JPS59224176A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS59224176A
JPS59224176A JP9884483A JP9884483A JPS59224176A JP S59224176 A JPS59224176 A JP S59224176A JP 9884483 A JP9884483 A JP 9884483A JP 9884483 A JP9884483 A JP 9884483A JP S59224176 A JPS59224176 A JP S59224176A
Authority
JP
Japan
Prior art keywords
film
photoresist
layer
photoresist layer
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9884483A
Other languages
Japanese (ja)
Other versions
JPH047101B2 (en
Inventor
Yoichi Aono
青野 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9884483A priority Critical patent/JPS59224176A/en
Publication of JPS59224176A publication Critical patent/JPS59224176A/en
Publication of JPH047101B2 publication Critical patent/JPH047101B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Weting (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To make it possible to perform mass production of GaAs elements, whose characteristics are uniform, with good reproducibility, by making it possible to perform substrate heating, and making the film thickness of dug parts uniform. CONSTITUTION:The epitaxial thickness of an operating layer 21 is made uniform. Then, photoresist layers 27 and 28 are removed. A gate-electrode forming part 26 is selectively coated by a photoresist layer 29. Then side etching of the side wall part of an SiO2 film 22 is performed by buffer HF. Thereafter, a metal for forming an operating layer 21 and an ohmic contact is evaporated. Then, the photoresist 29 is removed, and a source electrode 31 and a drain electrode 32 are formed. Then, a photoresist layer 33 is formed again. The exposed operating layer 21 is dug until a specified pinch OFF voltage is obtained. The photoresist layer 33 is removed. Thereafter, a gate electrode is formed in a self- aligning manner with respect to the source and drain electrodes 31 and 32 through the opening part of an SiN film 23 in a recess part. Finally Al 34 is etched, and the SiO2 film 22 is removed by the buffer HF.

Description

【発明の詳細な説明】 本発明は電界効果トランジスタの製造方法に関し、さら
に詳しくはシミットキ障壁接合をゲート電極に用いたマ
イクロ波用GaA sショットキゲート型電界効果ト2
ンジx タ(GaAsMESFET )、特にセルファ
シイメント(自己整合)形QaAsME8FETの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a field effect transistor, and more particularly to a method for manufacturing a GaAs Schottky gate type field effect transistor for microwaves using a Schmidtky barrier junction as a gate electrode.
The present invention relates to a method for manufacturing a semiconductor (GaAs MESFET), particularly a self-aligned QaAs ME8FET.

GaAsMESFET は、Stバイボーシトランジス
タの特性限界を打破するマイクロ波トランジスタとして
すでに実用化されている。このようなGaAsMESF
ETの高周波特性はゲート長を短縮し、寄生抵抗を低減
することによって改善できる。
GaAs MESFETs have already been put into practical use as microwave transistors that break through the characteristic limits of St bibulous transistors. Such GaAs MESF
The high frequency characteristics of ET can be improved by shortening the gate length and reducing parasitic resistance.

そのだめ、X桁以上の超高周波用GaAsMESFET
においては通常、ゲート長は0.5〜1.0μmのもの
が用いられている。従来このような短いゲートをもった
GaAsMESFET は次のような方法で作られてい
る。即ち、第1図(a)に示すよ、うに半絶縁性GaA
3基板10上f形成されたn型G a A s動作層1
1表面年0.5〜1.0μmの開口部を有するホトレジ
スト12を設け、必要とする飽和ドレイン電流ID5S
  (あるいはピンオフ電圧Vp)  に調整するため
及びソース抵抗の低減さらには後のりフトオフ工程を容
易にするために開口部の動作層11を化学エッチ・/グ
で掘り込んだ後、直上からショットキ金属13を全面に
蒸着し、ホトレジスト12を取り除くことにより開口部
分にのみ金属を残す、いわゆるリフトオフ法でゲート電
極14を形成した後、第1図(b)に示すようにソース
電極15ドレイン電極16を第1図(、)と同様にオー
ミック金属を蒸着、リフトオフして形成することによp
GaAsMESFETの基本構造を得る方法である。
No, GaAs MESFET for ultra-high frequency of X digits or more
In general, a gate length of 0.5 to 1.0 μm is used. Conventionally, GaAs MESFETs with such short gates have been manufactured by the following method. That is, as shown in FIG. 1(a), semi-insulating GaA
3 n-type GaAs active layer 1 formed on substrate 10
A photoresist 12 having an opening of 0.5 to 1.0 μm per surface is provided, and the required saturation drain current ID5S is
(or pin-off voltage Vp), reduce the source resistance, and facilitate the later lift-off process, after digging the active layer 11 in the opening by chemical etching, the Schottky metal 13 is etched from directly above. After forming the gate electrode 14 by the so-called lift-off method, in which metal is deposited on the entire surface and the photoresist 12 is removed, leaving metal only in the opening, the source electrode 15 and the drain electrode 16 are removed as shown in FIG. 1(b). By depositing and lifting off an ohmic metal in the same way as in Figure 1 (,), p
This is a method to obtain the basic structure of a GaAs MESFET.

しかし々からこの様な従来の方法には次のような欠点が
ある。即ち、リフトオフ法は有機物であるホトレジスト
を付けた状態でゲート金属を蒸着しなければならないた
め、動作層表面に付着している水分を除去するに充分子
r、渦度での基板の加熱がレジストパターンの変形を起
こしてしまうのでこれができず、まだホトレジストから
不純物が蒸発しG a A s表面を汚染する等のため
、良好なショットキ特性が再現性よく得られなかった。
However, such conventional methods have the following drawbacks. That is, in the lift-off method, the gate metal must be deposited with the photoresist, which is an organic material, attached, so heating the substrate at a vorticity sufficient to remove the water adhering to the surface of the active layer is sufficient to remove the moisture adhering to the surface of the active layer. This cannot be done because it would cause deformation of the pattern, and impurities still evaporate from the photoresist and contaminate the GaAs surface, making it impossible to obtain good Schottky characteristics with good reproducibility.

また、動作層を単に化学エツチングのみで掘シ込む方式
では、掘シ込んだ場所の膜厚が杓−にならず、動作層の
膜厚分布がそのまま飽和ドレイン電流ID5Sの分布と
してZLわれるため、:1.DBSがウェーノ・面内で
ばらつくという欠点がある。さらにゲート電欅14に近
接してソー艮およびドレイン電極15.16を設けるに
はマスクの位置合わせを必要とするが、このマスク合わ
せを行うときに合わせずれを生じる。この合わせずれは
再現性が々く、方向、太きさもその都度異々る。この合
わせずれは直接ソース抵抗等に影響し、高周波特性をば
らつかせる。
In addition, in the method of etching the active layer only by chemical etching, the film thickness at the etched location does not become constant, and the film thickness distribution of the active layer is directly used as the distribution of the saturated drain current ID5S. :1. The disadvantage is that the DBS varies within the plane. Further, in order to provide the saw and drain electrodes 15 and 16 close to the gate electrode 14, mask alignment is required, but misalignment occurs when this mask alignment is performed. This misalignment is highly reproducible, and the direction and thickness vary each time. This misalignment directly affects source resistance and the like, causing variations in high frequency characteristics.

即ち、マスクの位置合わせ精度によ多素子の特性が大き
く影響されるという欠点がある。
That is, there is a drawback that the characteristics of multiple elements are greatly affected by the alignment accuracy of the mask.

本発明の目的は、基板加熱ができ、かつ掘り込み部の膜
厚を均一゛にする電界効果トランジスタの製造方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a field effect transistor that can heat the substrate and make the film thickness of the dug portion uniform.

本発明によれば、半絶縁性基板上の半導体動作層上にス
ペーサとなる第1の絶縁膜よシエッチング速度の遅いマ
スクとなる第2の絶縁膜をこの順序に積層し、さらにそ
の上にソース、ドレインおよびゲート電極形成部分が開
口した第1のホトレジスト層を形成する工程と、該第1
のホトレジスト層をマスクとして前記第1、第2の絶縁
膜をリアクティブスパッタエツチングで除去した徒、ゲ
ート電極形成部分が選択的に開口した第2のホトレジス
ト層な形成し、化学エツチングにより露出した前記第1
の絶縁膜、の側壁部を所定の量サイドエツチングした後
、露出した前記動作層を陽極酸化し、形成された酸化被
膜を除去することにより掘シ込み部を設け、前記ゲート
電極形成部分の前記動作層厚を均一化し、前記第1、第
2のホトレジスト層を除去した後、前記ゲート電極形成
部分を選択的に第3のホトレジス)!で覆い、化学エツ
チングによシ心出した前記第1のP縁膜の側壁部をサイ
ドエツチングした後、前記動作層とオーミックコンタク
トを形成する金属を直上よシ被着し、前記第3のホトレ
ジストを除去することにより、該第3のホトレジスト層
上の前記オーミック金属も同時に除去した後、合金化処
理を施すことによυ、前記ソースおよびドレイン電極形
成部分に低接触抵抗のソースおよびドレイン電極を形成
する工程と、ゲート電極形成部分が選択的に開口した第
4のホトレジスト層を形成した後、前記掘シ込み部をさ
らに化学エツチングで所定の深さ掘多込み、前記第4の
ホトレジスト層を除去した後、前記動作層とショットキ
障壁を形成する金属を直上よシ被着することにより、前
記第2の絶縁膜の開口部を通して前記掘り込み部にゲー
ト電極を前記ソースおよびドレイン電極に対してセルフ
アラ   。
According to the present invention, a first insulating film serving as a spacer and a second insulating film serving as a mask having a slow etching rate are laminated in this order on a semiconductor active layer on a semi-insulating substrate, and then forming a first photoresist layer in which source, drain and gate electrode forming portions are opened;
Using the photoresist layer as a mask, the first and second insulating films were removed by reactive sputter etching, and a second photoresist layer was formed in which the gate electrode formation portion was selectively opened, and the exposed portion was chemically etched. 1st
After side-etching the side wall portion of the insulating film by a predetermined amount, the exposed active layer is anodized and the formed oxide film is removed to provide a recessed portion, After making the active layer thickness uniform and removing the first and second photoresist layers, the gate electrode forming portion is selectively coated with a third photoresist layer)! After side-etching the side wall portion of the first P edge film centered by chemical etching, a metal forming an ohmic contact with the active layer is deposited directly above the third photoresist. By removing the ohmic metal on the third photoresist layer, the ohmic metal on the third photoresist layer is also removed, and then an alloying treatment is performed to form source and drain electrodes with low contact resistance in the source and drain electrode forming portions. After forming a fourth photoresist layer in which the gate electrode forming portion is selectively opened, the dug portion is further etched to a predetermined depth by chemical etching, and the fourth photoresist layer is etched. After the removal, a metal forming the active layer and the Schottky barrier is deposited directly on top of the active layer, so that the gate electrode is connected to the source and drain electrodes through the opening of the second insulating film and into the dug portion. Self ala.

イン的に形成する工程と、前記掘り込み部およびその近
傍を第5のホトレジスト層で覆った後、化学エツチング
で前記ゲート金属、続いて前記第1の絶縁膜を選択的に
除去する工程とを含むことを特徴とする電界効果トラン
ジスタの製造方法が得られる。
and a step of selectively removing the gate metal and then the first insulating film by chemical etching after covering the dug portion and its vicinity with a fifth photoresist layer. A method for manufacturing a field effect transistor is obtained, characterized in that the method includes:

前記本発明によれば、無機物の絶R膜がゲート形成時の
マスクと々るため、ゲート金属蒸着前に十分な温度での
基板のカロ熱が可能であり、従来のようなホトレジスト
からの不純物の蒸発、汚染もないため、良好なショット
キ特性が再現性よく得られるばかシでなく、動作層は陽
極酸化によシ均−化されるとともに、ソース、ドレイン
およびゲートの各電極間距離はマスクの位置合わせ精度
に関係なく、はぼ1枚のホトマスクで決定されるため、
特性の揃った素子を再現性よく生産することができる。
According to the present invention, since the inorganic anti-resistance film is used as a mask during gate formation, it is possible to heat the substrate to a sufficient temperature before gate metal deposition, and impurities from photoresist as in the conventional method can be heated. Since there is no evaporation or contamination, good Schottky characteristics can be obtained with good reproducibility.The active layer is uniformed by anodic oxidation, and the distance between the source, drain, and gate electrodes is controlled by a mask. Regardless of the alignment accuracy, since it is determined by a single photomask,
Elements with uniform characteristics can be produced with good reproducibility.

以下、本発明の一実施例としてX−バンドのGaA s
 M E S F E ’1’を例にとり詳しく説明す
る。
Hereinafter, as an example of the present invention, X-band GaAs
A detailed explanation will be given using M E S F E '1' as an example.

第2図(a)〜(g)は本発明の詳細な説明するだめの
図で、製作工程の要部断面図を示す。第2図(a)に示
すように、まず最初に半絶縁性G a A s基板20
上にn型GaAs能動動作層21(電子濃度n=lQc
m、厚さt ”: 0.6μm)をエピタキシャル成長
させ、その上にスペーサとなるCVD5iOz膜22、
さらにゲート電極形成の際マスクとなるプラズマCVD
5iN膜23を例えばそれぞれ約0.4 ttm 、 
 約0.3μmの厚さに形成する。5102膜22は基
板温度400℃の条件下で通常のSiH4と02ガスを
用いた熱分解法で形成する。一方8iN膜23の形成に
際しては、バッファーHF (HF : 6NH4F 
)における5iCh膜22とのエツチング遺択比を大き
くしてマスク効果をもたせる目的から、−例として基板
温度350℃でN2.NH3,SiH4ガスをそれぞれ
70,6,6SCCM反応室に流し、反応室の圧力IT
Orr XRF電力100W(7)条件下テS i N
  膜23を形成する。これらの条件下で形成した54
0z膜22およびSiN膜23のバッファーHFに対す
るエツチング速度はそれぞれ約6000A/m i n
 。
FIGS. 2(a) to 2(g) are diagrams for explaining the present invention in detail, and show cross-sectional views of essential parts of the manufacturing process. As shown in FIG. 2(a), first, a semi-insulating GaAs substrate 20
Above is an n-type GaAs active layer 21 (electron concentration n=lQc
m, thickness t'': 0.6 μm) is epitaxially grown, and a CVD5iOz film 22 which becomes a spacer is formed thereon.
Furthermore, plasma CVD serves as a mask when forming gate electrodes.
For example, the 5iN film 23 has a thickness of about 0.4 ttm,
It is formed to a thickness of about 0.3 μm. The 5102 film 22 is formed by a conventional thermal decomposition method using SiH4 and 02 gas at a substrate temperature of 400.degree. On the other hand, when forming the 8iN film 23, buffer HF (HF: 6NH4F
) for the purpose of increasing the etching selectivity with respect to the 5iCh film 22 and providing a mask effect, for example, at a substrate temperature of 350° C., N2. NH3 and SiH4 gases are flowed into the reaction chamber at 70, 6, and 6 SCCM, respectively, and the pressure in the reaction chamber is
Orr XRF power 100W (7) condition test S i N
A film 23 is formed. 54 formed under these conditions
The etching rate of the 0z film 22 and the SiN film 23 with respect to the buffer HF is approximately 6000 A/min, respectively.
.

約100 A/m i nであシ、5iO2JpiiH
’22のエツチング速度は5iNj@23の約60倍と
なる。次にSiN膜2膜上3上トレジスト(AZ137
0)を塗布した後、通常のホトプロセスによシ、ソース
、ドレインおよびゲート電極形成部分24,25.26
のホトレジストを開口し、例えばゲート電極形成部分2
6の開口幅が0.5〜1.0μm程度、ソースおよびド
レイン電極形成部分24 、25とゲート電極形成部分
26の間隔が2μm程度となるようにホトレジスト層2
7をパターニングする。次に第2図(1))に示すよう
にホトレジスト層27をマスクとして’CP 4  ガ
スを用いたりアクティブスパック法にょ1:> SiN
 v23 オ、1:ヒ5iOz 膜22 ヲ:r−y 
fyfし、動作層21を露出させる。このとき、サイド
エツチングは殆X7ど行なわれないため、ホトレジスト
層27のパターンとはt1同−のパターンが5iNJ]
123および5102膜22に形成される。次に通常の
ホトプロセスによシ、ゲート電極形成部分26が選択的
に開口したホトレジスト層28を形成する。との際、ホ
トレジスト層27の表面にはりアクティブスパッタエツ
チング時に生じた弗素原子を多く含む変質層が形成され
ておシ、この変質層はAZ系レジストの溶剤であるn−
ブタチルアセテート等の有機溶媒やAZ系レジストの現
像液に不溶でおるため、ホトレジスト層27は変形する
とと々く元のパターンが維持される。また、ホトレジス
ト層28は少なくともソースおよびドレイン電極形成部
分24.25の露出した動作層21表面を覆っていれば
よく、この工程でのマスク合わせ精度、即ちホトレジス
ト層28の位置合わせ精度はあ甘り要求されない。次に
S io2膜22の側壁部が例えば約0.5μmサイド
エツチングされるようにバッファーHFを用いてエツチ
ングする。
Approximately 100 A/min, 5iO2JpiiH
The etching speed of '22 is approximately 60 times that of 5iNj@23. Next, a resist (AZ137
After applying 0), the source, drain and gate electrode forming portions 24, 25, 26 are formed by a normal photo process.
For example, the gate electrode forming portion 2 is opened in the photoresist.
The photoresist layer 2 is formed so that the opening width of the photoresist layer 6 is approximately 0.5 to 1.0 μm, and the distance between the source and drain electrode forming portions 24 and 25 and the gate electrode forming portion 26 is approximately 2 μm.
Pattern 7. Next, as shown in FIG. 2 (1)), using the photoresist layer 27 as a mask, CP 4 gas is used or an active spacing method is applied.
v23 O, 1:hi5iOz Membrane 22 wo:ry
fyf to expose the active layer 21. At this time, side etching is hardly performed at X7, so the pattern with the same t1 as the pattern of the photoresist layer 27 is 5iNJ]
123 and 5102 are formed on the film 22. Next, a photoresist layer 28 in which gate electrode forming portions 26 are selectively opened is formed by a normal photo process. At this time, an altered layer containing many fluorine atoms generated during active sputter etching is formed on the surface of the photoresist layer 27.
Since it is insoluble in organic solvents such as butyl acetate and in AZ-based resist developers, the photoresist layer 27 maintains its original pattern as soon as it is deformed. Further, the photoresist layer 28 only needs to cover at least the exposed surface of the active layer 21 in the source and drain electrode forming portions 24 and 25, and the accuracy of mask alignment in this step, that is, the alignment accuracy of the photoresist layer 28, is limited. Not required. Next, the side wall portion of the Sio2 film 22 is etched using buffer HF so that the side wall portion of the Sio2 film 22 is etched, for example, by about 0.5 μm.

このとき、SiN膜23のエツチング速度は約1/6゜
と遅いので殆んど(〜80A)エツチングされず、エツ
チング前の開口幅がほぼ維持される。後に形成されるゲ
ート電極のゲート長はこのSiN膜23の開口幅によっ
て決まる。また、SiO2膜22のサイドエツチング量
を増やすことにょシゲート逆耐圧を高ぐできるが、逆に
出力電力は低下する傾向にあるので、サイドエツチング
量はデバイスに要求される特性に応じて決定される。次
に光遮断下にて露出した動作層21表面を3−%酒石酸
水溶液1容積とエチレングリコール2容積とからなる電
解液中で陽極酸化しては形成された酸化被膜を除去する
ことを繰シ返すことにょシ動作層2り1のエビ厚を均一
化する。陽極酸化は酸化被膜直下の動作層21に形成さ
れる空乏層が半絶縁性基板2゜に到達してピンチオフ状
態となると、酸化被膜の成長が自然に停止することを利
用したもので必如、従ってピンチオフ電圧をウェーハ全
面に亘って均一化することができ、結果としてエビ厚を
均一にすることができる。ここでは動作層21のエビ厚
が約0.45μmに均一化される。次にレジスト剥離剤
(J−100)を用いてホトレジスト層27.28を除
去した後、第2図(C)に示すようにゲート電極形成部
分26を選択的にホトレジスト層29で被覆する。この
際、ホトレジスト層29は少なくともゲート電極形成部
分26を覆っていればよく、この工程でのマスク合わせ
精度もあま!ll要求されない。次に後に蒸着によって
形成されるオーミック金属のリフトオフ及び最終工程で
のS i02膜22の除去を容易にするために、SiO
2膜22の側壁部をバッファーHFで例えば0.3μm
程度サイドエツチングした後、動作層21とオーミック
コンタクトを形成する金属として、例えばAuGeNi
/Au30を直上から約0.3μm蒸着する。次に、ア
セトン等の有機溶剤でホトレジスト層29を除去するこ
とによシ、ホトレジスト層29上に被着されたA uG
eN i /Au 30も同時に除去した後、H2ガス
雰囲気中で450℃、1分間程度熱処理を施して低接触
抵抗のソース電極31、ドレイン電極32を形成する。
At this time, since the etching speed of the SiN film 23 is as slow as about 1/6°, it is hardly etched (up to 80 Å), and the opening width before etching is almost maintained. The gate length of the gate electrode to be formed later is determined by the opening width of this SiN film 23. In addition, by increasing the amount of side etching of the SiO2 film 22, the gate reverse breakdown voltage can be increased, but the output power tends to decrease, so the amount of side etching is determined according to the characteristics required of the device. . Next, under light shielding, the exposed surface of the active layer 21 is anodized in an electrolytic solution consisting of 1 volume of 3-% tartaric acid aqueous solution and 2 volumes of ethylene glycol, and the formed oxide film is removed. By turning the shrimp, the thickness of the working layer 2-1 is made uniform. Anodic oxidation takes advantage of the fact that when the depletion layer formed in the active layer 21 directly under the oxide film reaches the semi-insulating substrate 2° and becomes pinch-off, the growth of the oxide film stops naturally. Therefore, the pinch-off voltage can be made uniform over the entire surface of the wafer, and as a result, the thickness of the strip can be made uniform. Here, the thickness of the active layer 21 is made uniform to about 0.45 μm. Next, after removing the photoresist layers 27 and 28 using a resist stripping agent (J-100), the gate electrode forming portion 26 is selectively covered with a photoresist layer 29 as shown in FIG. 2(C). At this time, the photoresist layer 29 only needs to cover at least the gate electrode forming portion 26, and the mask alignment accuracy in this step is also excellent! ll not required. Next, in order to facilitate the lift-off of the ohmic metal formed later by vapor deposition and the removal of the Si02 film 22 in the final step, SiO
2 The side wall of the membrane 22 is coated with buffer HF to a thickness of, for example, 0.3 μm.
After side etching to a certain extent, a metal for forming an ohmic contact with the active layer 21 is made of, for example, AuGeNi.
/Au30 is evaporated to a thickness of about 0.3 μm from directly above. Next, by removing the photoresist layer 29 with an organic solvent such as acetone, the AuG deposited on the photoresist layer 29 is removed.
After removing the eN i /Au 30 at the same time, heat treatment is performed at 450° C. for about 1 minute in an H 2 gas atmosphere to form a source electrode 31 and a drain electrode 32 with low contact resistance.

次に第2図(d)に示すように、再度ゲート電極形成部
分26が選択的に開口したホトレジスト層33を形成す
る。この工程でのマスク合わせ精度も先の工程と同様あ
まシ要求され々い。
Next, as shown in FIG. 2(d), a photoresist layer 33 in which the gate electrode forming portion 26 is selectively opened is again formed. Mask alignment accuracy in this process is also required to be as precise as in the previous process.

次に露出した動作層21をさらにH3PO4:H2O2
:H20系のエツチング液を用いて所定のピンチオフ電
圧(あるいは飽和ドレイン電流)が得られるまで掘シ込
む(リセス形成)。ここでは約0.25μm掘り込めば
所定のピンチオフ電圧(〜4V)が得られる。次にホト
レジスト層33を除去した後、動作層21とショットキ
障壁を形成する金属として、例えばAt!34を直上か
ら約0.5μm蒸着すると、第2図(e)に示すように
SiN膜23の開口部を通してリセス部にゲート電極3
41がソースおよびドレイン電極31.32に対してセ
ルファライン的に形成される。この際、良好なショット
キ障壁を形成する上で、A+!34蒸着前に200℃程
度の基板加熱を施すことが望ましい。最後に、第2図(
f)に示すようにリセス部およびその近傍をホトレジス
ト35で覆い、MB2をHa PO4液でエツチングし
、続いて露出した5i02膜22をバッファーHFで除
去した後、ホトレジスト層35を除去することによシ、
第2図(g)に示すようなセルフアラインメント形Ga
AsMESFETの基本構造ができ上る。
Next, the exposed operating layer 21 is further covered with H3PO4:H2O2.
: Using an H20-based etching solution, dig (recess formation) until a predetermined pinch-off voltage (or saturated drain current) is obtained. Here, a predetermined pinch-off voltage (~4V) can be obtained by digging approximately 0.25 μm. Next, after removing the photoresist layer 33, the metal forming the active layer 21 and the Schottky barrier is, for example, At! 34 is deposited approximately 0.5 μm from directly above, the gate electrode 3 is deposited in the recess through the opening of the SiN film 23, as shown in FIG. 2(e).
41 are formed in a self-aligned manner with respect to the source and drain electrodes 31 and 32. At this time, A+! in forming a good Schottky barrier! It is desirable to heat the substrate to about 200° C. before the 34 vapor deposition. Finally, Figure 2 (
As shown in f), the recessed portion and its vicinity are covered with a photoresist 35, the MB2 is etched with a HaPO4 solution, the exposed 5i02 film 22 is removed with a buffer HF, and the photoresist layer 35 is removed. C,
Self-alignment type Ga as shown in Figure 2(g)
The basic structure of AsMESFET is completed.

伺、以上の実施例ではショットキバリアゲート構造のG
aA s電界効果トランジスタについて述べたが、Ga
AS以外の半導体を用いた電界効果トランジスタにも本
発明を適用できることは勿論である。
In the above example, G of the Schottky barrier gate structure is
Although we have talked about aAs field effect transistors, Ga
Of course, the present invention can also be applied to field effect transistors using semiconductors other than AS.

以上述べてきたように、本発明によるGa AsME8
FETの製造方法を用いれば、無機物である8iN膜が
ゲート形成時のマスクとなるため、ゲート金属蒸着前に
十分な温度での基板の加熱が可能であシ、従来のような
ホトレジストからの不純物の蒸発、汚染等もガいため、
良好なショットキ特性が再現性よく得られるばかシでな
く、動作層は陽極酸化により均一化されるとともに、ソ
ース、ドレインおよびゲートの各電極間距離はマスクの
位置合わせ精度に関係なく、はぼ1枚のホトマスクで決
定されるため、特性の揃った素子を再現性良く量産する
ことが同前と々つた。
As described above, GaAsME8 according to the present invention
Using the FET manufacturing method, the inorganic 8iN film serves as a mask during gate formation, making it possible to heat the substrate to a sufficient temperature before depositing the gate metal, and eliminating impurities from photoresist as in conventional methods. evaporation, contamination, etc.
In addition to achieving good Schottky characteristics with good reproducibility, the active layer is made uniform by anodic oxidation, and the distance between the source, drain, and gate electrodes is approximately 1, regardless of mask alignment accuracy. Because the process is determined using a single photomask, it has become difficult to mass-produce elements with uniform characteristics with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 〜(b)は従来のGaAsMESFET
ノ製造方法を説明するための図、第2図(a)〜(ロ)
)は本発明の一実施例を説明するための図で、主要工程
における素子の要部断面である。 図において、10・・・・・・半絶縁性基板、11・・
・・・・動作層、12・・・・・・ホトレジスト、13
・・・・ショットキ金属、14・・・・・・ゲート電極
、15・・・・・・ソース電極、16・・・・・・ドレ
イン電極、20・・・・・・半絶縁性G a A s基
板、21・・・・・・n型GaAS能動動作層、22・
・・・・・8i02膜、23・・・・・・SiN膜、2
4,25.26・・・・・・□それぞれソース、ドレイ
ン、ゲートa極形成部分、27.28,29,33.3
5・・・・・・ホトレジスト層、3 Q ・−・−・A
uGeNi /Au  、  31−−ソース電極、3
2・・・・・・ドレイン電極、34・・・・・・AM、
341・・・・・・ゲート電極を示す。 代理人 弁理士  内 原   晋 兜10 ti 粥zrm
Figures 1(a) and 1(b) show conventional GaAs MESFETs.
Diagrams for explaining the manufacturing method, Figures 2 (a) to (b)
) is a diagram for explaining one embodiment of the present invention, and is a cross section of a main part of an element in main steps. In the figure, 10... semi-insulating substrate, 11...
...Active layer, 12...Photoresist, 13
... Schottky metal, 14 ... Gate electrode, 15 ... Source electrode, 16 ... Drain electrode, 20 ... Semi-insulating G a A s substrate, 21...n-type GaAS active operation layer, 22.
...8i02 film, 23...SiN film, 2
4, 25.26...□Respectively source, drain, gate a-pole forming portions, 27.28, 29, 33.3
5...Photoresist layer, 3 Q...A
uGeNi/Au, 31--source electrode, 3
2...Drain electrode, 34...AM,
341... Indicates a gate electrode. Agent Patent Attorney Shinto Hara 10 ti porridge zrm

Claims (2)

【特許請求の範囲】[Claims] (1)半導体動作層上に第1の絶縁膜を設け、該第1の
絶縁膜よりエツチング速度の遅い第2の絶縁膜をその上
に形成し、前記第1、第2の絶縁膜を選択的に除去した
後、ゲート電極形成部分の半導体動作層を露出せしめ、
これを陽極酸化して掘シ込むことによシ、前記ゲート電
極形成部分に凹部を設け、この中にゲート電極を形成し
たことを特徴とする電界効果トランジスタの製造方法。
(1) A first insulating film is provided on the semiconductor active layer, a second insulating film having a slower etching rate than the first insulating film is formed thereon, and the first and second insulating films are selected. After removing the semiconductor layer, the semiconductor active layer in the gate electrode formation portion is exposed.
A method for manufacturing a field effect transistor, characterized in that a recess is provided in the gate electrode forming portion by anodizing and digging the recess, and a gate electrode is formed in the recess.
(2)前記第1の絶縁膜がCVD8i0z膜で、前記第
2の絶縁膜がプラズマCVD81N  膜であることを
特徴とする特許請求の範囲第1項記載の電界効果トラン
ジスタの製造方法。
(2) The method for manufacturing a field effect transistor according to claim 1, wherein the first insulating film is a CVD8i0z film, and the second insulating film is a plasma CVD81N film.
JP9884483A 1983-06-03 1983-06-03 Manufacture of field effect transistor Granted JPS59224176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9884483A JPS59224176A (en) 1983-06-03 1983-06-03 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9884483A JPS59224176A (en) 1983-06-03 1983-06-03 Manufacture of field effect transistor

Publications (2)

Publication Number Publication Date
JPS59224176A true JPS59224176A (en) 1984-12-17
JPH047101B2 JPH047101B2 (en) 1992-02-07

Family

ID=14230553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9884483A Granted JPS59224176A (en) 1983-06-03 1983-06-03 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS59224176A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370770A (en) * 1976-12-07 1978-06-23 Nec Corp Production of schottky barrier gate type field effect transistor
JPS5382267A (en) * 1976-12-28 1978-07-20 Nec Corp Anodizing method
JPS54162461A (en) * 1978-06-13 1979-12-24 Matsushita Electric Ind Co Ltd Manufacture for semiconductor device
JPS5595371A (en) * 1979-01-12 1980-07-19 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS5730376A (en) * 1980-07-30 1982-02-18 Fujitsu Ltd Manufacture of schottky barrier fet
JPS5789261A (en) * 1980-11-25 1982-06-03 Fujitsu Ltd Manufacture of semiconductor device
JPS57141919A (en) * 1981-02-26 1982-09-02 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370770A (en) * 1976-12-07 1978-06-23 Nec Corp Production of schottky barrier gate type field effect transistor
JPS5382267A (en) * 1976-12-28 1978-07-20 Nec Corp Anodizing method
JPS54162461A (en) * 1978-06-13 1979-12-24 Matsushita Electric Ind Co Ltd Manufacture for semiconductor device
JPS5595371A (en) * 1979-01-12 1980-07-19 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS5730376A (en) * 1980-07-30 1982-02-18 Fujitsu Ltd Manufacture of schottky barrier fet
JPS5789261A (en) * 1980-11-25 1982-06-03 Fujitsu Ltd Manufacture of semiconductor device
JPS57141919A (en) * 1981-02-26 1982-09-02 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH047101B2 (en) 1992-02-07

Similar Documents

Publication Publication Date Title
US4997779A (en) Method of making asymmetrical gate field effect transistor
JPH11274174A (en) Manufacture of field effect transistor
GB2274944A (en) Field effect transistor and method for producing the field effect transistor
US5231040A (en) Method of making a field effect transistor
JPH0472381B2 (en)
JP2685026B2 (en) Field effect transistor and manufacturing method
JPS59224176A (en) Manufacture of field effect transistor
JPH0260222B2 (en)
KR100383663B1 (en) Method for making self-aligned compound simiconductor device having stepped recess structure
JPS59224178A (en) Manufacture of field effect transistor
JPS62169483A (en) Structure of schottky field-effect transistor and manufacture thereof
JPS5833714B2 (en) Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor
KR100261461B1 (en) Method of making compound semiconductor device with asymmetry recess structure
JP2003059949A (en) Field effect transistor and production method therefor
JPS6252957B2 (en)
JPS6057977A (en) Manufacture of shottky gate field effect transistor
JPS59224177A (en) Manufacture of field effect transistor
JP2557432B2 (en) Field effect transistor
JPH04274332A (en) Manufacture of semiconductor device
JPH05218092A (en) Manufacture of field-effect transistor
JPH0574814A (en) Manufacture of schottky-gate type field-effect transistor
JPH0713980B2 (en) Field effect transistor
JPH0713977B2 (en) Method for manufacturing a shutter gate-gate type field effect transistor
JPH05175243A (en) Manufacture of semiconductor device
JPH04212428A (en) Manufacture of semiconductor device