JP4828737B2 - MTF measuring device - Google Patents
MTF measuring device Download PDFInfo
- Publication number
- JP4828737B2 JP4828737B2 JP2001240213A JP2001240213A JP4828737B2 JP 4828737 B2 JP4828737 B2 JP 4828737B2 JP 2001240213 A JP2001240213 A JP 2001240213A JP 2001240213 A JP2001240213 A JP 2001240213A JP 4828737 B2 JP4828737 B2 JP 4828737B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- image
- mtf
- optical system
- infinity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、例えば銀塩フィルムを用いたカメラや固体撮像素子を用いたカメラ等に用いられるレンズのMTF(Modulation Transfer Function;伝達関数)値を測定するMTF測定装置に関するものである。
【従来の技術】
従来、MTF測定装置として、被検レンズの結像面に置かれた基準チャートの拡大投影像をCCDラインセンサで撮像し、光電変換した後、演算処理を施し被検レンズのMTF値を求めるMTF測定装置が知られている。
【0002】
図4に従来のMTF測定装置の一例を示す。図4に示すMTF測定装置において、102は基準チャートで、スリット開口パターンを有している。101は光源で、基準チャート102を均一に昭明するために置かれたもので、拡散板や照明光学系を含んだ構成でもよい。103は被検レンズで、被検レンズ保持機構104によって基準チャート102が焦点位置近傍に置かれるよう保持されており、必要により被検レンズ103自体のピント調節機構、又は、保持機構104のピント調整機構でピント調整が行われる。
【0003】
図4中、105は撮像素子であるCCDラインセンサであり、位置的光強度分布を時系列的電気信号に変換する。106は演算装置で、CCDラインセンサ105から得られた電気信号を演算しMTF値を算出する機能、算出したMTF値、又は、MTF値に基づく検査結果を表示する機能等を備えている。
【0004】
図4において、被検レンズ103は、基準チャート102からの光束を収斂し、CCDラインセンサ105上に基準チャート102の拡大像を生成する。CCDラインセンサ105は、基準チャート102の像の光強度分布を電気信号に変換し、演算装置106はCCDラインセンサ105から得られた基準チャート102の像の光強度分布を演算し、MTF値を算出する。
【0005】
このようなMTF測定装置では、光学系の性能を定量的に評価できるため被検レンズ103の良否判定を自動化することが可能である。
【0006】
【発明が解決しようとする課題】
上述したMTF測定装置を用いて、カメラレンズ等の被検レンズ103の所望の空間周波数uのMTF値R(u)を測定する場合、下記数1に示すように、基準チャート102のスリット幅をwとすれば、πuw<<πの条件下でCCDラインセンサ105から得た光強度分布をデジタルフーリエ変換して求めた測定値R’(u)をスリット補正係数kで除さなければならない。
【0007】
【数1】
【0008】
数1より明らかなように、スリット補正係数k=0となれば計算上MTF値R(u)を得ることができないため、実用的にはk≧0.5となるように設定される。例えば、空間周波数uの上限として100本/mmを測定する場合、スリット幅wはわずか0.006mm以下にしなければならず、CCDラインセンサ105に結像するスリット像の単位面積当たりの光強度はごく小さなものとなってしまう。
【0009】
このように、上述したMTF測定装置では、被検レンズ103の高周波領域のMTF値を検査しようとした場合、ごくわずかの幅のスリットを利用する他なく、スリットの作成が困難となるばかりでなく、CCDラインセンサ105に結像するスリット像の光強度が小さく、Fナンバーが大きい被検レンズを測定できない、若しくは、測定誤差が大きくなるという問題点があった。
【0010】
また、上述したMTF測定装置で、MTF−デフォーカス特性を検査する場合や、MTF値が最良となる像面で検査するためにピント調整を行う際に、被検レンズ103を光軸方向に移動させる必要があり、被検レンズ103として多群構成のズームレンズ等を用いる場合、この被検レンズ103を移動する際に振動が生じ正確なMTF値が得られないという問題点があった。
【0011】
さらに、上述したMTF測定装置で複数の像位置のMTF値を検査する場合は、複数の固体撮像素子が必要になる、若しくは、像位置に応じてCCDラインセンサ105を移動させる必要がある、装置の構成が複雑になるという問題点があった。
【0012】
本発明は、上記従来技術の問題点を解決するためになされたものであり、被検レンズを動かすことなく、十分な光強度を得て、且つ、高精度に高周波領域をも含むMTF値を算出することができ、また、1つの固体撮像素子で複数の像位置を検査できる構造が簡略なるMTF測定装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
請求項1記載の発明は、被検レンズに対して、光源により照明される物点である円形開口からの光束を入射する基準チャートと、被検レンズにより結像する縮小像を拡大し観察像を生成する拡大光学系と、該拡大光学系による観察像を撮像し、前記縮小像における光強度分布を電気信号に変換する多数の画素を有する固体撮像素子と、該固体撮像素子から得られた電気信号を演算処理しMTF値を算出する演算装置とを有するMTF測定装置であって、前記拡大光学系は、前記被検レンズの光軸と同軸に配置された無限遠補正型対物レンズと、前記無限遠補正型対物レンズからの光束を固体撮像素子面に結像する無限遠補正型結像レンズと、前記無限遠補正型対物レンズからの光束を、前記被検レンズによる縮小像の結像面と平行な方向に屈曲して無限遠補正型結像レンズに入射する少なくとも1つの光路屈曲部材と、前記無限遠補正型対物レンズ及び前記光路屈曲部材を、前記被検レンズの光軸と直交する方向に移動可能な駆動機構と、を備えたことを特徴とするものである。
【0018】
以下に本発明について詳述する。本発明のMTF測定装置によれば、光源から発した光束の一部は、基準チャートに設けられた円形開口を通過し、被検レンズに入射する。該被検レンズの結像作用により、前記基準チャートに設けられた円形開口の縮小像が生成され、この縮小像は拡大光学系により拡大されて観察像となり、固体撮像素子により撮像され、前記縮小像における光強度分布が電気信号に変換される。演算装置は固体撮像素子から得られた電気信号を演算処理しMTF値を算出する。
【0019】
このような本発明において、前記縮小像は、例えば被検レンズにより0.01倍以下に縮小した像とすることにより光強度分布が大きく、且つ、円形開口の大きさを0.2mmとすることで縮小像の大きさは0.002mm以下となり、300本/mmを超える高周波成分をも含むことになる。
【0020】
前記縮小像による光束は拡大光学系に入射し、拡大光学系の結像作用により、前記縮小像は固体撮像素子上に拡大された観察像として生成される。
【0021】
該観察像は、拡大光学系の拡大倍率を50倍以上とすることにより、0.1mm以上の大きさを有することになり、固体撮像素子の画素ピッチを0.008mm以上とした場合、精度良く演算処理を行うための12画素分の画素データの取り込みが可能となる。
【0022】
前記前記縮小像に基づく観察像の光強度分布は、前記固体撮像素子により電気信号に変換され、演算装置は前記固体撮像素子から送られた電気信号を基にMTF値を算出することができる。
【0023】
また、上記MTF測定装置において、前記被検レンズと前記基準チャートとの相対距離で決まる結像倍率をβt、所望の空間周波数成分をu、前記円形開口の寸法をdとすれば、該円形開口の寸法dは、d=0.6/(u×βt)で与えられ、所望の空間周波数uを一定として、前記結像倍率βtを小さくすれば、より大きい円形開口の寸法が適用可能で、前記被検レンズのFナンバーが大きい場合でも十分な光量を得ることができる。さらに、前記円形開口の寸法dを一定として、前記結像倍率βtを小さくすれば、より高い空間周波数のMTF値を得ることができる。
【0024】
また、上記MTF測定装置においては、前記被検レンズと前記基準チャートとの相対距離で決まる結像倍率をβt、前記拡大光学系の倍率をβm、前記円形開口の寸法をd、前記固体撮像素子の画素ピッチをpとすれば、前記固体撮像素子のデータ取込み画素数nは、n=(d×βt×βm)/pで与えられる。
【0025】
従って、前記MTF演算装置による演算精度を確保するために必要なデータ取込み画素数nは、前記結像倍率βt、円形開口の寸法dが変化した場合でも、拡大光学系の倍率βmを変更することにより、所望の値に保ことができ、安定した演算精度を得ることができる。
【0027】
更に、請求項1記載の発明によれば、前記駆動機構により、前記無限遠補正型対物レンズ、及び、前記光路屈曲部材を、前記被検レンズの光軸と直交する方向に移動させることで、被検レンズを移動することなく、かつ、1つの固体撮像素子を用いた構成にて複数の像位置での円形開口の縮小像に基づいてMTF値を算出することが可能となる。
【0028】
【発明の実施の形態】
以下に本発明の実施の形態を参考例とともに詳細に説明する。
【0029】
(参考例1)
図1は、本発明のMTF測定装置の参考例1を示す概略構成図である。図1中、13は被検レンズ、12は中央に直径0.1mmの円形開口が設けられた基準チャートで、ごく薄い金属にエッチングを施したり、ガラス基板にクロムコートを施す等して作製されており、被検レンズ13により0.06倍の縮小像が生成される位置に置かれている。11はハロゲンランプや蛍光ランプ等の光源で、基準チャート12を照明しており、著しく不均一な配光特性をもつ場合は拡散板や照明光学系を含めた構成とする必要がある。
【0030】
16は拡大光学系で、被検レンズ13の持つ収差に比べ、はるかに良好に収差補正がなされた倍率10倍の対物レンズからなり、被検レンズ13により生成された基準チャート12の縮小像を観察しうる位置に、被検レンズ13の光軸に臨ませて置かれている。
【0031】
14は、画素が面上に配置された固体撮像素子としての画素ピッチ0.005mmの2次元CCDセンサで、被検レンズ13と拡大光学系16とにより生成された基準チャート12の像位置に置かれている。15は演算装置で、固体撮像素子14から得られる電気信号を演算処理し、MTF値を算出する例えばパーソナルコンピュータにより構成している。
【0032】
次に、本参考例1におけるMTF測定装置の作用を説明する。光源11から発した光束の一部は、基準チャート12に設けられた円形開口(大きさ0.1mm)を通過し、被検レンズ13に入射し、被検レンズ13の結像作用により、基準チャート12に設けられた円形開口の縮小像が生成される。該縮小像は、0.06倍に縮小された像であるため光強度分布が大きく、且つ、前記縮小像の大きさは0.006mmとなるため、100本/mmを超える高周波成分をも含んでいる。
【0033】
前記被検レンズ13からの光束は縮小像となった後、拡大光学系16に入射する。該拡大光学系16の結像作用により、前記縮小像は固体撮像素子14上に観察像として結像される。該観察像は、拡大光学系16により10倍に拡大され、0.06mmの大きさを有するため、画素ピッチ0.005mmの固体撮像素子14においても、精度良く演算処理を行い得る12画素データ分の取り込みが可能である。
【0034】
前記観察像の光強度分布は、固体撮像素子14により電気信号に変換され、演算装置15は固体撮像素子14から送られた12画素データ分の電気信号を基に空間周波数100本/mmまでMTF値を算出することができる。
【0035】
本参考例1によれば、十分な光量が得られない微細幅のスリットや微小径のピンホールを使用しなくても、高周波領域のMTF値を求めることができるため、Fナンバーが大きな被検レンズ13のMTF値も測定可能なMTF測定装置の提供することが可能となる。
【0036】
(参考例2)
図2は、参考例2を示す構成図である。図2中、23は被検レンズ、22は中央に直径0.2mmの円形開口が設けられた基準チャートで、ごく薄い金属にエッチングを施したり、ガラス基板にクロムコートを施す等して作製されており、被検レンズ23により0.01倍の縮小像が生成される位置に置かれている。
【0037】
21はハロゲンランプや蛍光ランプ等からなる光源で、基準チャート22を照明しており、著しく不均一な配光特性をもつ場合は拡散板や照明光学系を含めた構成とする必要がある。27は無限補正型対物レンズ、28は無限補正型結像レンズ28であり、これらにより倍率50倍の拡大光学系を構成しており、前記被検レンズ23の持つ収差に比べ、はるかに良好に収差補正がなされると共に、無限補正型対物レンズ27と無限補正型結像レンズ28とのレンズ間隔が変化しても収差が良好に保たれ、且つ、拡大倍率が変化しないアフォーカルな拡大光学系となっている。
【0038】
無限補正型対物レンズ27、無限補正型結像レンズ28は、被検レンズ23により生成された基準チャート22の縮小像を観察しうる位置に、被検レンズ23の光軸と水平となるように置かれており、また無限補正型対物レンズ27は、ボールネジ付きステージ等の移動機構29で光軸方向に移動することが可能である。図2中、24は、多数の画素が面上に配置(画素ピッチ0.008mm)された固体撮像素子としての2次元CCDセンサで、被検レンズ23と、無限補正型対物レンズ27及び無限補正型結像レンズ28からなる拡大光学系とにより生成される基準チャート22の像の結像位置に置かれている。
【0039】
25は演算装置で、2次元CCDセンサ24から得られる電気信号を演算処理し、MTF値を算出する例えばパーソナルコンピュータにより構成している。
【0040】
次に、本参考例2におけるMTF測定装置の作用を説明する。光源21から発した光束の一部は、基準チャート22に設けられた円形開口を通過し、被検レンズ23に入射し、被検レンズ23の結像作用により、基準チャート22に設けられた円形開口の縮小像が生成される。該縮小像は、0.01倍に縮小された像であるため光強度分布が大きく、且つ、前記縮小像の大きさは0.002mmとなるため300本/mmを超える高周波成分をも含んでいる。
【0041】
前記被検レンズ23からの光束は、無限補正型対物レンズ27と無限補正型結像レンズ28とからなる拡大光学系に入射し、該拡大光学系の結像作用により、前記縮小像は拡大され2次元CCDセンサ24上で観察像として結像される。
【0042】
該観察像は、拡大光学系により50倍に拡大され0.1mmの大きさを有するため、画素ピッチ0.008mmの2次元CCDセンサ24においても、精度よく演算処理を行える12画素データ分の取り込みが可能である。
【0043】
前記観察像の光強度分布は、固体撮像素子24により電気信号に変換され、演算装置25は2次元CCDセンサ24から送られた12画素データの電気信号をもとにMTF値を算出することができる。
【0044】
また、移動機構29により無限補正型対物レンズ27を光軸方向に動作させ、MTF値を算出する動作を繰り返せば、デフォーカスとMTF値の関連が測定できる。
【0045】
本参考例2によれば、近年普及し始めた高密度な、いわゆるメガピクセルCCDを利用したデジタルカメラ用の高解像度レンズに対しても、高周波領域のMTF値を測定できるとともに、無限補正型対物レンズ27のみを光軸方向に移動させる簡略な構成で、MTF値を基にしたピント位置の検出が可能なMTF測定装置を提供することができる。
【0046】
(実施の形態1)
図3は、本発明の実施の形態1を示す構成図である。図3中、33は被検レンズ、32a,32bは中央に直径0.2mmの円形開口が設けられた一対の基準チャートで、ごく薄い金属にエッチングを施したり、ガラス基板にクロムコートを施す等して作製されており、被検レンズ33により0.01倍の縮小像が生成される位置に置かれている。
【0047】
31a,31bはハロゲンランプや蛍光ランプ等からなる一対の光源で、基準チャート32a,32bをそれぞれ照明しており、著しく不均一な配光特性をもつ場合はそれぞれ拡散板や照明光学系を含めた構成とする必要がある。被検レンズ33の後段には、無限補正型対物レンズ37と無限補正型結像レンズ38とからなる倍率50倍の拡大光学系が設けられ、被検レンズ33の持つ収差に比べ、はるかに良好に収差補正がなされると共に、無限補正型対物レンズ37と無限補正型結像レンズ38とのレンズ間隔が変化しても収差が良好に保たれ、且つ、拡大倍率が変化しないアフォーカルな拡大光学系となっている。
【0048】
無限補正型対物レンズ37は、被検レンズ33により生成された基準チャート32aの縮小像41aを観察しうる位置に、被検レンズ33の光軸と水平となるように置かれている。前記アフォーカルな拡大光学系の光路中には、無限補正型対物レンズ37の光軸を被検レンズ33の像面と水平な方向に屈曲せしめる反射プリズムである光路屈曲部材39が配置されており、無限補正型対物レンズ37と共にボールネジ付きステージ等の移動機構42によって、被検レンズ33が生成する縮小像41a,41bの像面と水平な方向に移動可能に構成している。
【0049】
34は、画素が面上に配置された固体撮像素子としての画素ピッチ0.008mmの2次元CCDセンサで、被検レンズ33と前記拡大光学系とにより生成される基準チャート32aの像位置に置かれている。
【0050】
40は演算装置で、2次元CCDセンサ34から得られる電気信号を演算処理し、MTF値を算出する例えばパーソナルコンピュータにより構成している。
【0051】
次に、本実施の形態1におけるMTF測定装置の作用を説明する。光源31a,31bから発した光束の一部は、基準チャート32a,32bにそれぞれ設けられた円形開口を通過し、被検レンズ33に入射し、被検レンズ33の結像作用により、基準チャート32a,32bに設けられた円形開口のそれぞれの縮小像41a,41bが生成される。該縮小像は、0.01倍に縮小された像であるため光強度分布が大きく、且つ、前記縮小像41a,41bの大きさは0.002mmとなるため300本/mmを超える高周波成分をも含んでいる。
【0052】
前記移動機構42で、前記縮小像41aを観察しうる位置に無限補正型対物レンズ37と光路屈曲部材39とを配置したとき、前記被検レンズ33からの光束は、無限補正型対物レンズ37と無限補正型結像レンズ38とからなる拡大光学系に入射し、アフォーカルな光路途中で光路屈曲部材39により被検レンズ33の像面と水平な方向に屈曲され、無限補正型結像レンズ38を経て、拡大光学系の結像作用により拡大され、2次元CCDセンサ34上に観察像として結像される。
【0053】
該観察像は、前記拡大光学系により50倍に拡大され、0.1mmの大きさを有するため、画素ピッチ0.008mmの2次元CCDセンサ34においても、精度良く演算処理を行える12画素データの取り込みが可能である。
【0054】
前記観察像の光強度分布は、固体撮像素子34により電気信号に変換され、演算装置40は固体撮像素子34から送られた12画素データの電気信号をもとにMTF値を算出することができる。
【0055】
また、前記移動機構42で、前記縮小像41bを観察しうる位置に無限補正型対物レンズ33と光路屈曲部材39とを移動配置すれば、前記縮小像41bからの光束は、無限補正型対物レンズ37と無限補正型結像レンズ38とからなる拡大光学系に入射し、アフォーカルな光路途中で光路屈曲部材39により被検レンズ33の像面と水平な方向に屈曲され、無限補正型結像レンズ38に入射した後、拡大光学系の結像作用により、前記2次元CCDセンサ34上に観察像として結像される。
【0056】
このとき、拡大光学系は無限補正型の光学系であるため、移動機構42により無限補正型対物レンズ37と光路屈曲部材39とが移動させられても、光学的に無限補正型対物レンズ37と無限補正型結像レンズ38との間隔が変化するだけで、観察像の結像点は前記縮小像41aを観察したときと同一点とすることができる。
【0057】
本実施の形態1によれば、被検レンズ33を動かしたり複数の固体撮像素子を使用したりする必要がなく、無限補正型対物レンズ37、光路屈曲部材39のみを動かす簡単な構成で、複数像高における被検レンズ33のMTF値の測定が可能なMTF測定装置を提供できる。
【0058】
【発明の効果】
以上説明した請求項1記載の発明によれば、被検レンズにより基準チャートの円形開口の縮小像を生成し、前記縮小像を固体撮像素子の画素サイズに適した大きさに拡大して撮像し、演算処理してMTF値を求めるものであるから、十分な光強度を有し、かつ、高周波成分を多く含むMTF値を精度よく測定できるMTF測定装置を提供できる。また、前記駆動機構により、前記無限遠補正型対物レンズ、及び、前記光路屈曲部材を、前記被検レンズの光軸と直交する方向に移動させることで、被検レンズを移動することなく、かつ、1つの固体撮像素子を用いた構成にて複数の像位置での円形開口の縮小像に基づいてMTF値を算出することが可能なMTF測定装置を提供できる。
【図面の簡単な説明】
【図1】 本発明の参考例1のMTF測定装置の概略構成図である。
【図2】 本発明の参考例2のMTF測定装置の概略構成図である。
【図3】 本発明の実施の形態1のMTF測定装置の概略構成図である。
【図4】 従来のMTF測定装置の概略構成図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an MTF measuring apparatus that measures an MTF (Modulation Transfer Function) value of a lens used in, for example, a camera using a silver salt film or a camera using a solid-state imaging device.
[Prior art]
Conventionally, as an MTF measuring apparatus, an enlarged projection image of a reference chart placed on the imaging surface of a test lens is picked up by a CCD line sensor, photoelectrically converted, and then subjected to arithmetic processing to obtain an MTF value of the test lens. Measuring devices are known.
[0002]
FIG. 4 shows an example of a conventional MTF measuring apparatus. In the MTF measuring apparatus shown in FIG. 4,
[0003]
In FIG. 4,
[0004]
In FIG. 4, the
[0005]
In such an MTF measuring apparatus, since the performance of the optical system can be quantitatively evaluated, it is possible to automate the quality determination of the
[0006]
[Problems to be solved by the invention]
When measuring the MTF value R (u) of the desired spatial frequency u of the
[0007]
[Expression 1]
[0008]
As is clear from Equation 1, if the slit correction coefficient k = 0, the MTF value R (u) cannot be obtained in the calculation, so that it is practically set so that k ≧ 0.5. For example, when measuring 100 lines / mm as the upper limit of the spatial frequency u, the slit width w must be only 0.006 mm or less, and the light intensity per unit area of the slit image formed on the
[0009]
As described above, in the MTF measuring apparatus described above, when trying to inspect the MTF value in the high frequency region of the
[0010]
Further, when the MTF measuring apparatus described above is used to inspect the MTF-defocus characteristic, or when performing focus adjustment for inspecting on the image plane with the best MTF value, the
[0011]
Furthermore, when inspecting MTF values at a plurality of image positions with the above-described MTF measurement apparatus, a plurality of solid-state imaging devices are required, or the
[0012]
The present invention has been made to solve the above-described problems of the prior art, and can obtain an MTF value including a high-frequency region with high accuracy while obtaining sufficient light intensity without moving the test lens. can be calculated, also aims to structure that can be inspected a plurality of image position in one of the solid-state imaging device to provide an MTF measurement device that brief.
[0015]
[Means for Solving the Problems]
According to the first aspect of the present invention, a reference chart for entering a light beam from a circular aperture, which is an object point illuminated by a light source, and a reduced image formed by the test lens are enlarged and observed. Obtained from the solid-state imaging device, a solid-state imaging device having a large number of pixels that capture an observation image by the magnification optical system, and convert a light intensity distribution in the reduced image into an electrical signal An MTF measuring apparatus having an arithmetic unit for calculating an MTF value by performing an arithmetic processing on an electrical signal, wherein the magnifying optical system includes an infinitely corrected objective lens arranged coaxially with the optical axis of the lens to be examined; An infinity-correcting imaging lens that forms an image of a light beam from the infinity-correcting objective lens on the surface of a solid-state imaging device, and a reduced image formed by the lens to be inspected by the infinity-correcting objective lens. Bent in a direction parallel to the surface And at least one optical path bending member that is incident on the infinity correction type imaging lens, and the infinity correction type objective lens and the optical path bending member that are movable in a direction perpendicular to the optical axis of the test lens. And a mechanism .
[0018]
The present invention is described in detail below. According to the MTF measuring apparatus of the present invention, a part of the light beam emitted from the light source passes through the circular aperture provided in the reference chart and enters the test lens. A reduced image of the circular aperture provided in the reference chart is generated by the imaging action of the test lens, and this reduced image is enlarged by a magnifying optical system to become an observation image, which is picked up by a solid-state imaging device, and the reduced image The light intensity distribution in the image is converted into an electrical signal. The computing device computes the MTF value by computing the electrical signal obtained from the solid-state imaging device.
[0019]
In the present invention, the reduced image is an image reduced to, for example, 0.01 times or less by a lens to be examined so that the light intensity distribution is large and the size of the circular aperture is 0.2 mm. As a result, the size of the reduced image becomes 0.002 mm or less, and includes a high-frequency component exceeding 300 lines / mm.
[0020]
The light beam resulting from the reduced image enters the magnifying optical system, and the reduced image is generated as an enlarged observation image on the solid-state imaging device by the imaging action of the magnifying optical system.
[0021]
The observation image has a size of 0.1 mm or more by setting the magnification of the magnifying optical system to 50 times or more. When the pixel pitch of the solid-state imaging device is 0.008 mm or more, It is possible to capture pixel data for 12 pixels for performing calculation processing with high accuracy.
[0022]
The light intensity distribution of the observation image based on the reduced image is converted into an electric signal by the solid-state image sensor, and the arithmetic unit can calculate the MTF value based on the electric signal sent from the solid-state image sensor.
[0023]
In the MTF measuring apparatus, if the imaging magnification determined by the relative distance between the lens to be measured and the reference chart is βt, the desired spatial frequency component is u, and the dimension of the circular opening is d, the circular opening The dimension d is given by d = 0.6 / (u × βt). If the desired spatial frequency u is constant and the imaging magnification βt is reduced, a larger circular aperture dimension can be applied. Even when the F-number of the test lens is large, a sufficient amount of light can be obtained. Furthermore, if the dimension d of the circular aperture is constant and the imaging magnification βt is reduced, a higher spatial frequency MTF value can be obtained.
[0024]
In the MTF measuring apparatus, the imaging magnification determined by the relative distance between the lens to be examined and the reference chart is βt, the magnification of the magnifying optical system is βm, the dimension of the circular aperture is d, and the solid-state imaging device Where p is the pixel pitch, the number n of data fetching pixels of the solid-state imaging device is given by n = (d × βt × βm) / p.
[0025]
Therefore, the number n of data acquisition pixels necessary to ensure the calculation accuracy by the MTF calculation device is to change the magnification βm of the magnifying optical system even when the imaging magnification βt and the size d of the circular aperture change. Thus, the desired value can be maintained, and stable calculation accuracy can be obtained.
[0027]
Further, according to the invention of claim 1 , by the drive mechanism, the infinity correction type objective lens and the optical path bending member are moved in a direction perpendicular to the optical axis of the lens to be examined. It is possible to calculate the MTF value based on the reduced images of the circular apertures at a plurality of image positions with a configuration using one solid-state imaging device without moving the test lens.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference examples .
[0029]
( Reference Example 1 )
FIG. 1 is a schematic configuration diagram showing Reference Example 1 of the MTF measuring apparatus of the present invention. In FIG. 1, 13 is a lens to be tested, and 12 is a reference chart having a circular opening with a diameter of 0.1 mm in the center, which is manufactured by etching a very thin metal or applying a chrome coat to a glass substrate. It is placed at a position where a 0.06 times reduced image is generated by the
[0030]
[0031]
[0032]
Next, the operation of the MTF measuring apparatus in Reference Example 1 will be described. A part of the light beam emitted from the
[0033]
The light beam from the
[0034]
The light intensity distribution of the observed image is converted into an electric signal by the solid-
[0035]
According to the first reference example , the MTF value in the high frequency region can be obtained without using a narrow slit or pinhole with a small diameter that does not provide a sufficient amount of light. It is possible to provide an MTF measuring apparatus that can also measure the MTF value of the
[0036]
( Reference Example 2 )
FIG. 2 is a configuration diagram illustrating Reference Example 2 . In FIG. 2,
[0037]
[0038]
The infinite correction
[0039]
An
[0040]
Next, the operation of the MTF measuring apparatus in Reference Example 2 will be described. A part of the light beam emitted from the
[0041]
The light beam from the
[0042]
Since the observation image is magnified 50 times by a magnifying optical system and has a size of 0.1 mm, the two-
[0043]
The light intensity distribution of the observation image is converted into an electrical signal by the solid-
[0044]
Further, the relationship between the defocus and the MTF value can be measured by moving the infinite correction
[0045]
According to the second reference example , an MTF value in a high frequency region can be measured even for a high-resolution lens for a digital camera using a high-density so-called megapixel CCD that has begun to spread in recent years. It is possible to provide an MTF measuring apparatus capable of detecting the focus position based on the MTF value with a simple configuration in which only the
[0046]
( Embodiment 1 )
FIG. 3 is a block diagram showing Embodiment 1 of the present invention. In FIG. 3, 33 is a lens to be tested, and 32a and 32b are a pair of reference charts provided with a circular opening having a diameter of 0.2 mm in the center. Etching is applied to a very thin metal, chrome coating is applied to a glass substrate, etc. And is placed at a position where a reduced image of 0.01 times is generated by the
[0047]
31a and 31b are a pair of light sources composed of a halogen lamp, a fluorescent lamp, etc., which illuminate the
[0048]
The infinite correction
[0049]
[0050]
[0051]
Next, the operation of the MTF measuring apparatus according to the first embodiment will be described. Some of the light beams emitted from the
[0052]
When the infinite correction
[0053]
The observation image is magnified 50 times by the magnifying optical system and has a size of 0.1 mm. Therefore, even with a two-
[0054]
The light intensity distribution of the observation image is converted into an electrical signal by the solid-
[0055]
Further, if the infinite correction
[0056]
At this time, since the magnifying optical system is an infinite correction type optical system, even when the infinite correction type
[0057]
According to the first embodiment, there is no need to move the
[0058]
【The invention's effect】
According to the first aspect of the present invention described above, a reduced image of the circular aperture of the reference chart is generated by the test lens, and the reduced image is enlarged to a size suitable for the pixel size of the solid-state imaging device. Since the MTF value is obtained by arithmetic processing, it is possible to provide an MTF measuring apparatus capable of accurately measuring an MTF value having sufficient light intensity and containing a lot of high frequency components. Further, the driving mechanism moves the infinity-correcting objective lens and the optical path bending member in a direction perpendicular to the optical axis of the test lens, without moving the test lens, and It is possible to provide an MTF measuring apparatus capable of calculating an MTF value based on a reduced image of a circular aperture at a plurality of image positions with a configuration using one solid-state imaging device.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an MTF measuring apparatus according to Reference Example 1 of the present invention.
FIG. 2 is a schematic configuration diagram of an MTF measuring apparatus according to Reference Example 2 of the present invention.
FIG. 3 is a schematic configuration diagram of an MTF measuring apparatus according to Embodiment 1 of the present invention.
FIG. 4 is a schematic configuration diagram of a conventional MTF measuring apparatus.
Claims (1)
被検レンズにより結像する縮小像を拡大し観察像を生成する拡大光学系と、
該拡大光学系による観察像を撮像し、前記縮小像における光強度分布を電気信号に変換する多数の画素を有する固体撮像素子と、
該固体撮像素子から得られた電気信号を演算処理しMTF値を算出する演算装置とを有するMTF測定装置であって、
前記拡大光学系は、
前記被検レンズの光軸と同軸に配置された無限遠補正型対物レンズと、
前記無限遠補正型対物レンズからの光束を固体撮像素子面に結像する無限遠補正型結像レンズと、
前記無限遠補正型対物レンズからの光束を、前記被検レンズによる縮小像の結像面と平行な方向に屈曲して無限遠補正型結像レンズに入射する少なくとも1つの光路屈曲部材と、
前記無限遠補正型対物レンズ及び前記光路屈曲部材を、前記被検レンズの光軸と直交する方向に移動可能な駆動機構と、
を備えたことを特徴とするMTF測定装置。A reference chart for entering a light beam from a circular aperture, which is an object point illuminated by a light source, with respect to a test lens;
A magnifying optical system that magnifies the reduced image formed by the lens to be examined and generates an observation image;
A solid-state imaging device having a large number of pixels for capturing an observation image by the magnification optical system and converting a light intensity distribution in the reduced image into an electrical signal;
An MTF measuring device having an arithmetic device for arithmetically processing an electrical signal obtained from the solid-state imaging device and calculating an MTF value,
The magnifying optical system is
An infinity-correcting objective lens arranged coaxially with the optical axis of the test lens;
An infinity correction type imaging lens that forms an image of the light flux from the infinity correction type objective lens on the surface of the solid-state imaging device; and
At least one optical path bending member that bends the light beam from the infinity-correcting objective lens in a direction parallel to the imaging surface of the reduced image by the test lens and enters the infinity-correcting imaging lens;
A driving mechanism capable of moving the infinity-correcting objective lens and the optical path bending member in a direction perpendicular to the optical axis of the lens to be examined;
MTF measuring apparatus characterized by comprising a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001240213A JP4828737B2 (en) | 2001-08-08 | 2001-08-08 | MTF measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001240213A JP4828737B2 (en) | 2001-08-08 | 2001-08-08 | MTF measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003050183A JP2003050183A (en) | 2003-02-21 |
JP4828737B2 true JP4828737B2 (en) | 2011-11-30 |
Family
ID=19070863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001240213A Expired - Fee Related JP4828737B2 (en) | 2001-08-08 | 2001-08-08 | MTF measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4828737B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007147438A (en) * | 2005-11-28 | 2007-06-14 | Fuji Xerox Co Ltd | Evaluation method for lens array, evaluator, lens array, and image forming device |
JP2007315959A (en) * | 2006-05-26 | 2007-12-06 | Fujinon Corp | Lens-measuring device |
US8314839B2 (en) | 2009-05-29 | 2012-11-20 | Sentrus, Inc. | Concealments for components of a covert video surveillance system |
US8319833B2 (en) | 2009-06-23 | 2012-11-27 | Sentrus, Inc. | Video surveillance system |
-
2001
- 2001-08-08 JP JP2001240213A patent/JP4828737B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003050183A (en) | 2003-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7982950B2 (en) | Measuring system for structures on a substrate for semiconductor manufacture | |
JP6364193B2 (en) | Focus position adjustment method and inspection method | |
CN113702000B (en) | Aberration detection system and aberration detection method of optical imaging lens | |
JP5854680B2 (en) | Imaging device | |
JP2530081B2 (en) | Mask inspection equipment | |
JPWO2013081072A1 (en) | Measuring apparatus, measuring method, and semiconductor device manufacturing method | |
US8810799B2 (en) | Height-measuring method and height-measuring device | |
JP6745152B2 (en) | Focusing device, focusing method, and pattern inspection method | |
JP2007212214A (en) | Method of manufacturing lens system, and its evaluation device and evaluation method | |
JP4828737B2 (en) | MTF measuring device | |
JP2007212620A (en) | Method for manufacturing lens system, and device and method for evaluating lens system | |
JP2016148569A (en) | Image measuring method and image measuring device | |
JP3595117B2 (en) | Array element inspection method and array element inspection apparatus | |
US20150293342A1 (en) | Image capturing apparatus and image capturing method | |
JP2001283196A (en) | Device and method for inspecting defect | |
KR20140071901A (en) | Confocal optical inspection system and method of inspecting thereof | |
JP4930834B2 (en) | Shape measurement method | |
JPWO2019244303A1 (en) | Wavefront sensor, wavefront measuring device, and wavefront measuring method | |
JP2008128770A (en) | Lens performance inspection device and lens performance inspection method | |
JP4125113B2 (en) | Interfering device | |
JP2004257732A (en) | Hole measuring apparatus | |
JP4639808B2 (en) | Measuring apparatus and adjustment method thereof | |
JP2004286608A (en) | Confocal height measuring apparatus | |
JP2000009423A (en) | Focusing device for optical instrument | |
JP2004294076A (en) | Apparatus and method for measuring modulation transfer function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110822 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110915 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4828737 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |