JP2000009423A - Focusing device for optical instrument - Google Patents

Focusing device for optical instrument

Info

Publication number
JP2000009423A
JP2000009423A JP19232698A JP19232698A JP2000009423A JP 2000009423 A JP2000009423 A JP 2000009423A JP 19232698 A JP19232698 A JP 19232698A JP 19232698 A JP19232698 A JP 19232698A JP 2000009423 A JP2000009423 A JP 2000009423A
Authority
JP
Japan
Prior art keywords
lens
light
amount
inspected
chart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19232698A
Other languages
Japanese (ja)
Inventor
Kanehiro Shimokuri
兼弘 下栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Corp
Original Assignee
Sigma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Corp filed Critical Sigma Corp
Priority to JP19232698A priority Critical patent/JP2000009423A/en
Publication of JP2000009423A publication Critical patent/JP2000009423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Focusing (AREA)
  • Lens Barrels (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a collimator device which has a simple structure, can immediately display the measured value of the out-of-focus amount of a lens to be inspected by only placing the lens without requiring the manual operation of a measuring instrument by a worker, and can maintain high resolution accuracy and from which reading errors are eliminated by displaying the shifting amount of the focal point after converting the amount into an electric signal even when the lens to be inspected is not operated. SOLUTION: The illuminating light from a light source section consisting of a reflecting mirror 1 and a light source 2 irradiates a chart 6 through a diffusing plate 3 and a condenser lens 4. A collimator lens 7 is focused on the chart 6 so that the light emitted from the lens 7 may be emitted as if the chart 6 exists at an infinite point. The light is made incident to a lens 8 to be inspected and an AF sensor unit 9 is set up at the image forming position of the light and irradiated with the light. The sensor unit 9 finds the out-of-focus amount of the lens 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は交換レンズ等の光学
機器におけるピント調整を行うピント調整装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus adjusting device for adjusting the focus of an optical device such as an interchangeable lens.

【0002】[0002]

【従来の技術】従来、交換レンズ等の光学機器のピント
調整装置は、コリメータの対物レンズの焦点位置から出
た平行光束線が試料にあたり、その反射光が再びコリメ
ータに入るとき、焦点付近の像の様子から試料を測定す
る、いわゆるオートコリメーション法を利用したオート
コリメータ装置を用いている。図3はオートコリメータ
装置の構成図で、図において、1が光源2の光を反射す
る反射鏡で、この光源部からの照明光は、拡散板3やコ
ンデンサーレンズ4を介してチャート6を照明する。そ
して、コリメータレンズ7を通した光が被検レンズ8を
通して平面鏡M1で反射され、又被検レンズ8を通して
コリメータレンズ7に戻り、ハーフミラーM2でチャー
ト6と共役な位置に結像する。接眼鏡30で最良のチャ
ート像を捉えられるように、被検レンズ8のヘリコイド
を調整してしている。また、被検レンズ8がズームレン
ズの場合、被検レンズ8をTELEにしてマイクロゲー
ジ31の目盛を零に合わせ(平面鏡M1はマイクロゲー
ジ31で上下移動できる構造になっている)被検レンズ
8のヘリコイドを調整してチャート像のピント出しを行
い、次に被検レンズ8をWIDEにして、再度、チャー
ト像のピントが合うようにマイクロゲージ31を動かし
平面鏡M1を上下させ、その時のマイクロゲージ31の
数値を直読して、焦点位置のズレ量を検出している。
2. Description of the Related Art Conventionally, a focus adjusting device for an optical device such as an interchangeable lens has a collimator which emits a parallel beam of light coming from a focal position of an objective lens of a collimator to a sample. An autocollimator device that uses a so-called autocollimation method to measure a sample from the state described above is used. FIG. 3 is a configuration diagram of the autocollimator device. In the figure, reference numeral 1 denotes a reflecting mirror that reflects light from a light source 2, and illumination light from the light source illuminates a chart 6 via a diffusion plate 3 and a condenser lens 4. I do. The light passing through the collimator lens 7 is reflected by the plane mirror M1 through the lens 8 to be inspected, returns to the collimator lens 7 through the lens 8 to be inspected, and forms an image at a position conjugate with the chart 6 by the half mirror M2. The helicoid of the lens 8 to be inspected is adjusted so that the best chart image can be captured by the eyepiece 30. When the lens 8 to be inspected is a zoom lens, the lens 8 to be inspected is set to TELE and the scale of the micro gauge 31 is adjusted to zero (the plane mirror M1 has a structure that can be moved up and down by the micro gauge 31). The helicoid is adjusted to focus the chart image, then the lens 8 to be inspected is set to WIDE, the micro gauge 31 is moved again so that the chart image is in focus, and the plane mirror M1 is moved up and down. The numerical value of 31 is directly read to detect the shift amount of the focal position.

【0003】また、最近は固体撮像素子とマイクロコン
ピュータの発達により図4に示すように平面鏡M1で反
射した光をハーフミラーM3で固体撮像素子(CCDイ
メージセンサ等)の検知器32に結像させ、焦点位置の
ズレ量を検知器32で電気的に検出している。
Recently, with the development of solid-state imaging devices and microcomputers, light reflected by a plane mirror M1 is focused on a detector 32 of a solid-state imaging device (such as a CCD image sensor) by a half mirror M3 as shown in FIG. The shift amount of the focal position is electrically detected by the detector 32.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来
は、手動で平面鏡と連動しているマイクロゲージを移動
させて、目視で合焦を確認し、その時のマイクロゲージ
の目盛を直読し、測定値を求める為に個人誤差に大きく
左右されるので作業者は専門職になり、作業の標準化が
困難であった。また、作業工程が複雑である。また、オ
ートコリメーション法を利用した装置に固体撮像素子を
用いる場合も、接眼レンズ付近にハーフミラーを2枚用
いなければならず、装置の構造が複雑になる問題があ
る。
Conventionally, however, the microgauge linked to the plane mirror is manually moved to confirm the focus by visual inspection, the scale of the microgauge at that time is directly read, and the measured value is read. Since it is greatly influenced by individual errors to obtain the data, the worker becomes a professional and it is difficult to standardize the work. Further, the work process is complicated. Also, when a solid-state imaging device is used in a device using the auto-collimation method, two half mirrors must be used in the vicinity of the eyepiece, and there is a problem that the structure of the device becomes complicated.

【0005】本発明の目的は、コリメータ装置の構造が
簡素で、作業者が測定器を手動で操作することなく、焦
点距離のズレ量の測定に位相差方式のAFセンサーユニ
ットを使用して、焦点位置のズレ量を被検レンズを載置
しただけで即時に測定値を表示し、高分解能の精度を可
能にし、被検レンズを動作させなくても焦点位置のズレ
量を電気信号に変換して表示するために読み取り誤差を
無くしたコリメータ装置を提供することにある。
An object of the present invention is to use a phase difference type AF sensor unit for measuring a focal length deviation amount without a manual operation of a measuring device by a simple structure of a collimator device. The displacement of the focal position is displayed immediately by placing the test lens on the target, and the measured value is displayed immediately, enabling high-resolution accuracy.The displacement of the focal position is converted into an electric signal without operating the test lens. It is an object of the present invention to provide a collimator device which eliminates a reading error in order to perform display.

【0006】また、AFセンサーユニットを使用するこ
とで被検レンズを通った光のコントラスト比を測定する
事で解像力の良否、フレアーの有無を検出することがで
きるコリメータ装置を提供することにある。
Another object of the present invention is to provide a collimator device which can detect the quality of the resolving power and the presence or absence of flare by measuring the contrast ratio of light passing through the lens to be inspected by using the AF sensor unit.

【0007】[0007]

【課題を解決するための手段】本発明は、オートコリメ
ータ装置の反射鏡位置に被検レンズの焦点距離のズレ量
の測定に位相差方式のAFセンサーユニットを使用し、
高分解能の精度をデジタル表示で表し読み取り誤差を無
くし、位相差方式のAFセンサーユニットを使用するこ
とで被検レンズを動作させなくても焦点距離のズレ量が
測定が可能で作業工程の削減を行う。また、本発明は、
コントラスト比の測定に位相差方式のAFセンサーユニ
ットを使用することで被検レンズを透過した光量のコン
トラスト比を測定して個人差の読み取り誤差を無くすこ
とができる。
According to the present invention, a phase difference type AF sensor unit is used for measuring the amount of deviation of the focal length of a test lens at the position of a reflecting mirror of an autocollimator device.
High resolution accuracy is represented by digital display, eliminating reading errors and using a phase difference AF sensor unit enables measurement of the focal length deviation amount without operating the lens to be inspected, thus reducing the number of work processes. Do. Also, the present invention
By using a phase difference type AF sensor unit for measuring the contrast ratio, the contrast ratio of the amount of light transmitted through the lens to be measured can be measured to eliminate an error in reading individual differences.

【0008】[0008]

【実施例】以下、図面を参照して本発明のピント調整装
置を説明する。図1は本発明の実施例におけるピント調
整装置の要部構成図、図2は位相差検出AF光学系の構
成図である。図1において、反射鏡1と光源2で構成さ
れる光源部からの照明光は、拡散板3やコンデンサーレ
ンズ4を介してチャート6を照明する。コリメーターレ
ンズ7はその焦点距離をチャート6の位置に置いてあ
り、コリメーターレンズ7を射出した光はチャートがあ
たかも無限遠に位置する構造となっている。この光を測
定しようとする被検レンズ8に入射させ、その結像位置
にAFセンサーユニット9を設置し、それに照射する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a focus adjusting device according to the present invention. FIG. 1 is a configuration diagram of a main part of a focus adjustment device according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of a phase difference detection AF optical system. In FIG. 1, illumination light from a light source unit including a reflecting mirror 1 and a light source 2 illuminates a chart 6 via a diffusion plate 3 and a condenser lens 4. The collimator lens 7 has its focal length at the position of the chart 6, and the light emitted from the collimator lens 7 has a structure in which the chart is located at infinity. The light is made incident on the lens 8 to be measured, an AF sensor unit 9 is installed at the image forming position, and the light is irradiated to the AF sensor unit 9.

【0009】光源2は光束発散度が安定して、色温度も
安定している。コンデンサーレンズ4に照射される光線
は拡散板3によって均一照射される。また、色選択フィ
ルタ5によって選択された波長を使用する事で被検レン
ズ8の色収差の影響を除去する。コリメーターレンズ7
を射出した光は被検レンズ8に照射され、被検レンズ8
の結像点に置かれたAFセンサー内のコンデンサーレン
ズに照射される。
The light source 2 has a stable luminous flux and a stable color temperature. The light beam irradiated to the condenser lens 4 is uniformly irradiated by the diffusion plate 3. In addition, by using the wavelength selected by the color selection filter 5, the influence of the chromatic aberration of the lens 8 to be inspected is removed. Collimator lens 7
Is emitted to the test lens 8, and the test lens 8
Is irradiated on the condenser lens in the AF sensor placed at the image forming point.

【0010】次に図2により、AFセンサー内の構造を
説明する。被検レンズを射出した光線は被検レンズの結
像面にあるAFセンサーのコンデンサーレンズ21に入
射して、コンデンサーレンズ21の射出瞳を光軸の水平
方向に左右二つに分け、各々の光線はAFセンサー内の
絞りマスク22a、22b、22cとセパレーターレン
ズ23a、23bによりAFセンサー内のCCDイメー
ジセンサー24上の二つの領域にそれぞれ再結像させ
る。
Next, the structure inside the AF sensor will be described with reference to FIG. The light beam emitted from the test lens enters the condenser lens 21 of the AF sensor on the imaging surface of the test lens, and the exit pupil of the condenser lens 21 is divided into two right and left parts in the horizontal direction of the optical axis. Re-images two areas on the CCD image sensor 24 in the AF sensor by the aperture masks 22a, 22b, 22c and the separator lenses 23a, 23b in the AF sensor.

【0011】この再結像された像は、合焦時に比べ前ピ
ンでは像間隔が狭くなり、後ピンでは像間隔が広くな
る。このAFセンサー内のCCDイメージセンサー上の
像間隔を検出することで焦点位置が検出できる。
The refocused image has a smaller image interval at the front focus and a larger image interval at the rear focus compared to the in-focus condition. The focus position can be detected by detecting the image interval on the CCD image sensor in the AF sensor.

【0012】CCDイメージセンサー上のフォトダイオ
ードに結像された光信号を電気的に変換し、AF演算回
路部で256の階調にAD変換されたデータをRAMへ
転送し、相関計算を行う。
The optical signal formed on the photodiode on the CCD image sensor is electrically converted, and the data obtained by the A / D conversion into 256 gradations by the AF operation circuit is transferred to the RAM, and the correlation calculation is performed.

【0013】基準部の領域と参照部の領域の相関とし
て、
As a correlation between the area of the reference part and the area of the reference part,

【0014】[0014]

【式1】[Equation 1]

【0015】を計算する。S(l)が最小になるlをl
minに相当する参照部の領域を最も相関度の高い部分
として算出する。lminの値により合焦時からの像間
隔のズレ量が求められる。これまでではCCDのフォト
ダイオードの配列の1ピッチ単位しか求められない。こ
のために補間計算でより精度の高い像間隔のズレ量を求
める。更に求めた補間値にS×Fw/βをかけてデフォ
ーカス量を計算する。デフォーカス量に被検レンズの係
数を掛けるとマウントワッシャー量が算出される。
Is calculated. Let l which minimizes S (l) be l
The region of the reference portion corresponding to min is calculated as the portion having the highest correlation. The amount of deviation of the image interval from the time of focusing is obtained from the value of lmin. Until now, only one pitch unit of the CCD photodiode array has been obtained. For this purpose, a more accurate deviation amount of the image interval is obtained by interpolation calculation. Further, the defocus amount is calculated by multiplying the obtained interpolation value by S × Fw / β. The mount washer amount is calculated by multiplying the defocus amount by the coefficient of the test lens.

【0016】Fwは主光線が光軸となす角で、Fナンバ
ー Fw=(1/2)×(1/tanθ) デフォーカス量とCCD面での量(dとΔl) Δl=d×tanθ=d/2Fw 2次像(つまりAF光学系の倍率β) Δl’=β×l よって、=(β×d)/2F ここでCCD画像1bitの巾をPとして P≡2Δl’とする =(β×d)/F つまりθは光束の主光線が光軸となす角で、Fナンバー
をFwとすると Fw=1/(2×sinθ)・・・・・1) *Fナンバーは最大集光角、最大受光角を表すピントが
ズレているとして、フィルム等価面上で合焦時に比べて
はそれぞれΔlだけ隔たった位置に結像していると考え
られる。此処で光軸のズレ量Δlは Δl=dtanθ≒d/(2×F) で表わされる。
Fw is the angle between the principal ray and the optical axis, and the F number Fw = (1/2) × (1 / tan θ) The amount of defocus and the amount on the CCD surface (d and Δl) Δl = d × tan θ = d / 2Fw Secondary image (that is, magnification β of the AF optical system) Δl ′ = β × l Therefore, = (β × d) / 2F where P is the width of one bit of the CCD image and P≡2Δl ′ = (β × d) / F That is, θ is the angle between the principal ray of the light beam and the optical axis. If the F number is Fw, Fw = 1 / (2 × sin θ) 1) * The F number is the maximum focusing angle Assuming that the focus indicating the maximum light receiving angle is out of focus, it is considered that images are formed at positions separated from each other by Δl on the film equivalent surface as compared with when focusing. Here, the deviation amount Δl of the optical axis is represented by Δl = dtan θ ≒ d / (2 × F).

【0017】次にCCD上の像を考える。これはフィル
ム等価面に出来た像が、セパレータレンズ23a、23
bにより再結像されたものと考えられる。従って、dだ
け前ピンのために発生するCCD上の像の移動量2Δ
l’とdとの関係は、セパレータレンズの倍率をβとす
ると、 Δl’=β×Δlだから、 d=(Fw×2Δl’)/βとなる。
Next, consider the image on the CCD. This is because the images formed on the film equivalent surface are separated by the separator lenses 23a and 23a.
It is considered that the image was re-imaged by b. Therefore, the moving amount 2Δ of the image on the CCD generated for the front focus by d.
The relationship between l ′ and d is d = (Fw × 2Δl ′) / β, assuming that the magnification of the separator lens is β, Δl ′ = β × Δl.

【0018】この式は、CCD上の像間隔の変化が倍率
βとデフォーカス量dに比例し、FナンバーFwに反比
例することを示している。
This equation shows that the change of the image interval on the CCD is proportional to the magnification β and the defocus amount d, and is inversely proportional to the F-number Fw.

【0019】また、像間隔の変化の方向は、前ピンにな
れば狭くなり、後ピンになれば広くなることも示してい
る。此処でCCD上の像の移動量をCCDのピッチ単位
でPとし、CCD1ピッチをsとすると d=(s×Fw×P)/β と表される。
Further, it is also shown that the direction of the change of the image interval becomes narrower at the front focus and wider at the rear focus. Here, assuming that the amount of movement of the image on the CCD is P in CCD pitch units and that the pitch of one CCD is s, d = (s × Fw × P) / β.

【0020】このような演算で被検レンズの焦点位置の
ズレ量を測定し、常数を乗法してスペースワッシャー量
を算出する。
The amount of displacement of the focal position of the lens to be measured is measured by such an operation, and the amount of space washer is calculated by multiplying the constant by a constant.

【0021】ズレ量の測定方法は 1.被検レンズをマウントアダプターに乗せる。 2.TELE側にして、INF位置に合わせ被検レンズ
の焦点距離調整部を動かしてズレ量を規定内に調整す
る。 3.次に被検レンズのズームリングをWIDE側にし
て、ズレ量を測定し、ズレ量に常数を掛けてスペースワ
ッシャ量が算出される。
The method for measuring the amount of deviation is as follows. Place the test lens on the mount adapter. 2. On the TELE side, the shift amount is adjusted within the specified range by moving the focal length adjustment unit of the test lens in accordance with the INF position. 3. Next, the zoom ring of the lens to be inspected is set to the WIDE side, the shift amount is measured, and the shift amount is multiplied by a constant to calculate the space washer amount.

【0022】以上の様に容易にズレ量を測定でき、機械
的に作業を行えるので作業者の個人差はなくなる。
As described above, the amount of deviation can be easily measured, and the operation can be performed mechanically, so that there is no individual difference among operators.

【0023】また、被検レンズの解像力不良におけるコ
ントラスト比の劣化やフレアーによるコントラスト比の
劣化を判別するために図2に示すCCDイメージセンサ
ー24のデータを利用して被検レンズのコントラスト比
を検出する。
Further, in order to determine the deterioration of the contrast ratio due to the poor resolving power of the test lens and the deterioration of the contrast ratio due to flare, the contrast ratio of the test lens is detected by using the data of the CCD image sensor 24 shown in FIG. I do.

【0024】AFセンサー内のCCDイメージセンサー
24は受光素子、レジスター等で構成され、被検レンズ
8を透過した光信号を電気信号に変化して光電変換され
たデータをAF演算回路部10でAD変換で256階調
にし、このデータを制御用CPU回路部11において、
チャートの明部の上限値と暗部の下限値を条件出しし
て、データの2値化処理を行い、被検レンズ8の解像不
良、フレアー等によって、チャートの明部と暗部のコン
トラスト比が劣るので解像力不良、フレアーの有無をコ
ントラスト比の基準規定値と比較する事で被検レンズ8
の良否判定する事ができる。
The CCD image sensor 24 in the AF sensor is composed of a light receiving element, a register, etc., converts an optical signal transmitted through the lens 8 to be detected into an electric signal, and converts the photoelectrically converted data into an AD signal by the AF operation circuit unit 10. The data is converted into 256 gradations.
The upper limit value of the bright portion of the chart and the lower limit value of the dark portion are conditionally determined, and the data is binarized. The contrast ratio between the bright portion and the dark portion of the chart is changed due to poor resolution of the lens 8 to be inspected and flare. Since the resolution is poor, the presence or absence of flare is compared with the reference value of the contrast ratio to determine the lens 8 to be inspected.
Can be determined.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
オートコリメータ装置の平面鏡の位置に位相差方式のA
Fセンサーユニットからなる検知器を具備することによ
り、装置の構造を簡素化でき、焦点位置のズレ量の測定
に位相差方式のAFセンサーユニットを使用したことに
より、高分解能の精度をデジタル表示で表し、読み取り
誤差を無くすことができる。また、位相差方式のAFセ
ンサーユニットを使用することで被検レンズを動作させ
なることなく、焦点位置のズレ量の測定が可能となり作
業工程を削減になる。さらに、位相差方式のAFセンサ
ーユニットを使用することで被検レンズを透過した光量
を測定し、コントラスト比を測定し、被検レンズの解像
力不良、フレアーの有無を判別して個人差の読み取り誤
差を無くすことができる。
As described above, according to the present invention,
The phase difference type A is set at the position of the plane mirror of the autocollimator.
Equipped with a detector consisting of an F sensor unit, the structure of the device can be simplified, and by using a phase difference AF sensor unit to measure the amount of deviation of the focal position, high-resolution accuracy can be digitally displayed. And reading errors can be eliminated. Further, by using the phase difference type AF sensor unit, the amount of deviation of the focal position can be measured without operating the lens to be inspected, thereby reducing the number of working steps. In addition, by using an AF sensor unit of the phase difference method, the amount of light transmitted through the lens to be measured is measured, the contrast ratio is measured, the resolution of the lens to be measured is poor, the presence or absence of flare is determined, and the reading error of the individual difference is determined. Can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるピント調整装置の要部
構成を示す構成図である。
FIG. 1 is a configuration diagram illustrating a main configuration of a focus adjustment device according to an embodiment of the present invention.

【図2】本発明の実施例のAFセンサー部の要部構成を
示す構成図である。
FIG. 2 is a configuration diagram illustrating a main configuration of an AF sensor unit according to the embodiment of the present invention.

【図3】オートコリメータ装置の構成図である。FIG. 3 is a configuration diagram of an autocollimator device.

【図4】検知器を用いたオートコリメータ装置の構成図
である。
FIG. 4 is a configuration diagram of an autocollimator device using a detector.

【符号の説明】[Explanation of symbols]

1 反射鏡 2 光源 3 拡散板 4 コンデンサーレンズ 5 色選択フィルタ 6 チャート 7 コリメータレンズ 8 被検レンズ 9 AFセンサユニット 10 AF演算回路 11 制御用CPU回路 DESCRIPTION OF SYMBOLS 1 Reflecting mirror 2 Light source 3 Diffusing plate 4 Condenser lens 5 Color selection filter 6 Chart 7 Collimator lens 8 Test lens 9 AF sensor unit 10 AF operation circuit 11 Control CPU circuit

【数1】 (Equation 1)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検レンズのピント調整を行うピント調
整装置おいて、焦点位置のズレ量を検知する検知器に位
相差方式のAFセンサーユニットを使用し、コリメータ
レンズと該検出器の間に被検レンズを配置する構成とし
た事を特徴とする光学機器のピント調整装置。
1. A focus adjustment device for adjusting the focus of a lens to be inspected, wherein a phase difference type AF sensor unit is used for a detector for detecting a shift amount of a focal position, and a focus adjustment device is provided between the collimator lens and the detector. A focus adjustment device for an optical device, wherein a lens to be inspected is arranged.
【請求項2】 焦点位置のズレ量を検知する検知器の位
相差方式のAFセンサーユニットを像面照度の検出手段
に兼用した事を特徴とする請求項1に記載の光学機器の
ピント調整装置。
2. The focus adjusting device for an optical device according to claim 1, wherein a phase difference type AF sensor unit of a detector for detecting a shift amount of a focal position is also used as an image plane illuminance detecting means. .
JP19232698A 1998-06-24 1998-06-24 Focusing device for optical instrument Pending JP2000009423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19232698A JP2000009423A (en) 1998-06-24 1998-06-24 Focusing device for optical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19232698A JP2000009423A (en) 1998-06-24 1998-06-24 Focusing device for optical instrument

Publications (1)

Publication Number Publication Date
JP2000009423A true JP2000009423A (en) 2000-01-14

Family

ID=16289436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19232698A Pending JP2000009423A (en) 1998-06-24 1998-06-24 Focusing device for optical instrument

Country Status (1)

Country Link
JP (1) JP2000009423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148694A (en) * 2000-11-07 2002-05-22 Asahi Optical Co Ltd Lens focal position adjusting device
CN108291854A (en) * 2016-03-10 2018-07-17 松下知识产权经营株式会社 Optical detection device, lens and optical inspection
CN111220070A (en) * 2018-11-26 2020-06-02 中国科学院长春光学精密机械与物理研究所 Method for acquiring scattered spots of star point image

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148694A (en) * 2000-11-07 2002-05-22 Asahi Optical Co Ltd Lens focal position adjusting device
CN108291854A (en) * 2016-03-10 2018-07-17 松下知识产权经营株式会社 Optical detection device, lens and optical inspection
CN111220070A (en) * 2018-11-26 2020-06-02 中国科学院长春光学精密机械与物理研究所 Method for acquiring scattered spots of star point image
CN111220070B (en) * 2018-11-26 2022-12-20 中国科学院长春光学精密机械与物理研究所 Method for acquiring scattered spots of star point image

Similar Documents

Publication Publication Date Title
US20030086067A1 (en) Assembly for increasing the depth discrimination of an optical imaging system
JPH11211439A (en) Surface form measuring device
WO1992017805A1 (en) Apparatus for sensing automatic focusing
JP2005098933A (en) Instrument for measuring aberrations
JP2008051576A (en) Shape-measuring apparatus and shape-measuring method
JP4725967B2 (en) Minute height measuring device and displacement meter unit
JP2009109315A (en) Light measuring device and scanning optical system
CN111366088B (en) Laser confocal height measuring method
JP2008026049A (en) Flange focal distance measuring instrument
JP3595117B2 (en) Array element inspection method and array element inspection apparatus
JP2000009423A (en) Focusing device for optical instrument
JP6125131B1 (en) Wavefront measuring device and optical system assembly device
JP2013148437A (en) Focus detection device, wavefront aberration measurement device and lens manufacturing method
JP2003270091A (en) Method and apparatus for measuring wave front aberration in optical system
JP4828737B2 (en) MTF measuring device
JP2001166202A (en) Focus detection method and focus detector
EP1657580A1 (en) Optical device for determining the in-focus position of a fourier optics set-up
JPS6243129A (en) Pattern measuring apparatus
JP2012198119A (en) Photometric device and photometric method
JP2000136982A (en) Method and device for inspecting array element
JP4768422B2 (en) Inner diameter measuring device and inner wall observation device for through hole
JP4248536B2 (en) Measuring method and apparatus for mounting position of pixel surface and mat surface in single lens reflex digital camera
IL298509B1 (en) Optical systems and method of calibrating the same
JP2008026048A (en) Flange focal distance measuring instrument
JPH0943862A (en) Projection aligner

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040421

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808