JPS61223603A - Mark detecting machine - Google Patents

Mark detecting machine

Info

Publication number
JPS61223603A
JPS61223603A JP6554385A JP6554385A JPS61223603A JP S61223603 A JPS61223603 A JP S61223603A JP 6554385 A JP6554385 A JP 6554385A JP 6554385 A JP6554385 A JP 6554385A JP S61223603 A JPS61223603 A JP S61223603A
Authority
JP
Japan
Prior art keywords
mark
signal
comparator
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6554385A
Other languages
Japanese (ja)
Other versions
JPH0617770B2 (en
Inventor
Nobuo Shimazu
信生 島津
Yutaka Sato
裕 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Nippon Kogaku KK filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6554385A priority Critical patent/JPH0617770B2/en
Publication of JPS61223603A publication Critical patent/JPS61223603A/en
Publication of JPH0617770B2 publication Critical patent/JPH0617770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain high detecting accuracy by simple circuit constitution by measuring a time difference between output of a zero-cross comparator photodetecting the reflected light from a mark and output of a mark center detecting means. CONSTITUTION:The zero-cross comparator is formed of a position sensor 4, electric current-voltage conversion circuits 11 and 12 and a comparator 17. When a control signal is given to an optical scanner and an optical beam is scanned, a reference signal A indicating the relation between the beam position and the output voltage is outputted to the output of the comparator 17. Further, a mark signal B indicating an amount of error from the mark reference position to the actual mark position is outputted from an electric current-voltage conversion circuit 18 inputting the output of an optical detector 5. The signal B is inputted to a peak comparator 19 and transformed into the shape of a mark position signal C and inputted to a time difference signal generating circuit 20 with the signal A. The circuit 20 outputs a pulse D of a time difference between the signals A and C and outputs a flag 24 corresponding to the polarity of a mark position error. The pulse D is inputted to a counter 23 to count the position error.

Description

【発明の詳細な説明】 (1)発明の属する分野の説明 本発明は、半導体製造装置におけるウェハーマスク等の
位置合わせ用マーク検出機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Description of the field to which the invention pertains The present invention relates to a mark detector for alignment of wafer masks, etc. in semiconductor manufacturing equipment.

(2)従来の技術の説明 第3図に本発明によるマーク検出装置の概要をはガルバ
ノミラ−を用いたオプチカルスキャナ。
(2) Description of the Prior Art FIG. 3 shows an outline of the mark detection device according to the present invention, which is an optical scanner using a galvanometer mirror.

3はビームスプリッタ−24はポジションセンサ。3 is a beam splitter and 24 is a position sensor.

5は光ディテクタ、6はウェハー、7はウェハー上に加
工された回折格子マークである。
5 is a light detector, 6 is a wafer, and 7 is a diffraction grating mark processed on the wafer.

このような構成に於いてオプチカルスキャナ2を矢印す
の向きに回転させると光ビームは6のウェハー上を図中
の矢印aの向きに移動する。移動して光ビームが7のマ
ークに当たると図に示すような回折光(L)が生じ光デ
ィテクタ5に当たり光ディテクタ5からマーク信号が出
力される。オプチカルスキャナ2の制御入力電圧と回転
角の間に一定の関係があるので従来は、このマーク信号
が得られた時点でのオプチカルスキャナ2の制御入力電
圧からマークの位置情報を得ており、さらに定期的にオ
プチカルスキャナ2に基準の制御入力電圧を与えてその
際の光ビームの位置をポジションセンサ4で読み取る事
によりオプチカルスキャナ2のドリフトによる位置検出
誤差を補正していた。このようなドリフトの補正方法を
用いるとポジシコンセンサ4は、光ビームがドリフトす
る全範囲にわたって高精度に絶対位置を検出しなければ
ならず、その為にはポジションセンサ4の光位置電圧変
換回路に第4図に示すような複雑な回路を使用しなけれ
ばならない。第4図に於いて4は2次元のポジションセ
ンサ、11.12は電流電圧変換回路、13は引算器、
14は加算器、15は割算器である。ここで高精度の引
算器2割算器はマツチング抵抗や多数のトリマを必要と
し素子も高価で調整にも時間がかかるという欠点を有す
る。
In this configuration, when the optical scanner 2 is rotated in the direction of the arrow A, the light beam moves over the wafer 6 in the direction of the arrow a in the figure. When the light beam moves and hits the mark 7, diffracted light (L) as shown in the figure is generated and hits the light detector 5, from which a mark signal is output. Since there is a certain relationship between the control input voltage of the optical scanner 2 and the rotation angle, conventionally, mark position information is obtained from the control input voltage of the optical scanner 2 at the time when this mark signal is obtained. By periodically applying a reference control input voltage to the optical scanner 2 and reading the position of the light beam at that time with a position sensor 4, position detection errors due to drift of the optical scanner 2 are corrected. When such a drift correction method is used, the positive control sensor 4 must detect the absolute position with high precision over the entire range in which the light beam drifts. A complex circuit as shown in FIG. 4 must be used. In Fig. 4, 4 is a two-dimensional position sensor, 11.12 is a current-voltage conversion circuit, 13 is a subtracter,
14 is an adder, and 15 is a divider. Here, a high-precision subtractor/2 divider has the disadvantage that it requires matching resistors and a large number of trimmers, the elements are expensive, and it takes time to adjust.

尚、このような構成のポジションセンサ回路においても
周囲温度が変化しポジションセンサ4の暗電流が増加す
ると9割算器15の分母入力(D)だけが変化するため
等測的に割算器のゲインが変化した形となり位置検出誤
差が生じ補正不良となる。
Note that even in a position sensor circuit with such a configuration, if the ambient temperature changes and the dark current of the position sensor 4 increases, only the denominator input (D) of the 9-9 divider 15 will change. The gain changes, resulting in a position detection error and poor correction.

また、定期的にポジションセンサで測定したオプチカル
スキャナのドリフト量はメモリに保存しておき、マーク
検出を行なうたびにこれを読み出して補正演算を行なわ
なければならない不便さがある。
Further, there is an inconvenience in that the amount of drift of the optical scanner periodically measured by the position sensor must be stored in a memory and read out and corrected each time a mark is detected.

(3)発明の目的 本発明はこれらの欠点を解決し、簡単な回路構成により
検出精度の高いマーク検出機を得ることを目的とする。
(3) Object of the Invention The object of the present invention is to solve these drawbacks and provide a mark detector with high detection accuracy using a simple circuit configuration.

(4)発明の構成および作用の説明 ワークピースをウェハー、マークを回折格子マークとし
て以降説明する。半導体製造装置ではウェハーは本来ウ
ェハー上に加工されたマークが装置の座標系で一定の位
置(以後マーク基準位置と称す。)に来るように試料台
の上に設置されねばならないが、ウェハー外形の寸法誤
差や搬送時のブレなどによりウェハーが設置された時マ
ークはマーク基準位置から多少はずれた所に位置してい
る。そこでマーク検出機はマーク基準位置を原点として
実際にマークが存在する座標位置を検出する事になる。
(4) Description of structure and operation of the invention The following description assumes that the workpiece is a wafer and the mark is a diffraction grating mark. In semiconductor manufacturing equipment, a wafer must be placed on a sample stage so that the mark processed on the wafer is at a fixed position in the equipment's coordinate system (hereinafter referred to as the mark reference position). When the wafer is placed, the mark is located at a location slightly deviated from the mark reference position due to dimensional errors or shakes during transportation. Therefore, the mark detector detects the coordinate position where the mark actually exists, using the mark reference position as the origin.

ポジションセンサを位置検出ゼロクロスコンパレータと
して使用する事を説明する前に本発明に使用するポジシ
ョンセンサについて簡単に説明する。ここに使用した素
子は非分割形の半導体装置検出器でたとえば浜松ホトニ
クス製の51544や51545又はUDT社製のPI
N−LSC15D等のものである。これらの検出器では
光の当たった点に生じる光電流が2つの電極に流れ出す
際光の当たった位置から双方の電極までの距離に逆比例
して分流することから2つの電極から流れ出す電流の差
を求めこの差分値から光の当たった位置を知る事ができ
る。しかし、検出器に当たる光量が変化すると位置に対
する光電流の差分も変化するため第2図に示すように加
算器14で光電流の和を求め割算器15で光電流の差分
を光電流の和で割るような回路構成にしなければ光の強
さに無関係に光の当たった位置を検出する事ができない
Before explaining the use of the position sensor as a position detection zero cross comparator, the position sensor used in the present invention will be briefly explained. The element used here is a non-divided type semiconductor device detector, such as 51544 or 51545 manufactured by Hamamatsu Photonics or PI manufactured by UDT.
Such as N-LSC15D. In these detectors, when the photocurrent generated at the point hit by the light flows to the two electrodes, it branches in inverse proportion to the distance from the point hit by the light to both electrodes, so the difference in the current flowing from the two electrodes The position where the light hit can be determined from this difference value. However, as the amount of light hitting the detector changes, the difference in photocurrent with respect to position also changes, so as shown in FIG. Unless the circuit is configured to divide by

また、このような回路構成においても暗電流が変化する
と先に述べたように誤差が生じるのである。
Furthermore, even in such a circuit configuration, if the dark current changes, errors will occur as described above.

本発明ではこのようなポジションセンサの双方の電極の
中心に(以後0点と称す)に光が当たる流れる事に着目
し第5図に示すような回路を使用し2つの電極から流れ
出す電流の差分の極性のみを出力するゼロクロスコンパ
レータとしてポジションセンサを使用している。第5図
において4゜11、12は第4図と同様で17は電圧コ
ンパレータである。また第6図a、bに第4図及び第5
図に示すそれぞれのポジションセンサ回路における光ビ
ームの当たる位置と出力電圧16.18の関係をそれぞ
れ示す。第6図(a)かられかるように第4図の回路で
は光ビームの当たる位置と出力電圧16はリニアな関係
にあり出力電圧の値から直接光ビームの当たった位置を
読みとる事ができるがポジションセンサ4の暗電流が増
加すると点線で示すように入出力関係が変化して検出位
置誤差が生じる。
In the present invention, we focus on the fact that light hits the center of both electrodes of such a position sensor (hereinafter referred to as the 0 point), and we use a circuit as shown in Figure 5 to calculate the difference between the currents flowing from the two electrodes. A position sensor is used as a zero-cross comparator that outputs only the polarity of the In FIG. 5, 4 degrees 11 and 12 are the same as in FIG. 4, and 17 is a voltage comparator. In addition, Figures 4 and 5 are shown in Figures 6a and 6b.
The relationship between the position of the light beam and the output voltage 16.18 in each position sensor circuit shown in the figure is shown. As can be seen from Fig. 6(a), in the circuit of Fig. 4, there is a linear relationship between the position hit by the light beam and the output voltage 16, and the position hit by the light beam can be directly read from the value of the output voltage. When the dark current of the position sensor 4 increases, the input/output relationship changes as shown by the dotted line, resulting in a detected position error.

一方第5図の回路を使用すると(第6図(b)の場合)
出力電圧から光ビームの当たった位置を知る事はできな
いが光ビームがポジションセンサ上を移動して0点を通
過した瞬間を出力電圧の変化で知る事ができこの0点の
位置は入射光量や暗電滓の!に側車されず堂に正確に給
出する車がで缶る。そこで光ビームがマーク基準位置に
ある時、ポジションセンサの0点に光ビームが当たるよ
うにポジションセンサを取り付けると光ビームをスキャ
ンする際、オプチカルスキャナがどのようにドリフトし
ても光ビームがマーク基準位置を通過する瞬間をポジシ
ョンセンサの0点検出によりいつも正確に検出できる。
On the other hand, if the circuit shown in Fig. 5 is used (in the case of Fig. 6 (b))
Although it is not possible to determine the position where the light beam hits from the output voltage, the moment when the light beam moves on the position sensor and passes the 0 point can be determined by the change in the output voltage.The position of this 0 point can be determined by the amount of incident light or Dark electric slag! It is possible to have a car that feeds accurately without being sidecared. Therefore, if the position sensor is installed so that the light beam hits the zero point of the position sensor when the light beam is at the mark reference position, the light beam will stay at the mark reference position no matter how the optical scanner drifts when scanning the light beam. The moment when the object passes through the position can always be accurately detected by detecting the zero point of the position sensor.

上記ゼロクロスコンパレータを用い光ビームを等速度で
スキャンさせ該ゼロクロスコンパレータのO点検出時刻
からマーク信号検出時刻までの時間差を測定し、マーク
基準位置から実際のマークの位置までの距離を知る本発
明のマーク検出機の一実施例を第1図に示す。第1図で
4.11.12のブロックは第5図と同じまた5は“第
3図に示した光ディテクタである。18は11.12と
同様の電流電圧変換回路、19はピークコンパレータ、
20は時差信号発生回路、21は基準クロック発生回路
、22はANDゲート、23はカウンターである。
According to the present invention, the distance from the mark reference position to the actual mark position is determined by scanning the light beam at a constant speed using the zero cross comparator and measuring the time difference between the O point detection time of the zero cross comparator and the mark signal detection time. An embodiment of the mark detector is shown in FIG. In FIG. 1, blocks 4, 11, and 12 are the same as in FIG. 5, and 5 is the photodetector shown in FIG.
20 is a time difference signal generation circuit, 21 is a reference clock generation circuit, 22 is an AND gate, and 23 is a counter.

第2図は第1図に示すブロック図の各所に於ける信号波
形を表す波形図である。第2図に於いて(A)〜(F)
の信号波形を横軸をすべてビーム位置(〜オプチカルス
キャナの回転軸)にとって示した。
FIG. 2 is a waveform diagram showing signal waveforms at various locations in the block diagram shown in FIG. 1. In Figure 2 (A) to (F)
All signal waveforms are shown with the horizontal axis representing the beam position (~rotation axis of the optical scanner).

オプチカルスキャナに制御信号を与えてビームをスキャ
ンすると電圧コンパレータ17の出力に第2図(A)の
ような信号が現れる事は第6図(b)に示した通りであ
るが、電流電圧変換回路18の出力からはマークの位置
に応じて第2図(B)のような信号が得られ同図中Er
rと記した長さがマーク基準位置から実際のマーク位置
までの誤差量である。マーク信号(B)はピークコンパ
レータ19に入りマーク位置信号(第2図(C))の形
に変形された後基準位置信号(A)と共に時差信号発生
回路20に入力される。
When a control signal is given to the optical scanner to scan the beam, a signal like that shown in FIG. 2 (A) appears at the output of the voltage comparator 17, as shown in FIG. 6 (b). From the output of 18, a signal as shown in Fig. 2 (B) is obtained depending on the position of the mark, and Er
The length marked r is the amount of error from the mark reference position to the actual mark position. The mark signal (B) enters the peak comparator 19, is transformed into a mark position signal (FIG. 2(C)), and is then input to the time difference signal generation circuit 20 together with the reference position signal (A).

時差信号発生回路20は2つの入力信号(A)と(C)
の時間差のパルス(D)を出力すると同時にどちらの信
号が先に入力されたかを示すフラグ(24)を出力する
。これはマーク位置誤差の極性に対応するものである。
The time difference signal generation circuit 20 receives two input signals (A) and (C).
At the same time, it outputs a flag (24) indicating which signal was input first. This corresponds to the polarity of the mark position error.

基準クロック発生回路21から出力される基準クロック
は時差信号(D)を距離情報に換算する為のものでAN
Dゲート22により時差信号(D)の間だけ出力される
パルストレイン(F)となってカウンター23に入りこ
こで位置誤差としてカウントされる。
The reference clock output from the reference clock generation circuit 21 is for converting the time difference signal (D) into distance information.
The pulse train (F) is output by the D gate 22 only during the time difference signal (D), and enters the counter 23, where it is counted as a position error.

この回路(第1図)を使用すると1回のスキャン終了時
に基準位置から実際のマーク位置までの誤差量の絶対値
がカウンター23にまた誤差の極性が時差信号発生回路
20のフラグ24にセントされている。
When this circuit (Fig. 1) is used, at the end of one scan, the absolute value of the error amount from the reference position to the actual mark position is sent to the counter 23, and the polarity of the error is sent to the flag 24 of the time difference signal generation circuit 20. ing.

尚、第3図は1次元マーク検出の例であるがオプチカル
スキャナをもう1組追加しポジションセンサを2次元の
ものに交換すると2次元のマーク検出機を実現する事が
できる。この場合1次元に比ベポジションセンサのリニ
アリティそのものも悪くなり周辺の回路も2倍必要にな
る事から本発明を実施するメリットはさらに拡大される
Although FIG. 3 is an example of one-dimensional mark detection, a two-dimensional mark detector can be realized by adding another set of optical scanners and replacing the position sensor with a two-dimensional one. In this case, the linearity of the position sensor itself becomes poor compared to one-dimensional one, and twice as many peripheral circuits are required, so that the merits of implementing the present invention are further expanded.

また本発明ではオプチカルスキャナを等速度で駆動しな
ければならないが、オプチカルスキャナ駆動するのが一
般的でありこの事は何らデメリットとはならない。
Further, in the present invention, the optical scanner must be driven at a constant speed, but since optical scanners are generally driven, this does not present any disadvantage.

(5)効果の説明 以上説明したように本発明によれば従来技術の主な誤差
の要因であったポジションセンサの非直線誤差、暗電流
変化による誤差、割り算器の誤差のすべてを取り除く事
ができ位置検出精度を大幅に向上させることができるだ
けでなく回路を簡素化する事ができる。
(5) Description of Effects As explained above, according to the present invention, it is possible to eliminate all of the main error causes of the conventional technology: non-linear errors of the position sensor, errors due to changes in dark current, and errors of the divider. This not only greatly improves the position detection accuracy but also simplifies the circuit.

さらに本発明により検出されるマークの位置にはオプチ
カルスキャナのドリフトが影響していないので測定後補
正計算をする必要はまったくなくこの面でも多いに有利
である。
Furthermore, since the position of the mark detected by the present invention is not affected by the drift of the optical scanner, there is no need to perform correction calculations after measurement, which is also very advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図。 第2図は第1図に示すブロック図の各所に於ける信号波
形図、第3図は本発明によるマーク位置検出装置の概略
図、第4図は従来のマーク位置検出回路、第5図はポジ
ションセンサ及びコンパレー−人位置と出力電圧の関係
を示す特性図である。 (主要部分の符号の説明) l・・・レーザー 2・・・オプチカルスキャナ 4・・・ポジションセンサ 5・・・光デイテクタ− 7・・・回折格子マーク 11.12・・・電流電圧変換回路 17・・・コンパレータ 21・・・基準クロック発生回路 23・・・カウンター
FIG. 1 is a block diagram showing one embodiment of the present invention. 2 is a diagram of signal waveforms at various points in the block diagram shown in FIG. 1, FIG. 3 is a schematic diagram of a mark position detection device according to the present invention, FIG. 4 is a conventional mark position detection circuit, and FIG. It is a characteristic diagram which shows the relationship between a position sensor and a comparator-person position, and an output voltage. (Explanation of symbols of main parts) l...Laser 2...Optical scanner 4...Position sensor 5...Optical detector 7...Diffraction grating mark 11.12...Current-voltage conversion circuit 17 ... Comparator 21 ... Reference clock generation circuit 23 ... Counter

Claims (1)

【特許請求の範囲】[Claims] マークを施したワークピース上を光ビームによって等速
掃引するスキャナとポジションセンサ及びコンパレータ
ーよりなり、前記マークからの反射光を受ける様配設し
たゼロクロスコンパレーターと、マーク中心検出手段と
、前記ゼロクロスコンパレーターの出力と前記マーク中
心検出手段の出力との時間差を測定するタイマーとを備
えることを特徴とするマーク検出機。
It consists of a scanner that sweeps a marked workpiece at a constant speed with a light beam, a position sensor, and a comparator, a zero-cross comparator arranged to receive reflected light from the mark, a mark center detection means, and a zero-cross A mark detector comprising: a timer for measuring the time difference between the output of the comparator and the output of the mark center detection means.
JP6554385A 1985-03-29 1985-03-29 Mark detector Expired - Lifetime JPH0617770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6554385A JPH0617770B2 (en) 1985-03-29 1985-03-29 Mark detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6554385A JPH0617770B2 (en) 1985-03-29 1985-03-29 Mark detector

Publications (2)

Publication Number Publication Date
JPS61223603A true JPS61223603A (en) 1986-10-04
JPH0617770B2 JPH0617770B2 (en) 1994-03-09

Family

ID=13290035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6554385A Expired - Lifetime JPH0617770B2 (en) 1985-03-29 1985-03-29 Mark detector

Country Status (1)

Country Link
JP (1) JPH0617770B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204106A (en) * 1990-11-30 1992-07-24 Shimadzu Corp Optical displacement gage camera
WO2007097350A1 (en) * 2006-02-21 2007-08-30 Nikon Corporation Position measuring device and position measuring method, mobile body driving system and mobile body driving method, pattern forming device and pattern forming method, exposure device and exposure method, and device manufacturing method
JP2016085205A (en) * 2014-10-27 2016-05-19 セイコーエプソン株式会社 Position detection device, electronic apparatus, recording device, robot, and position detection method
JP2022539968A (en) * 2019-07-08 2022-09-14 エーエスエムエル ネザーランズ ビー.ブイ. Method, sensor and stage apparatus for determining center of radiation spot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204106A (en) * 1990-11-30 1992-07-24 Shimadzu Corp Optical displacement gage camera
WO2007097350A1 (en) * 2006-02-21 2007-08-30 Nikon Corporation Position measuring device and position measuring method, mobile body driving system and mobile body driving method, pattern forming device and pattern forming method, exposure device and exposure method, and device manufacturing method
JP2016085205A (en) * 2014-10-27 2016-05-19 セイコーエプソン株式会社 Position detection device, electronic apparatus, recording device, robot, and position detection method
JP2022539968A (en) * 2019-07-08 2022-09-14 エーエスエムエル ネザーランズ ビー.ブイ. Method, sensor and stage apparatus for determining center of radiation spot
US11982948B2 (en) 2019-07-08 2024-05-14 Asml Netherlands B.V. Method for determining a center of a radiation spot, sensor and stage apparatus

Also Published As

Publication number Publication date
JPH0617770B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
EP0790484B1 (en) Horizontal position error correction mechanism for electronic level
US20070021939A1 (en) Method for generating a control output for a position control loop
JPS60170710A (en) Correcting device for error in measured angle
US4484069A (en) Apparatus and method for sensing distance
US4751383A (en) Method and apparatus for detection of position with correction of errors caused by errors in scale pitch
US5067089A (en) Device having signal interpolation circuit and displacement measuring apparatus comprising the device
JPS61223603A (en) Mark detecting machine
JP4580060B2 (en) Scanning unit of optical position measuring device
US6351312B1 (en) Interference-type distance measuring device
US7087888B2 (en) Electrical division circuit for an optical encoder
JP3085341B2 (en) Outline measuring device and method of arranging object to be measured
JPH0259520B2 (en)
Hao et al. Application of laser diode fiber alignment in measuring large-scale perpendicularity and parallelism
SU1439398A1 (en) Photoelectric method and apparatus for measuring displacement of radiator
JPH05209717A (en) Position detector signal processing circuit for semiconductor
JP2986023B2 (en) Displacement sensor
JP2884117B2 (en) Dimension measuring device
JPH0355048Y2 (en)
JPH0460526B2 (en)
Santhanakrishnan et al. Calibration of angular motion of a scanning mirror mechanism using a lateral-effect position-sensitive photodetector
JPS61120908A (en) Mark position detecting apparatus
SU170177A1 (en)
JPH0378561B2 (en)
JPS586885B2 (en) Incident angle measuring device
JPH07107483B2 (en) Optical displacement measuring device