JPH08114425A - Method for optically detecting shape of rolled plate - Google Patents

Method for optically detecting shape of rolled plate

Info

Publication number
JPH08114425A
JPH08114425A JP6249205A JP24920594A JPH08114425A JP H08114425 A JPH08114425 A JP H08114425A JP 6249205 A JP6249205 A JP 6249205A JP 24920594 A JP24920594 A JP 24920594A JP H08114425 A JPH08114425 A JP H08114425A
Authority
JP
Japan
Prior art keywords
plate material
shape
light source
plate
bright line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6249205A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kobayashi
博幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6249205A priority Critical patent/JPH08114425A/en
Publication of JPH08114425A publication Critical patent/JPH08114425A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To provide an optical method to detect the shape of rolled plate by which detection differences due to positional change of a mounted camera for picking up a picture of a bar-type light source projected on a plate material can be eliminated without using a special-purpose sensor and the shape of the rolled plate can be detected as a result. CONSTITUTION: In a rolling work of a plate material 1, a picture of a bar-type light source 2 installed along the widthwise direction of the material 1 is projected on the material 1, and a change in position of the picture thereof accompanied with a tilt of the material 1 in a lengthwise direction is sensored so as to detect the shape of the material 1. In such an operation, a picture S of bar- type light source at the time when the shape of the material 1 is flat is averaged. The averaged picture S thereof is set as a light source picture for a reference position by which a change in position of the bar-type light source is sensored.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧延された板材の形状を
光学式に検出する検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detection method for optically detecting the shape of a rolled sheet material.

【0002】[0002]

【従来の技術】金属板材の圧延加工、例えばアルミニウ
ム板材の圧延加工においては、従来からの種々の技術開
発の結果、圧延機の板厚制御に関してはほぼ満足できる
レベルに達している。しかしながら、残された問題とし
ては圧延板の形状、ロールクラウン制御が挙げられる。
この原因として特に熱間圧延時には、板材の形状(フラ
ットネス)の検出が挙げられる。
2. Description of the Related Art In the rolling process of a metal plate material, for example, the rolling process of an aluminum plate material, as a result of various technical developments in the past, the plate thickness control of a rolling mill has reached a substantially satisfactory level. However, the remaining problems include the shape of the rolled plate and roll crown control.
As a cause of this, particularly during hot rolling, detection of the shape (flatness) of the plate material can be mentioned.

【0003】この中で特にアルミニウム板材の熱間圧延
に適した検出方法として光学式形状検出法が挙げられ
る。光学式形状検出法については「塑性と加工」Vol
12、No124、1971年5月号、353頁〜35
8頁、特開昭63−198808号に示されている。
Among these, an optical shape detection method is mentioned as a detection method particularly suitable for hot rolling of aluminum sheet material. See "Plasticity and Machining" Vol.
12, No. 124, May 1971, pp. 353-35.
See page 8 of JP-A-63-198808.

【0004】光学式形状検出法は、板材の形状に不良が
生じた場合に、形状不良による板材の長手方向の傾きに
比例して、板材に映る棒状光源の虚像の位置が変化する
ことを読み取ることにより板材の形状の変化を検出する
方法である。
In the optical shape detection method, when the shape of the plate material is defective, it is read that the position of the virtual image of the rod-shaped light source reflected on the plate material changes in proportion to the inclination of the plate material in the longitudinal direction due to the shape defect. This is a method of detecting a change in the shape of the plate material.

【0005】すなわち、この光学式形状検出法は、板材
の幅方向に沿って設けた棒状光源から光線を板材に照射
して、板材に映った棒状光源の虚像をカメラで撮影し、
その画像をある輝度レベルを基準にして暗部と明部とに
2値化処理して虚像を抽出化することにより輝線を得る
とともに、板材の幅方向における複数の点で輝線の板材
長手方向の移動量を求める段階を具備している。そし
て、この段階で得られたデータを基にして演算を行い板
材の形状を求めるている。
That is, in this optical shape detecting method, a light beam is emitted from a rod-shaped light source provided along the width direction of the plate member to the plate member, and a virtual image of the rod-shaped light source reflected on the plate member is photographed by a camera,
A bright line is obtained by binarizing the image into a dark part and a bright part by extracting a virtual image based on a certain brightness level, and the bright line is moved in the longitudinal direction of the plate at a plurality of points in the width direction of the plate. It has a step of obtaining a quantity. Then, calculation is performed based on the data obtained at this stage to obtain the shape of the plate material.

【0006】この光学式形状検出法が特にアルミニウム
板材の熱間圧延に適する理由としては次のことが挙げら
れる。その一つは、非接触式であり、非常に傷がつきや
すいアルミニウム板材の表面に傷をつけることがない点
である。また、アルミニウム板材は熱間圧延で光の反射
率が高く、光学的処理を容易に行える点である。なお、
接触ロール式形状検出方法の場合は、アルミニウム板の
剛性が高いために接触ロールと板材とが良好に接触しな
い場合がある。
The reason why this optical shape detection method is particularly suitable for hot rolling of aluminum sheet material is as follows. One of them is that it is a non-contact type and does not scratch the surface of an aluminum plate that is very susceptible to scratches. In addition, the aluminum plate material has a high light reflectance by hot rolling, and can be easily subjected to optical treatment. In addition,
In the case of the contact roll type shape detection method, the contact roll and the plate material may not be in good contact with each other due to the high rigidity of the aluminum plate.

【0007】[0007]

【発明が解決しようとする課題】ところが、従来光学式
形状検出法として採用されている方法には次に述べる問
題がある。すなわち、板材に映った棒状光源の像を撮影
するカメラの取り付け位置変動の影響を受け易い。板材
の形状を判定するに際して、基準となる棒状光源の虚像
(基準輝線)の位置と、現在得られた輝線の位置との差
から、板材における各位置の板材の形状が求められる。
しかし、板材に映った棒状光源の像を撮影するカメラの
取り付け位置が所定の位置から変化した場合、このカメ
ラ位置のずれにより検出する板材の形状に誤差が生じ
る。
However, the method conventionally adopted as the optical shape detecting method has the following problems. That is, it is easily affected by the variation in the mounting position of the camera that captures the image of the rod-shaped light source reflected on the plate material. When determining the shape of the plate material, the shape of the plate material at each position on the plate material is obtained from the difference between the position of the virtual image (reference bright line) of the reference rod-shaped light source and the position of the bright line that is currently obtained.
However, when the mounting position of the camera that captures the image of the rod-shaped light source reflected on the plate member changes from a predetermined position, the deviation of the camera position causes an error in the shape of the plate member to be detected.

【0008】すなわち、カメラで撮影した板材上の棒状
光源の虚像をある輝度レベル以上、以下を判断基準とし
て2値化し、幅方向の必要点で、得られた輝線の長手方
向移動量を求める。その板材の長手方向の移動量が基準
位置から見て零の場合には、その板材の形状は良好であ
る。例えば板材の幅方向中央部で基準位置からの長手方
向の移動量が大きい場合には、板材が中伸びであると判
定される。この基準位置は板材の形状が平坦な場合を示
し、通常はカメラを取り付ける時に判定される。
That is, a virtual image of a bar-shaped light source on a plate material photographed by a camera is binarized with a certain luminance level or more as a criterion, and a longitudinal moving amount of the obtained bright line is obtained at a necessary point in the width direction. When the amount of movement of the plate material in the longitudinal direction is zero when viewed from the reference position, the shape of the plate material is good. For example, when the amount of movement in the longitudinal direction from the reference position is large at the center of the plate material in the width direction, it is determined that the plate material has medium elongation. This reference position indicates a case where the plate material has a flat shape, and is normally determined when the camera is attached.

【0009】しかしながら、板材の圧延においては、圧
延ロールが板材を噛み込む時に大きな衝撃が発生し、そ
の影響でカメラの取り付け位置が若干変化する可能性が
常に存在する。また、通常圧延機の周辺は高温、高湿雰
囲気となり、この雰囲気の影響でレンズを含む光学系部
品に熱応力や腐食が発生して、時間経過とともに光学系
に歪みが発生することが避けられない。これらのケース
では、基準線を常時補正しないと、検出された板材の形
状に大幅な誤差が生じることになる。そこで、ある時間
間隔でカメラの基準線を校正する必要があり、そのため
の工数や校正以外の測定誤差が光学式圧延板材形状検方
法の弱点であった。
However, in rolling a plate material, a large impact occurs when the rolling roll bites the plate material, and there is always a possibility that the mounting position of the camera slightly changes due to the impact. In addition, the surroundings of the rolling mill are usually in a high temperature and high humidity atmosphere, and it is possible to avoid distortion of the optical system over time due to thermal stress and corrosion occurring in the optical system parts including the lens under the influence of this atmosphere. Absent. In these cases, if the reference line is not constantly corrected, a large error will occur in the detected shape of the plate material. Therefore, it is necessary to calibrate the reference line of the camera at a certain time interval, and man-hours for that purpose and measurement errors other than calibration are weak points of the optical rolling plate shape inspection method.

【0010】また、特別に設けたセンサによりカメラ位
置の変化を検出できれば、その結果に基づいて結果を修
正することが不可能ではない。しかし、圧延機の周辺は
ヒュームなどのために環境が悪く、その結果センサの信
頼性が低く、またセンサを設けるために検出装置のコス
トが高くなるという問題がある。
If a specially provided sensor can detect a change in the camera position, it is possible to correct the result based on the result. However, the environment around the rolling mill is bad due to fumes and the like, and as a result, the reliability of the sensor is low, and the cost of the detection device increases due to the provision of the sensor.

【0011】本発明は前記事情に基づいてなされたもの
で、板材に映った棒状光源の像を撮影するカメラの取り
付け位置変動による板材形状の検出誤差を特別なセンサ
を用いることなく取り除くことができ、もって圧延板材
の形状を良好に検出できる光学式圧延板形状検出方法を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to eliminate a plate material shape detection error due to a variation in the mounting position of a camera for capturing an image of a rod-shaped light source reflected on a plate material without using a special sensor. Therefore, it is an object of the present invention to provide an optical rolling plate shape detection method capable of satisfactorily detecting the shape of a rolled plate material.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するため
に本発明の光学式圧延板形状検出方法は、板材を圧延す
る加工において、前記板材の板材幅方向に沿って設けた
棒状光源の像を前記板材に映し出し、前記板材の長手方
向の傾きに伴う、前記板材に映る前記棒状光源の像の位
置の変化を読み取って前記板材の形状を検出するに際し
て、前記板材の形状が平坦な時における前記棒状光源の
像を平均化処理し、この平均化処理された前記棒状光源
の像を、前記棒状光源の像の位置の変化を読み取る上で
の基準位置となる光源像とすることをを特徴とする。
In order to achieve the above object, the optical rolled plate shape detecting method of the present invention is an image of a rod-shaped light source provided along the plate material width direction of the plate material in the process of rolling the plate material. When the shape of the plate material is flat when the shape of the plate material is flat when the shape of the plate material is detected by reading the change in the position of the image of the rod-shaped light source reflected on the plate material due to the inclination of the plate material in the longitudinal direction. An image of the rod-shaped light source is averaged, and the averaged image of the rod-shaped light source is used as a light source image that serves as a reference position for reading a change in the position of the image of the rod-shaped light source. And

【0013】[0013]

【作用】本発明の発明者らは、自動的に基準線を修正で
きる方法について検討を行い、本発明を提案するに至っ
た。本発明は、基準輝線が板材の形状が良好な際の輝線
で近時できることに注目し、板材の形状良好時に得られ
た輝線を平均化処理することにより得られた輝線を、棒
状光源の像の位置の変化を読み取る上での基準位置とな
る基準輝線として用いることにより、特別にセンサを用
いることなく基準輝線を容易に得ることができる。
The inventors of the present invention have studied the method of automatically correcting the reference line and have proposed the present invention. The present invention focuses on the fact that the reference bright line can be a bright line when the shape of the plate is good, and the bright line obtained by averaging the bright lines obtained when the shape of the plate is good is an image of a rod-shaped light source. It is possible to easily obtain the reference bright line without using a sensor by using it as a reference bright line that serves as a reference position for reading the change in the position.

【0014】[0014]

【実施例】本発明の光学式圧延板形状検出方法の一実施
例について説明する。まず、図1に示すように金属例え
ばアルミニウムからなる板材を一対の圧延ロ−ル51で
圧延する加工において、圧延されて移動される板材1を
カメラで撮影する。すなわち、板材1が移動する通路の
側方に板材1に対して板材幅方向に沿って蛍光灯などの
棒状光源2を設けるとともに、板材1の通路の近傍にテ
レビカメラ3を設ける。そして、棒状光源2を点灯して
板材1の表面に光線を照射する。テレビカメラ3は板材
1の表面に映った棒状光源2の虚像Sを撮影する、ここ
で、図2(a)に示すように板材1が全面にわたり平坦
である場合には、板材1上の虚像が直線である。しか
し、板材1の一部が歪んでいる場合には、板材1上の虚
像Sも板材1に歪みに応じて歪みが発生する。
EXAMPLE An example of the optical rolling plate shape detecting method of the present invention will be described. First, as shown in FIG. 1, in a process of rolling a plate material made of metal such as aluminum with a pair of rolling rolls 51, the plate material 1 rolled and moved is photographed by a camera. That is, the rod-shaped light source 2 such as a fluorescent lamp is provided along the plate material width direction with respect to the plate material 1 on the side of the passage through which the plate material 1 moves, and the television camera 3 is provided near the path of the plate material 1. Then, the rod-shaped light source 2 is turned on to irradiate the surface of the plate 1 with light rays. The television camera 3 captures a virtual image S of the rod-shaped light source 2 reflected on the surface of the plate material 1. Here, when the plate material 1 is flat over the entire surface as shown in FIG. Is a straight line. However, when part of the plate material 1 is distorted, the virtual image S on the plate material 1 is also distorted according to the distortion.

【0015】例えば図2(b)に示すように板材1の板
材1の幅方向の中央部に歪みが発生している場合には、
板材1上の虚像Sも板材幅方向中央部に歪みが発生して
変形する。図3はモニター画面に表示された板材1およ
び板材1に写された虚像(輝線)Sを示す画像を表して
いる。なお、図3においてLは板材1の左右両側の縁で
あり、Y方向は圧延方向すなわち板材長手方向であり、
X方向は板材幅方向である。
For example, as shown in FIG. 2B, in the case where the plate material 1 is distorted in the central portion in the width direction of the plate material 1,
The virtual image S on the plate material 1 is also deformed due to distortion occurring in the central portion in the plate width direction. FIG. 3 shows an image showing the plate material 1 displayed on the monitor screen and the virtual image (bright line) S imaged on the plate material 1. In FIG. 3, L is the left and right edges of the plate material 1, the Y direction is the rolling direction, that is, the plate material longitudinal direction,
The X direction is the width direction of the plate material.

【0016】テレビカメラ3は撮影した板材1に映った
棒状光源2の虚像Sの画像信号を演算信号調整回路11
に送る。次いで、2値化回路12において棒状光源2の
虚像Sの画像信号をある輝度レベルを基準にして暗部と
明部とに2値化処理して虚像を抽出化し、次いで抽出化
した画像信号から輝線抽出回路13により輝線を得て、
基準輝線算出回路14において基準輝線Sa を算出す
る。
The television camera 3 calculates the image signal of the virtual image S of the rod-shaped light source 2 reflected on the plate 1 by the arithmetic signal adjusting circuit 11
Send to Next, in the binarization circuit 12, the image signal of the virtual image S of the rod-shaped light source 2 is binarized into a dark portion and a bright portion on the basis of a certain brightness level to extract a virtual image, and then a bright line is extracted from the extracted image signal. Obtain the bright line by the extraction circuit 13,
The reference bright line calculation circuit 14 calculates the reference bright line Sa.

【0017】ここで、板材1の形状に不良が生じた場合
に、その形状不良による板材の長手方向の傾きに比例し
て、板材1に映る棒状光源2の虚像、すなわち輝線の位
置が板材1の長手方向に移動する。そこで、板材形状演
算回路15において板材1の幅方向における複数の点で
輝線の板材1の長手方向の移動量を求めて、板材1の形
状の変化を検出する。最後に出力回路16により板材1
の形状を表す信号を表示装置や記録装置に出力する。
Here, when a defect occurs in the shape of the plate material 1, the virtual image of the rod-shaped light source 2 reflected on the plate material 1, that is, the position of the bright line is proportional to the inclination of the plate material 1 in the longitudinal direction due to the shape defect. Move in the longitudinal direction. Therefore, in the plate material shape calculation circuit 15, the shift amount of the bright line in the longitudinal direction of the plate material 1 is obtained at a plurality of points in the width direction of the plate material 1 to detect the change in the shape of the plate material 1. Finally, the output circuit 16 is used for the plate material 1
A signal representing the shape of the is output to a display device or a recording device.

【0018】次に具体的な処理方法について説明する。
図4は棒状光源2の光線を板材1に照射した時における
板材1に映る虚像、すなわち輝線Sを示している。図4
では図2(b)に示すように板材1がその中央部が変形
して中伸び(センターバックル)の状態にある時におけ
る、板材1に映る棒状光源3の虚像、すなわち輝線Sの
位置を示している。中伸びの状態は、板材1の幅方向中
央部が過剰に圧延されて他の部分に比較して延ばされ、
その結果板材1の幅方向中央部に波打ち部が発生したも
のである。この場合、板材1の幅方向に沿う基準輝線S
a に対して、各時間における輝線Sが中伸び(波打ち
部)の大きさに比例して板材1の長手方向にずれる。
Next, a specific processing method will be described.
FIG. 4 shows a virtual image, that is, a bright line S, which is reflected on the plate 1 when the plate 1 is irradiated with the light beam of the rod-shaped light source 2. FIG.
Then, as shown in FIG. 2B, the virtual image of the rod-shaped light source 3 reflected on the plate material 1, that is, the position of the bright line S when the plate material 1 is deformed at the central portion and is in the state of middle extension (center buckle) is shown. ing. In the state of medium elongation, the central portion in the width direction of the plate material 1 is excessively rolled and stretched in comparison with other portions,
As a result, a corrugated portion is generated at the center of the plate material 1 in the width direction. In this case, the reference bright line S along the width direction of the plate material 1
With respect to a, the bright line S at each time is shifted in the longitudinal direction of the plate material 1 in proportion to the size of the intermediate extension (wavy portion).

【0019】このことを図5を参照して説明を加える。
すなわち、板材1の形状が平坦で正常である場合(図示
破線線)には、棒状光源3の光線の照射によって板材1
にa位置に虚像(基準輝線Sa )が形成され、カメラ3
はa位置にある虚像(基準輝線Sa )を撮影する。ま
た、板材1に波打ちが発生して異常である場合(図示実
線)には、棒状光源3の虚像の反射角が変化し、このた
め輝線Sが基準輝線Saに対して板材1の長手方向のず
れたb位置に変位する。カメラ3はb位置にある虚像
(輝線S)を撮影する。
This will be described with reference to FIG.
That is, when the shape of the plate material 1 is flat and normal (the broken line in the drawing), the plate material 1 is irradiated by the light beam of the rod-shaped light source 3.
A virtual image (reference bright line Sa) is formed at position a on the camera 3
Takes a virtual image (reference bright line Sa) at the position a. When the plate material 1 is abnormal due to waviness (solid line in the figure), the reflection angle of the virtual image of the rod-shaped light source 3 changes, so that the bright line S is in the longitudinal direction of the plate material 1 with respect to the reference bright line Sa. It is displaced to the displaced b position. The camera 3 captures the virtual image (bright line S) at the position b.

【0020】そして、このような例における板材1の形
状を検出するために次に述べる処理を行う。板材1の形
状不良によって生じる棒状光源3の虚像の変化量は幾何
学的に求めることができる。
Then, in order to detect the shape of the plate material 1 in such an example, the following processing is performed. The amount of change in the virtual image of the rod-shaped light source 3 caused by the defective shape of the plate material 1 can be geometrically determined.

【0021】板材1が形状不良を生じ、棒状光源3に対
してある角度だけ傾いたとする。そうすると、板材1の
表面に映る棒状光源3の虚像、すなわち輝線Sは、平坦
な板材1の表面に映る棒状光源3の虚像、すなわち基準
輝線Sa に対して、板材1の勾配の大きさに比例して変
位する。この結果、圧延中の板材1に映った棒状光源3
の虚像、すなわち輝線Sは、板材1の形状の変化に比例
して曲線状に変位する。
It is assumed that the plate member 1 has a defective shape and is inclined at a certain angle with respect to the rod-shaped light source 3. Then, the virtual image of the rod-shaped light source 3 reflected on the surface of the plate 1, that is, the bright line S, is proportional to the magnitude of the gradient of the plate 1 with respect to the virtual image of the rod-shaped light source 3 reflected on the surface of the flat plate 1, that is, the reference bright line Sa. And then displace. As a result, the bar-shaped light source 3 reflected on the plate material 1 during rolling
The virtual image, that is, the bright line S, is displaced in a curved shape in proportion to the change in the shape of the plate material 1.

【0022】例えば、板材1の形状が図6に示すように
式(1)で表される正弦カーブで与えられて曲線状に変
位したとすると、これによって生じる棒状光源3の虚像
の変位状態は図7に示すように式(1)微分した式
(2)に比例した量となる。
For example, if the shape of the plate 1 is given by a sine curve represented by the equation (1) as shown in FIG. 6 and is displaced in a curved shape, the displacement state of the virtual image of the rod-shaped light source 3 caused by this is As shown in FIG. 7, the amount is proportional to the equation (2) obtained by differentiating the equation (1).

【0023】[0023]

【数1】 [Equation 1]

【0024】但し、 h:板材形状の変化状態 h´:光学的に検出された板材形状の状態 H:板材の波の振幅 P:板材の波の周期 x:板材の長さ 実際には、棒状光源3、板材1およびカメラ2の相対位
置の関係により、光学的に増幅される変位量は板材1の
幅方向で異なる。板材1の幅方向における複数の点での
棒状光源3の虚像、すなわち輝線Sの変位量qhzは、幾
何学的、光学的に定まる比例定数を4Kzとし、板材1
の長さxをvtと置いて時間軸で表すと、式(3)で表
される。図8はこのような棒状光源3の虚像、すなわち
輝線Sの処理の過程(正常時)を模式的に示しており、
図8(a)は板材1における輝線を示す斜視図、同
(b)は同(a)AーA線に沿う断面において表される
輝線の変位を示す図、同(C)は輝線の処理の結果を示
す図である。
However, h: state of change of plate shape h ': state of plate shape optically detected H: amplitude of wave of plate P: period of wave of plate x: length of plate Due to the relationship between the relative positions of the light source 3, the plate member 1 and the camera 2, the amount of displacement that is optically amplified differs in the width direction of the plate member 1. For the virtual image of the rod-shaped light source 3 at a plurality of points in the width direction of the plate material 1, that is, the displacement amount qhz of the bright line S, the proportional constant determined geometrically and optically is set to 4 Kz, and the plate material 1
When the length x of is set to vt and is expressed on the time axis, it is expressed by Expression (3). FIG. 8 schematically shows such a virtual image of the rod-shaped light source 3, that is, a process of processing the bright line S (normal),
FIG. 8A is a perspective view showing a bright line in the plate material 1, FIG. 8B is a diagram showing a displacement of the bright line shown in the section taken along line A-A in FIG. 8A, and FIG. 8C is a treatment of the bright line. It is a figure which shows the result of.

【0025】[0025]

【数2】 [Equation 2]

【0026】但し、 v:板材の速度 t:時間 T:1周期に要する時間 Kz:板材幅方向の各点によって異なる増幅率 次いで、式(3)からの輝線の変位量qhzの振幅={4
Kz・π・(H/P)}/2がわかれば、Kz、πは既
知であるから、目的とする急峻度=H/Pを求めること
ができる。そのために、式(3)の絶対値を適当な時間
平均化すると、その結果は板材の波の振幅に比例する値
となる。この内容を式にすると次のように式(4)およ
び式(5)で表される。
However, v: speed of plate material t: time T: time required for one cycle Kz: amplification factor different depending on each point in the width direction of the plate material Next, amplitude of displacement qhz of bright line from equation (3) = {4
If Kz · π · (H / P)} / 2 is known, Kz and π are known, and the desired steepness = H / P can be obtained. Therefore, when the absolute value of the equation (3) is averaged over an appropriate time, the result is a value proportional to the amplitude of the wave of the plate material. When this content is made into an expression, it is expressed by the following expressions (4) and (5).

【0027】[0027]

【数3】 (Equation 3)

【0028】但し、Qhz:単位時間に通過した板材の形
状 この結果、光学式圧延板形状検出方法において、板材1
に映る棒状光源2の虚像Sを2値化処理して輝線を求め
るとともに、板材幅方向の各点で輝線Sの板材長手方向
の変位量を求める段階における処理速度の向上および検
出精度の向上を図ることができる。
However, Qhz: the shape of the plate material passed in a unit time. As a result, in the optical rolling plate shape detection method, the plate material 1
In addition to binarizing the virtual image S of the bar-shaped light source 2 shown in FIG. 2 to obtain the bright line, and improving the processing speed and the detection accuracy in the stage of obtaining the displacement amount of the bright line S in the plate longitudinal direction at each point in the plate width direction. Can be planned.

【0029】ところで、このように圧延において圧延さ
れた板材1の形状を検出するに際して、圧延ロールが板
材を噛み込む時に大きな衝撃が発生し、その影響でカメ
ラの取り付け位置が若干変化する可能性が常に存在す
る。また、通常圧延機の周辺は高温、高湿雰囲気とな
り、この雰囲気の影響でレンズを含む光学系部品に熱応
力や腐食が発生して、時間経過とともに光学系に歪みが
発生することが避けられない。これらのケースでは、基
準線を常時補正しないと、検出された板材の形状に大幅
な誤差が生じることになる。
By the way, in detecting the shape of the sheet material 1 rolled in this way, a large impact may occur when the rolling roll bites the sheet material, and the mounting position of the camera may change slightly due to the impact. Always exists. In addition, the surroundings of the rolling mill are usually in a high temperature and high humidity atmosphere, and it is possible to avoid distortion of the optical system over time due to thermal stress and corrosion occurring in the optical system parts including the lens under the influence of this atmosphere. Absent. In these cases, if the reference line is not constantly corrected, a large error will occur in the detected shape of the plate material.

【0030】このように圧延中の現象としてカメラ3の
取り付け位置の変化や光学系の歪などにより、圧延中の
輝線の挙動として図9に示すような場合が多々発生す
る。すなわち、カメラ3の取り付け位置が予め設定され
た位置から板材1の長手方向にずれると、輝線Sが図9
の実線で示す初期設定された基準輝線Sa に対して図9
の破線に示すように板材1の長手方向にずれる。
As described above, as a phenomenon during rolling, a change in the mounting position of the camera 3 and distortion of the optical system often cause the behavior of the bright line during rolling as shown in FIG. That is, when the mounting position of the camera 3 is deviated from the preset position in the longitudinal direction of the plate material 1, the bright line S is shown in FIG.
9 with respect to the initially set reference bright line Sa shown by the solid line in FIG.
As shown by the broken line, the plate material 1 is displaced in the longitudinal direction.

【0031】このため、板材1の形状を求めるために輝
線Sを前述した方法により処理すると、図10に示すよ
うに誤差を生じ、その誤差はカメラ3の取付け位置のず
れ量に伴って増加し、そのずれ量が最小の時に単位時間
に通過した板材の形状Qhzが最小値となる。図10はこ
のような棒状光源3の虚像、すなわち輝線Sの処理の過
程(異常時)を模式的に示しており、図10(a)は板
材1における輝線を示す斜視図、同(b)は同(a)A
ーA線に沿う断面において表される輝線の変位を示す
図、同(C)は輝線の処理の結果を示す図である。
Therefore, when the bright line S is processed by the above-described method to obtain the shape of the plate material 1, an error occurs as shown in FIG. 10, and the error increases with the amount of displacement of the mounting position of the camera 3. The shape Qhz of the plate material that has passed in a unit time when the amount of deviation is the minimum is the minimum value. FIG. 10 schematically shows a virtual image of such a rod-shaped light source 3, that is, a process of processing a bright line S (at the time of abnormality), and FIG. 10A is a perspective view showing a bright line in the plate 1, and FIG. Is the same (a) A
FIG. 7C is a diagram showing the displacement of the bright line represented in the cross section along the line A, and FIG. 8C is a diagram showing the result of the bright line processing.

【0032】そこで、このようなカメラ3の取り付け位
置のずれなどにより板材1の形状を検出する上での誤差
の発生に対する対策として次に述べる方法を採用する。
すなわち、基準輝線が板材1の形状が良好(平坦)な場
合における輝線で近似できることに着目し、板材1の形
状が良好(平坦)な時に得られた輝線を平均化処理し、
この平均化処理により得られた輝線を基準線として用い
る。この処理の具体的なロジックとしては次に述べる方
法を採用する。
Therefore, the following method is adopted as a countermeasure against the occurrence of an error in detecting the shape of the plate material 1 due to such a displacement of the mounting position of the camera 3.
That is, noting that the reference bright line can be approximated by the bright line when the shape of the plate material 1 is good (flat), the bright lines obtained when the shape of the plate material 1 is good (flat) are averaged,
The bright line obtained by this averaging process is used as a reference line. The method described below is adopted as the specific logic of this processing.

【0033】板材1の形状が異常でない場合には、輝線
を後述する方法で平均化処理し、その結果を基準輝線と
して与える。また、板材1の形状が異常であるか、ない
かの判断は、前述したセンサの検出出力に基づいて行
い、あるいは必要な場合には別に設けたセンサの検出出
力を用いて行い、さらには操作者の目視による認識結果
を採用しても良い。
When the shape of the plate material 1 is not abnormal, the bright lines are averaged by the method described later, and the result is given as the reference bright line. Further, the determination as to whether the shape of the plate material 1 is abnormal or not is made based on the detection output of the above-mentioned sensor, or if necessary, using the detection output of a separately provided sensor, and further operation is performed. The recognition result obtained by a person's visual observation may be adopted.

【0034】輝線を平均化処理する方法は種々の方法が
あるが、本実施例では次に述べる方法を採用する。第1
の処理方法は指数平滑法である。この方法は、輝線位置
を指数平滑してその結果を基準輝線とする。この際、指
数平滑係数をある程度小さくすることによりノイズを取
り除く。この処理方法では次に示す式(6)が用いられ
る。
There are various methods for averaging the bright lines, but the method described below is adopted in this embodiment. First
The processing method of is the exponential smoothing method. In this method, the position of the bright line is exponentially smoothed and the result is used as the reference bright line. At this time, noise is removed by reducing the exponential smoothing coefficient to some extent. In this processing method, the following equation (6) is used.

【0035】[0035]

【数4】 [Equation 4]

【0036】但し、Yi:今回の輝線 Y* i-1:基準輝線(前回値) Y* i:基準輝線(前回値) β:指数平滑係数(<1) なお、Yi、Y* i-1およびY* iについては図11に
示されている。第2の処理方法は移動平均法である。こ
の方法は輝線の位置を移動平均し、その結果を基準輝線
とする。この際移動平均回数をある程度大きくすること
でノイズを除去する。この処理方法では次に示す式
(7)が用いられる。
However, Yi: current bright line Y * i-1: reference bright line (previous value) Y * i: standard bright line (previous value) β: exponential smoothing coefficient (<1) Yi, Y * i-1 And Y * i are shown in FIG. The second processing method is the moving average method. In this method, the positions of the bright lines are moving averaged and the result is used as the reference bright line. At this time, noise is removed by increasing the moving average number to some extent. In this processing method, the following equation (7) is used.

【0037】[0037]

【数5】 (Equation 5)

【0038】但し、m:移動平均回数 第3の処理方法は統計的処理法である。この方法では、
前述した式(4)で示される単位時間に通過した板材の
形状Qhzが基準位置に誤差がない状態で最小化すること
に着目し、基準輝線の位置を変化させた場合のQhzを求
め、Qhzが最小化する基準輝線の位置を求める方法であ
る。この方法は図12に示されている。
However, m: number of moving averages The third processing method is a statistical processing method. in this way,
Focusing on the fact that the shape Qhz of the plate material that has passed through the unit time expressed by the above equation (4) is minimized without any error in the reference position, Qhz when the position of the reference bright line is changed is obtained, and Qhz Is a method of obtaining the position of the reference bright line that minimizes. This method is shown in FIG.

【0039】このように本発明によれば板材1における
基準となる輝線Sa が正確に得られ、得られた基準輝線
Sa の位置を板材1の形状によって変動する実際の輝線
Sの位置と比較することにより、特別にセンサを用いる
ことなく板材1の形状を正確に求めることができる。こ
れ以降の処理は従来の場合と同様である。
As described above, according to the present invention, the reference bright line Sa of the plate material 1 is accurately obtained, and the position of the obtained reference bright line Sa is compared with the actual position of the bright line S which varies depending on the shape of the plate material 1. As a result, the shape of the plate material 1 can be accurately obtained without using a special sensor. The subsequent processing is the same as in the conventional case.

【0040】この光学式圧延板形状検出方法は、特にア
ルミニウム板材を熱間圧延する場合における板材形状の
変化を検出する方法に適用すると優れた効果を得ること
できる。
This optical rolled plate shape detecting method can obtain an excellent effect when applied to a method for detecting a change in the plate material shape particularly when an aluminum plate material is hot rolled.

【0041】本発明は前述した実施例に限定されず種々
変形して実施することができる。例えば関数式は圧延
機、圧延条件、板材の変形形態などの種々要素に基づい
て決定される。
The present invention is not limited to the above-described embodiments, but can be implemented with various modifications. For example, the functional expression is determined based on various factors such as the rolling mill, rolling conditions, and deformation of the plate material.

【0042】[0042]

【発明の効果】以上説明したように本発明の光学式圧延
板形状検出方法によれば、板材に映った棒状光源の虚像
を処理する段階において、板材に映った棒状光源の像を
撮影するカメラの取り付け位置変動などによる板材検出
の誤差を特別なセンサを用いることなく取り除くことが
でき、もって圧延板材の形状を迅速且つ高い精度で検出
でき、板材の形状を精度良く制御し、圧延した板材の品
質および圧延の能率向上に大きく寄与する。
As described above, according to the optical rolled plate shape detecting method of the present invention, the camera for photographing the image of the bar-shaped light source reflected on the plate material at the stage of processing the virtual image of the bar-shaped light source reflected on the plate material. It is possible to eliminate the error in the plate detection due to the variation of the mounting position of the plate without using a special sensor.Therefore, the shape of the rolled plate can be detected quickly and with high accuracy. It greatly contributes to the improvement of quality and rolling efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の一実施例を説明する図。FIG. 1 is a diagram illustrating an embodiment of a method of the present invention.

【図2】板材に映った輝線をカメラで撮影する行程を示
す説明図。
FIG. 2 is an explanatory diagram showing a process of photographing a bright line reflected on a plate material with a camera.

【図3】カメラで撮影した棒状光源の虚像を示す図。FIG. 3 is a diagram showing a virtual image of a rod-shaped light source taken by a camera.

【図4】板材に映った輝線の例を示す図。FIG. 4 is a diagram showing an example of bright lines reflected on a plate material.

【図5】板材の形状と輝線との関係を示す図。FIG. 5 is a diagram showing a relationship between a shape of a plate material and a bright line.

【図6】板材の形状を模式的に示す図。FIG. 6 is a diagram schematically showing the shape of a plate material.

【図7】板材の形状の傾きを模式的に示す図。FIG. 7 is a diagram schematically showing the inclination of the shape of a plate material.

【図8】板材形状が正常である時の輝線の処理過程を模
式的に示す図。
FIG. 8 is a diagram schematically showing a process of processing bright lines when the plate material has a normal shape.

【図9】カメラ位置がずれた場合の輝線の例を示す図。FIG. 9 is a diagram showing an example of a bright line when the camera position is displaced.

【図10】板材形状が異常である時の輝線の処理過程を
模式的に示す図。
FIG. 10 is a diagram schematically showing a process of processing a bright line when a plate material has an abnormal shape.

【図11】輝線を処理する方法の一例を示す図。FIG. 11 is a diagram showing an example of a method of processing bright lines.

【図12】輝線を処理する方法の他の例を示す図。FIG. 12 is a diagram showing another example of a method of processing a bright line.

【符号の説明】[Explanation of symbols]

1…板材、 2…棒状光源、 3…カメラ、 11…演算信号調整回路、 12…演算信号2値化回路、 13…輝線抽出回路、 14…基準輝線算出回路、 15…板形状演算回路、 S…輝線。 DESCRIPTION OF SYMBOLS 1 ... Plate material, 2 ... Rod-shaped light source, 3 ... Camera, 11 ... Operation signal adjustment circuit, 12 ... Operation signal binarization circuit, 13 ... Bright line extraction circuit, 14 ... Reference bright line calculation circuit, 15 ... Plate shape operation circuit, S … Bright line.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B21B 38/02 B21C 51/00 L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B21B 38/02 B21C 51/00 L

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 板材を圧延する加工において、前記板材
の板材幅方向に沿って設けた棒状光源の像を前記板材に
映し出し、前記板材の長手方向の傾きに伴う、前記板材
に映る前記棒状光源の像の位置の変化を読み取って前記
板材の形状を検出するに際して、 前記板材の形状が平坦な時における前記棒状光源の像を
平均化処理し、この平均化処理された前記棒状光源の像
を、前記棒状光源の像の位置の変化を読み取る上での基
準位置となる光源像とすることを特徴とする光学式圧延
板形状検出方法。
1. In the process of rolling a plate material, an image of a bar-shaped light source provided along the plate material width direction of the plate material is projected on the plate material, and the bar-shaped light source reflected on the plate material is associated with the inclination of the plate material in the longitudinal direction. When detecting the shape of the plate material by reading the change in the position of the image, the image of the rod-shaped light source when the shape of the plate material is flat is subjected to averaging, and the image of the rod-shaped light source subjected to the averaging is A method for detecting the shape of an optical rolling plate, wherein the light source image is used as a reference position for reading a change in the position of the image of the rod-shaped light source.
JP6249205A 1994-10-14 1994-10-14 Method for optically detecting shape of rolled plate Pending JPH08114425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6249205A JPH08114425A (en) 1994-10-14 1994-10-14 Method for optically detecting shape of rolled plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6249205A JPH08114425A (en) 1994-10-14 1994-10-14 Method for optically detecting shape of rolled plate

Publications (1)

Publication Number Publication Date
JPH08114425A true JPH08114425A (en) 1996-05-07

Family

ID=17189483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6249205A Pending JPH08114425A (en) 1994-10-14 1994-10-14 Method for optically detecting shape of rolled plate

Country Status (1)

Country Link
JP (1) JPH08114425A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066634A (en) * 2000-08-17 2002-03-05 Furukawa Electric Co Ltd:The Optical shape detecting method for rolling plate
JP2013096859A (en) * 2011-11-01 2013-05-20 Kobe Steel Ltd Height measuring apparatus and height measuring method
JP2022074862A (en) * 2020-11-05 2022-05-18 Primetals Technologies Japan株式会社 Failure determining device and failure determining method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066634A (en) * 2000-08-17 2002-03-05 Furukawa Electric Co Ltd:The Optical shape detecting method for rolling plate
JP4579386B2 (en) * 2000-08-17 2010-11-10 古河電気工業株式会社 Optical shape detection method for rolled sheet
JP2013096859A (en) * 2011-11-01 2013-05-20 Kobe Steel Ltd Height measuring apparatus and height measuring method
JP2022074862A (en) * 2020-11-05 2022-05-18 Primetals Technologies Japan株式会社 Failure determining device and failure determining method

Similar Documents

Publication Publication Date Title
KR100914897B1 (en) Method and device for optically measuring the surface shape and for the optical surface inspection of moving strips in rolling and processing installations
JP2010054502A (en) Method and device for tube spot check of heat exchanger
JP3185599B2 (en) Surface defect inspection equipment
JPH11311510A (en) Method and apparatus for inspection of very small uneven part
JPH08114425A (en) Method for optically detecting shape of rolled plate
JP3046530B2 (en) Method and apparatus for detecting weld bead of steel pipe
JP2003185419A (en) Method and apparatus for measuring warpage shape
JP2002310618A (en) Size measurement device, size measurement method and inspection device for electronic component
JP2541735B2 (en) Method and apparatus for diagnosing coating film deterioration
JPH08189905A (en) Scratch tester
JP2000018922A (en) Apparatus for thickness defect inspection and its inspection method
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JPH0629705B2 (en) Plate inspection method
JPH09105618A (en) Method and apparatus for inspection of defect on smooth surface of object as well as method and apparatus for measurement of roughness on surface of object
JP3060523B2 (en) Circumferential surface flaw inspection method and device
JPH07286968A (en) Surface defect inspecting device
JPH08285550A (en) Instrument for measuring-steel plate displacement
JPH09304033A (en) Method and apparatus for optically detecting shape of rolled plate
JPH06102197A (en) Surface flaw detection method
JP2006226834A (en) Surface inspection device and surface inspection method
JP3637589B2 (en) Surface defect inspection equipment
JP3160838B2 (en) Surface defect inspection equipment
JPH04160304A (en) Detecting apparatus of warp in widthwise direction of plate
JP2510430B2 (en) Strip surface defect inspection method in continuous annealing furnace
JP3168864B2 (en) Surface defect inspection equipment