JPH04204106A - Optical displacement gage camera - Google Patents

Optical displacement gage camera

Info

Publication number
JPH04204106A
JPH04204106A JP2335543A JP33554390A JPH04204106A JP H04204106 A JPH04204106 A JP H04204106A JP 2335543 A JP2335543 A JP 2335543A JP 33554390 A JP33554390 A JP 33554390A JP H04204106 A JPH04204106 A JP H04204106A
Authority
JP
Japan
Prior art keywords
light
test piece
camera
amount
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2335543A
Other languages
Japanese (ja)
Other versions
JPH07101169B2 (en
Inventor
Nario Shibata
柴田 就生
Yoichi Yamada
洋一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2335543A priority Critical patent/JPH07101169B2/en
Publication of JPH04204106A publication Critical patent/JPH04204106A/en
Publication of JPH07101169B2 publication Critical patent/JPH07101169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly-precise measurement of displacement of a material of which a change in the shape is small, by a construction wherein an optical imaging system which images a light flux from a reference on an object of measurement on a prescribed focal plane and a semiconductor position detector are held in a case being immovable in relation to the object of measurement. CONSTITUTION:A camera 10 is constructed of light sources 11 applying light to bench marks MK, optical imaging systems 12 imaging reflected light fluxes from the marks MK on prescribed focal planes, semiconductor position detectors 13 sensing the reflected light fluxes and outputting voltage signals corresponding to light-sensing positions, and cases 14 accommodating the optical systems 12 and the detectors 13 and being immovable in relation to a test piece TP. A beam light from the light source 11 is applied onto the test piece TP and the mark MK is imaged on the detector 13. Next, in the detector 13, the amount of movement of the mark MK is computed from a terminal voltage obtained sequentially and from a voltage value before a test. The amount of displacement of the test piece TP can be computed from the amount of movement of this mark MK.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、試験片の伸び量などを計測するための光学式
変位計カメラに関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an optical displacement meter camera for measuring the amount of elongation of a test piece.

B、従来の技術 第3図は、照明用光源21と、光電変換素子であるCC
D22と、結像光学系23とを備え、CCD22により
試験片TPの標線マークMKを検出する従来の光学式変
位計カメラ20を示す、ここで、CCD22における標
線マークの結像位置を示す信号は、制御回路31゛に入
力され、制御回路31は、光学式カメラ20をパルスモ
ータ33により追跡制御する。すなわ−ち、上記結像位
置がCCD22上で常時同一位置となるようモータ駆動
回路32を介してパルスモータ33により光学式カメラ
20を駆動制御する。また制御回路31は、パルスモー
タ33のパルス数に基づいて伸び量を演算し、表示駆動
回路34を介して表示部35に表示する。このようにカ
メラ20を伸びに追動させるのは、試験片TPの変位量
がCCD 20の測定範囲よりも大きいゴムなどの材料
を試験する場合である。金属材料のように弾性係数が高
く変位量が小さい場合、すなわちCCD20の測定範囲
よりも変位量が小さい場合には、カメラ2゜を変位に追
動させる必要はない。
B. Conventional technology FIG. 3 shows an illumination light source 21 and a CC which is a photoelectric conversion element.
A conventional optical displacement meter camera 20 is shown, which includes a D22 and an imaging optical system 23, and detects a gauge mark MK on a test piece TP by a CCD 22. Here, the imaging position of the gauge mark on the CCD 22 is shown. The signal is input to a control circuit 31', and the control circuit 31 controls tracking of the optical camera 20 using a pulse motor 33. That is, the optical camera 20 is driven and controlled by the pulse motor 33 via the motor drive circuit 32 so that the image formation position is always the same on the CCD 22. The control circuit 31 also calculates the amount of elongation based on the number of pulses of the pulse motor 33 and displays it on the display section 35 via the display drive circuit 34. The camera 20 follows the elongation in this way when testing a material such as rubber, in which the amount of displacement of the test piece TP is larger than the measurement range of the CCD 20. When the elastic modulus is high and the amount of displacement is small, such as a metal material, that is, when the amount of displacement is smaller than the measurement range of the CCD 20, it is not necessary to make the camera 2° follow the displacement.

C0発明が解決しようとする課題 しかしながら、従来のCODを使用する光学式変位計カ
メラでは、CODの分解能が低いので、金属材料のよう
に弾性係数が高く変位量の小さい材料の変位測定精度が
低くく、実質上測定できないという問題がある。
Problems to be solved by the C0 invention However, since the resolution of the COD is low in conventional optical displacement meter cameras that use COD, the displacement measurement accuracy for materials with high elastic modulus and small displacement such as metal materials is low. The problem is that it is difficult to measure and is virtually impossible to measure.

また、従来の変位計カメラにあっては、一対の標線マー
クごとにそれぞれ1台づつ必要であり、コンパクト化並
びに低コスト化が充分でない。
Further, in the conventional displacement meter camera, one camera is required for each pair of gauge line marks, and it is not possible to sufficiently reduce the size and cost of the camera.

本発明の目的は、弾性係数の高い変形量の小さい材料で
も精度よくその変位を測定でき、また、小型化が容易な
光学式変位計カメラを提供することにある。
An object of the present invention is to provide an optical displacement meter camera that can accurately measure the displacement of a material with a high elastic modulus and a small amount of deformation, and that can be easily miniaturized.

00課題を解決するための手段 一実施例を示す第1図に対応づけて本発明を説明すると
、請求項1の発明は、測定対象上の基準点MKからの光
束を所定焦平面上に結像させる結像光学系12と、所定
焦平面上に配置され上記光束を受光してその受光位置に
応じた電圧信号を出力する半導体装置検出器13と、結
像光学系12および半導体装置検出器13を収容し、試
験時は測定対象に対して不動のケース14とを具備する
ことにより、上記目的を達成する。
The present invention will be explained in conjunction with FIG. 1 showing an embodiment of the invention. an imaging optical system 12 for imaging; a semiconductor device detector 13 disposed on a predetermined focal plane for receiving the light beam and outputting a voltage signal according to the receiving position; the imaging optical system 12 and the semiconductor device detector The above object is achieved by providing a case 14 that accommodates the casing 13 and is immovable relative to the measurement target during testing.

また、一実施例である第2図に対応づけて本発明を説明
すると、請求項2の発明は、測定対象上の一対の基準点
MKU、MKLからの光束を所定焦平面上にそれぞれ結
像させる一対の結像光学系112U、112Lと、所定
焦平面上に配置され上記光束をそれぞれ受光してその受
光位置に応じた信号を出力する単一の光電変換素子11
3と、結像光学系112U、112Lおよび光電変換素
子113を収容するケース114とを具備することによ
り、上記目的を達成する。
Further, the present invention will be explained in conjunction with FIG. 2 which is an embodiment. a pair of imaging optical systems 112U and 112L, and a single photoelectric conversion element 11 that is arranged on a predetermined focal plane and receives each of the light beams and outputs a signal according to the light receiving position.
3 and a case 114 that accommodates the imaging optical systems 112U and 112L and the photoelectric conversion element 113, the above object is achieved.

E0作用 一請求項1− 試験片TPの標線マークMKなどの基準点からの反射光
束は結像光学系12で半導体装置検出器13上に結像さ
れる。半導体装置検出器13は受 −光位置に応じた電
圧を出力端子に出力するから、それら出力電圧に基づい
て基準点の移動量を検出でき、以て、8@定対象の基準
点の変位量が演算可能となる。そして、半導体装置検出
器はCCDに比べて分解能が高いので、微小変位を精度
よく測定できる。
E0 Effect - Claim 1 - The reflected light beam from a reference point such as the gauge line mark MK of the test piece TP is imaged on the semiconductor device detector 13 by the imaging optical system 12. Since the semiconductor device detector 13 outputs a voltage corresponding to the light receiving position to the output terminal, the amount of movement of the reference point can be detected based on these output voltages. becomes computable. Furthermore, since the semiconductor device detector has a higher resolution than a CCD, it is possible to measure minute displacements with high precision.

一請求項2− 一対の基準点の各光束は単一の光電変換素子11上にそ
れぞれ結像し、試験片TPの変形に応じてその結像位置
が変動する。このような結像位置の変動に伴う光電変換
素子113の出力信号から、試験片TPの変位量を検出
する。
Claim 2 - Each of the light beams from the pair of reference points forms an image on a single photoelectric conversion element 11, and the image forming position changes according to the deformation of the test piece TP. The amount of displacement of the test piece TP is detected from the output signal of the photoelectric conversion element 113 accompanying such a change in the imaging position.

なお、本発明の詳細な説明する上記り項およびE項では
、本発明を分かり易くするために実施例の図を用いたが
、これにより本発明が実施例に限定されるものではない
In the above-mentioned sections and section E, which describe the present invention in detail, figures of embodiments are used to make the present invention easier to understand, but the present invention is not limited to the embodiments.

F、実施例 本発明に係る光学式変位計カメラの構成を示す第1図に
基づいて本発明の一実施例を説明する。
F. Embodiment An embodiment of the present invention will be described based on FIG. 1 showing the configuration of an optical displacement meter camera according to the present invention.

10A、IOB (U下、10で代表さセル)は一対の
光学式変位計カメラであり、試験片TP上に設けられた
一対の標線マークMKに対しそれぞれ対向するように設
置される。カメラ10は、標線マークMKに光を照射す
る光源11(ハロゲンランプや、半導体レーザーなど)
と、高輝度な標線マークMKの反射光束を所定焦平面上
に結像させる結像光学系12と、所定焦平面上に配置さ
れ反射光束を受光してその受光位置に応じた電圧信号を
両端子に出力する半導体装置検出器(PSD)13と、
結像光学系12および半導体装置検出器13を収容し、
試験時は試験片TPに対して不動のケース14とから構
成される。なお、試験片TPの標線間距離に応じて一対
のカメラIOA、10Bの位置は調節できる構成になっ
ている。
10A and IOB (under U, cell represented by 10) are a pair of optical displacement meter cameras, which are installed so as to face a pair of gauge line marks MK provided on the test piece TP, respectively. The camera 10 includes a light source 11 (a halogen lamp, a semiconductor laser, etc.) that irradiates light onto the gauge mark MK.
an imaging optical system 12 that forms an image of the reflected light beam from the high-intensity gauge mark MK on a predetermined focal plane; a semiconductor device detector (PSD) 13 outputting to both terminals;
housing an imaging optical system 12 and a semiconductor device detector 13;
It consists of a case 14 that does not move with respect to the test piece TP during testing. Note that the positions of the pair of cameras IOA and 10B can be adjusted according to the distance between the gauge lines of the test piece TP.

このように構成された一対の光学式変位計カメラ10に
よる変位検出は次のように行なわれる。
Displacement detection by the pair of optical displacement meter cameras 10 configured as described above is performed as follows.

光源11からの光はビーム光として試験片TP上に照射
される。結像光学系12の光軸は各標線マークMKに軸
が合わされており、高輝度の標線マークMKは、結像光
学系12で半導体装置検出器13上に結像される。半導
体装置検出器13の両端端子からは、周知のように受光
位置に応じた電圧信号が取り出され、その受光位置は試
験片TPの伸びに応じて変化する。そこで、試験前の両
端子の電圧値を記憶しておき、試験開始にともなって試
験片TPが伸びるときに逐次得られる端子電圧と試験前
の電圧値とから標線マークMKの移動量を演算する。試
験片TPの変形により上下のSt線マークMKは同一方
向に異なった量だけ移動するから、一対のカメラIOA
、IOBに設けられた半導体装置検出器13それぞれの
端子電圧に基づいて求められた各標線移動量により、試
験片TPの変位量を演算することができる。
Light from the light source 11 is irradiated onto the test piece TP as a beam of light. The optical axis of the imaging optical system 12 is aligned with each of the gauge marks MK, and the high-intensity gauge marks MK are imaged by the imaging optical system 12 onto the semiconductor device detector 13 . As is well known, a voltage signal corresponding to the light receiving position is extracted from both end terminals of the semiconductor device detector 13, and the light receiving position changes according to the elongation of the test piece TP. Therefore, the voltage values of both terminals before the test are memorized, and the amount of movement of the gauge line mark MK is calculated from the terminal voltages obtained sequentially when the test piece TP is stretched with the start of the test and the voltage values before the test. do. Because the upper and lower St line marks MK move by different amounts in the same direction due to the deformation of the test piece TP, the pair of cameras IOA
, the amount of displacement of the test piece TP can be calculated based on the amount of movement of each gauge line determined based on the terminal voltage of each of the semiconductor device detectors 13 provided in the IOB.

試験片TPの弾性係数が高く変形量が小さいので、標線
からの反射光束は半導体装置検出器13の測定範囲内で
移動し、したがって、カメラ1゜を変位量に応じて追動
する必要がなく、変位計カメラの簡素化が図られる。ま
た、半導体装置検出器13の分解能は、電荷結合型光電
変換素子(CCD)の分解能よりも高いから、微小変位
量の測定を高精度で行なうことができる。
Since the elastic modulus of the test piece TP is high and the amount of deformation is small, the reflected light flux from the marked line moves within the measurement range of the semiconductor device detector 13, and therefore it is necessary to follow the camera 1° according to the amount of displacement. Therefore, the displacement meter camera can be simplified. Furthermore, since the resolution of the semiconductor device detector 13 is higher than that of a charge-coupled photoelectric conversion device (CCD), minute displacements can be measured with high precision.

第2図は第2の実施例を示すもので、単一のカメラエ1
0で一対の標線の変位を検出するようにしたものである
FIG. 2 shows a second embodiment, in which a single camera
0, the displacement of a pair of marked lines is detected.

すなわち、単一のケース114内には、一対の光源11
1U、IIILと、一対の結像光学系112U、112
Lと、単一の半導体装置検出器113と、上側の標線マ
ークMKUからの反射光束を半導体装置検出器113に
導く全反射ミラー115と、下側の標線マークMKLか
らの反射光束を半導体装置検出器113に導くハーフミ
ラ−116とを備えている。全反射ミラー115の反射
光束はハーフミラ−116を透過して半導体装置検出器
113上に入射されるが、無負荷状態のときに、上下の
標線マークMKU、MKLの各反射光束が半導体装置検
出器113上の同一の地点に入射するように光学系が設
定されている。別々の地点に入射させてもよい。
That is, within a single case 114, a pair of light sources 11 are provided.
1U, IIIL, and a pair of imaging optical systems 112U, 112
L, a single semiconductor device detector 113, a total reflection mirror 115 that guides the reflected light flux from the upper gauge line mark MKU to the semiconductor device detector 113, and a total reflection mirror 115 that guides the reflected light flux from the lower gauge mark MKL to the semiconductor device detector 113. A half mirror 116 leading to a device detector 113 is provided. The reflected light beam from the total reflection mirror 115 passes through the half mirror 116 and is incident on the semiconductor device detector 113, but when there is no load, each reflected light beam from the upper and lower gauge marks MKU and MKL is detected by the semiconductor device detector. The optical system is set so that the light is incident on the same point on the vessel 113. It may be made to enter at different points.

試験しこ先立って、半導体装置検出器113の両端子電
圧を読す込んで記憶する。試験片TPに引っ張り荷重を
与えると試験片TPが伸び、各標線マークMKU、MK
Lが移動し、半導体装置検出器113上の受光位置が変
化する。上下の標線の伸び量は異なるから、半導体装置
検出器113上で2つの受光位置が伸び量にしたがって
離れる。
Prior to testing, the voltage across both terminals of the semiconductor device detector 113 is read and stored. When a tensile load is applied to the test piece TP, the test piece TP stretches and each gauge line mark MKU, MK
L moves, and the light receiving position on the semiconductor device detector 113 changes. Since the amount of elongation of the upper and lower marked lines is different, the two light receiving positions on the semiconductor device detector 113 are separated according to the amount of elongation.

その時の半導体装置検出器113の一対の端子電圧の変
動を測定することにより、試験片TPの伸び量を検出で
きる。
By measuring the fluctuation in the voltage between the pair of terminals of the semiconductor device detector 113 at that time, the amount of elongation of the test piece TP can be detected.

なお次のようにして、一対の端子電圧の変動から伸び量
を求めることができる。まず、基準となる試験片に対し
て引っ張り荷重を与え、別途設けた伸び計で試験片の伸
びを正確に検出する。そして、この検出値を半導体装置
検出器113の両端子電圧と対応づけ、これにより基準
バックデータを作成する。このパックデータと試験時の
一対の両端子電圧の変動を突き合せて試験片の伸び量と
を求めることができる。
Note that the amount of elongation can be determined from the fluctuation of the voltage between the pair of terminals in the following manner. First, a tensile load is applied to a reference test piece, and the elongation of the test piece is accurately detected using a separately installed extensometer. Then, this detected value is associated with the voltage across both terminals of the semiconductor device detector 113, thereby creating reference back data. The amount of elongation of the test piece can be determined by comparing this pack data with the fluctuation of the voltage across the pair of terminals during the test.

この実施例では、半導体装置検出器113が1つでよく
、コンパクトなカメラを提供できる。なお、この第2の
実施@bこあっては、電荷結合型光電変換素子の分解能
が今後向上すれば、半導体装置検出器に代えて電荷結合
型光電変換素子を使用し、微小伸び量を高精度に検出で
きる。精度をそれほど望まないならば、現在入手できる
電荷結合型光電変換素子を使用してもよい。
In this embodiment, only one semiconductor device detector 113 is required, and a compact camera can be provided. Note that in this second implementation @b, if the resolution of charge-coupled photoelectric conversion elements improves in the future, a charge-coupled photoelectric conversion element will be used instead of a semiconductor device detector, and the amount of minute elongation will be increased. Can be detected accurately. If high accuracy is not desired, currently available charge-coupled photoelectric conversion elements may be used.

また以上では、カメラ側に照明用光源を一体的に設けた
が、カメラのケースとは別に設けてもよく、さらには、
試験片の標線位置に光源を設け、この光源の位置を光電
変換素子で検出するようにしてもよい。さらにまた、圧
縮試験機の圧盤など、材料試験機の治具に同様の光源を
設けてもよい。
Furthermore, in the above description, the illumination light source is integrally provided on the camera side, but it may also be provided separately from the camera case.
A light source may be provided at the marked line position of the test piece, and the position of this light source may be detected by a photoelectric conversion element. Furthermore, a similar light source may be provided in a jig of a material testing machine, such as a platen of a compression testing machine.

G6発明の詳細 な説明したように請求項1の発明によれば、弾性係数が
高く変位量が微小の試験片に対して高精度でその変位量
を測定できる。
As described in detail of the G6 invention, according to the invention of claim 1, the amount of displacement of a test piece having a high elastic modulus and a minute amount of displacement can be measured with high accuracy.

また、請求項2の発明によれば、一対の光束を単一の光
電変換素子上に導くようにしたので、コンパクトで廉価
な変位計カメラを提供できる。
Further, according to the second aspect of the invention, since the pair of light beams are guided onto a single photoelectric conversion element, it is possible to provide a compact and inexpensive displacement meter camera.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光学式変位計カメラの第1実施例
の構成を示す構成図、第2図は本発明に係る光学式変位
計カメラの第2実施例の構成を示す構成図、第3図は従
来例を示す図である。 10、IOA、IOB、110:光学式変位計カメラ1
1、IIITJ、IIIL:光源 12.112U、112L:結像光学系13.113:
半導体装置検出器 14.114:ケース 115:全反射ミラー 116:ハーフミラ−TP:試験片 MK、MKU、MKL :標線マーク 特許出願人  株式会社島津製作所 代理人 弁理士   永 井 冬 紀 第1図 第2図 14L
FIG. 1 is a configuration diagram showing the configuration of a first embodiment of the optical displacement meter camera according to the present invention, FIG. 2 is a configuration diagram showing the configuration of the second embodiment of the optical displacement meter camera according to the present invention, FIG. 3 is a diagram showing a conventional example. 10, IOA, IOB, 110: Optical displacement meter camera 1
1, IIITJ, IIIL: Light source 12.112U, 112L: Imaging optical system 13.113:
Semiconductor device detector 14.114: Case 115: Total reflection mirror 116: Half mirror TP: Test piece MK, MKU, MKL: Marking line mark Patent applicant Shimadzu Corporation Representative Patent attorney Fuyuki Nagai Figure 1 2 figure 14L

Claims (1)

【特許請求の範囲】 1)測定対象上の基準点からの光束を所定焦平面上に結
像させる結像光学系と、前記所定焦平面上に配置され前
記光束を受光してその受光位置に応じた電圧信号を出力
する半導体位置検出器と、前記結像光学系および半導体
装置検出器を収容し、試験時は測定対象に対して不動の
ケースとを具備することを特徴とする光学式変位計カメ
ラ。 2)測定対象上の一対の基準点からの光束を所定焦平面
上にそれぞれ結像させる一対の結像光学系と、前記所定
焦平面上に配置され前記光束をそれぞれ受光してその受
光位置に応じた信号を出力する単一の光電変換素子と、
前記結像光学系および光電変換素子を収容するケースと
を具備することを特徴とする光学式変位計カメラ。
[Scope of Claims] 1) An imaging optical system that forms an image of a light beam from a reference point on a measurement object onto a predetermined focal plane; an optical displacement device comprising: a semiconductor position detector that outputs a corresponding voltage signal; and a case that houses the imaging optical system and the semiconductor device detector and is immovable with respect to the measurement target during testing. meter camera. 2) a pair of imaging optical systems that respectively form images of light beams from a pair of reference points on the measurement object onto a predetermined focal plane; and a pair of imaging optical systems that are arranged on the predetermined focal plane and receive each of the light beams and move the light beams to the light receiving positions. a single photoelectric conversion element that outputs a corresponding signal,
An optical displacement meter camera comprising the imaging optical system and a case that houses the photoelectric conversion element.
JP2335543A 1990-11-30 1990-11-30 Optical extensometer Expired - Lifetime JPH07101169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2335543A JPH07101169B2 (en) 1990-11-30 1990-11-30 Optical extensometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2335543A JPH07101169B2 (en) 1990-11-30 1990-11-30 Optical extensometer

Publications (2)

Publication Number Publication Date
JPH04204106A true JPH04204106A (en) 1992-07-24
JPH07101169B2 JPH07101169B2 (en) 1995-11-01

Family

ID=18289756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2335543A Expired - Lifetime JPH07101169B2 (en) 1990-11-30 1990-11-30 Optical extensometer

Country Status (1)

Country Link
JP (1) JPH07101169B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085529A (en) * 2002-06-25 2004-03-18 Matsushita Electric Works Ltd Laser distance-measuring equipment and method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120908A (en) * 1984-11-19 1986-06-09 Nippon Kogaku Kk <Nikon> Mark position detecting apparatus
JPS61223603A (en) * 1985-03-29 1986-10-04 Nippon Telegr & Teleph Corp <Ntt> Mark detecting machine
JPS6281515A (en) * 1985-10-04 1987-04-15 Mitsubishi Electric Corp Clinometer
JPS63308536A (en) * 1987-02-20 1988-12-15 Shimadzu Corp Expansometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120908A (en) * 1984-11-19 1986-06-09 Nippon Kogaku Kk <Nikon> Mark position detecting apparatus
JPS61223603A (en) * 1985-03-29 1986-10-04 Nippon Telegr & Teleph Corp <Ntt> Mark detecting machine
JPS6281515A (en) * 1985-10-04 1987-04-15 Mitsubishi Electric Corp Clinometer
JPS63308536A (en) * 1987-02-20 1988-12-15 Shimadzu Corp Expansometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085529A (en) * 2002-06-25 2004-03-18 Matsushita Electric Works Ltd Laser distance-measuring equipment and method therefor

Also Published As

Publication number Publication date
JPH07101169B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
US4764016A (en) Instrument for measuring the topography of a surface
US4477168A (en) Range finder
US3798449A (en) Automatic microscope focussing device
US5369488A (en) High precision location measuring device wherein a position detector and an interferometer are fixed to a movable holder
JPH10311779A (en) Equipment for measuring characteristics of lens
CN216815958U (en) Lens array image quality testing device
US4993830A (en) Depth and distance measuring system
JPH04204106A (en) Optical displacement gage camera
US4758731A (en) Method and arrangement for aligning, examining and/or measuring two-dimensional objects
EP0157431A1 (en) Procedure to measure the dimensions of a body in movement in a three-dimensional field, and an optoelectronic device to carry out such procedure
JPH08285525A (en) Material testing machine
JP2001280925A (en) Instrument for measuring three-dimensional shape
JP4248536B2 (en) Measuring method and apparatus for mounting position of pixel surface and mat surface in single lens reflex digital camera
JP2672771B2 (en) Through hole inner diameter measuring device
JPH05297437A (en) Camera
JPS5861436A (en) Photodetector of projection type mtf measuring instrument
JPH0723789Y2 (en) Depth tilt detector for optical system
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JP3745056B2 (en) Ranging position adjustment device
JP2022166349A (en) stereo camera
SU1024709A1 (en) Non-flatness checking device
RU2025692C1 (en) Method of measurement of characteristics of optical systems: focal distances and decentering
JP2000009423A (en) Focusing device for optical instrument
JPH0755640A (en) Device and method for measuring focal length of optical system
JPS60105935A (en) Reflectivity measuring apparatus