diagrams in Figures 4 and 7,
The figure is a schematic diagram of the field of view of the microscope, and Figures 10 and 12 are waveform diagrams of imaging signals of cladding materials related to conventional equipment.
FIG. 11 is also a binarization processing signal diagram. 1... Clad wood, 2... Table roll, 3
...Light source, 4,14...Image sensor camera,
8...Microscope, 9...Micrometer.

Claims (1)

【特許請求の範囲】 1 基板部となる金属条の幅方向の一部に他の金
属条を基板部長手方向にクラツド部として重ね合
せた部分クラツド材を少なくとも一次元のイメー
ジセンサにて撮像し、撮像信号に基づき基板部及
び/又はクラツド部の幅を測定する装置におい
て、 撮像信号を微分する微分回路と、その微分信号
を適宜レベルで2値化する2値化回路と、その2
値化信号に基づき基板部及びクラツド部のエツジ
位置を検知して基板部及び/又はクラツド部の幅
を算出する幅算出部と、基板部とクラツド部との
境界を検知してクラツド部の幅を計測する顕微鏡
とを具備し、前記イメージセンサの部分クラツド
材に対する光学的角度合せを可能としてあること
を特徴とする部分クラツド材の幅測定装置。
[Scope of Claims] 1. A partial cladding material in which a part of a metal strip serving as a substrate portion in the width direction is overlapped with another metal strip in the longitudinal direction of the substrate as a cladding portion is imaged with at least one-dimensional image sensor. , a device for measuring the width of a substrate portion and/or a cladding portion based on an imaging signal, which comprises: a differentiation circuit that differentiates the imaging signal; a binarization circuit that binarizes the differentiated signal at an appropriate level;
A width calculating section detects the edge position of the substrate section and cladding section based on the value signal and calculates the width of the substrate section and/or the cladding section; and a width calculating section that detects the boundary between the substrate section and the cladding section and calculates the width of the cladding section. 1. An apparatus for measuring the width of a partial cladding material, comprising: a microscope for measuring the width of the partial cladding material; and a microscope for measuring the width of the partial cladding material.
JP27881185A 1985-12-10 1985-12-10 Width measuring apparatus and surface defect detector for partially clad material Granted JPS62137504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27881185A JPS62137504A (en) 1985-12-10 1985-12-10 Width measuring apparatus and surface defect detector for partially clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27881185A JPS62137504A (en) 1985-12-10 1985-12-10 Width measuring apparatus and surface defect detector for partially clad material

Publications (2)

Publication Number Publication Date
JPS62137504A JPS62137504A (en) 1987-06-20
JPH0415882B2 true JPH0415882B2 (en) 1992-03-19

Family

ID=17602492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27881185A Granted JPS62137504A (en) 1985-12-10 1985-12-10 Width measuring apparatus and surface defect detector for partially clad material

Country Status (1)

Country Link
JP (1) JPS62137504A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI114743B (en) * 1999-09-28 2004-12-15 Ekspansio Engineering Ltd Oy Apparatus and procedure operating on telecentric principle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190704A (en) * 1982-04-30 1983-11-07 Nec Kyushu Ltd Line width measuring method
JPS58191938A (en) * 1982-05-06 1983-11-09 Chino Works Ltd Optical measuring apparatus
JPS5924202A (en) * 1982-07-30 1984-02-07 Matsushita Electric Works Ltd Surface defect detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190704A (en) * 1982-04-30 1983-11-07 Nec Kyushu Ltd Line width measuring method
JPS58191938A (en) * 1982-05-06 1983-11-09 Chino Works Ltd Optical measuring apparatus
JPS5924202A (en) * 1982-07-30 1984-02-07 Matsushita Electric Works Ltd Surface defect detector

Also Published As

Publication number Publication date
JPS62137504A (en) 1987-06-20

Similar Documents

Publication Publication Date Title
JP2617014B2 (en) Sheet length measurement system
KR100876257B1 (en) Optical measuring method and device therefor
JPH0415882B2 (en)
JPH08189905A (en) Scratch tester
JP3340879B2 (en) Surface defect detection method and apparatus
JPS618610A (en) Apparatus for inspecting steel sheet surface
JPS63128240A (en) Reflected light type flaw detecting device
JP2525261B2 (en) Mounted board visual inspection device
JP2965370B2 (en) Defect detection device
JP2000289358A (en) Inspecting device for planographic printing plate
JP3410280B2 (en) Pattern inspection equipment
JPH03100424A (en) Automatic indicator reading device
JPH10325809A (en) Apparatus and method for inspecting fault of web
JPS61213613A (en) Shape measuring instrument
JP2705458B2 (en) Mounting board appearance inspection device
JPS5924963Y2 (en) Edge shape measuring device
JPH04307358A (en) Surface inspection apparatus
JPS62288505A (en) Apparatus for inspecting shape of part
JPH03148050A (en) Mounting-board inspecting apparatus
JPH0821711A (en) Waviness detector for surface of sheet board
JPH08114425A (en) Method for optically detecting shape of rolled plate
JPS5892806A (en) Measuring method for length of plate material
JPH03286383A (en) Pattern comparing device and surface defect inspecting device
JPS60170936A (en) Automatic positioning inspection device
JPH02171640A (en) Inspection of container