JPS5921043A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS5921043A JPS5921043A JP13275582A JP13275582A JPS5921043A JP S5921043 A JPS5921043 A JP S5921043A JP 13275582 A JP13275582 A JP 13275582A JP 13275582 A JP13275582 A JP 13275582A JP S5921043 A JPS5921043 A JP S5921043A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- metal layer
- layer
- metallic layer
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Weting (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、半導体乗積回路寿との半導体装置を製造する
方法に係シ、特にその多層金視配線(以下、多層配線と
いう)において下層金属配線と」二層金稿配線との層間
絶縁膜及び下層金属膜と−1一層金属膜との連絡用開孔
部の形成方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device with a semiconductor multilayer circuit, and particularly relates to a method for manufacturing a semiconductor device with a semiconductor multilayer circuit, and in particular, in multilayer metal wiring (hereinafter referred to as multilayer wiring), lower metal wiring and "two-layer metal wiring" are used. The present invention relates to a method of forming an opening for communication between an interlayer insulating film and a lower metal film and a -1 layer metal film with a wiring line.
半導体乗積回路などの半導体装置を製造する際に多層配
線技術(/i不可欠であり、最近増々断線防止、微細パ
ターン化が要求されている。Multilayer wiring technology (/i) is essential when manufacturing semiconductor devices such as semiconductor multiplication circuits, and recently there has been an increasing demand for wire breakage prevention and fine patterning.
従来の多層配線の製造方法全第1図に示して説明すると
、図において、(1)は半導体基板、(2)は半導体基
板(1)上に形成された厚い酸化膜よlりなる絶縁膜、
(3)は第1の金属層、(4)は第2の金属層である。A conventional method for manufacturing multilayer wiring will be explained with reference to FIG. 1. In the figure, (1) is a semiconductor substrate, and (2) is an insulating film made of a thick oxide film formed on the semiconductor substrate (1). ,
(3) is the first metal layer, and (4) is the second metal layer.
(5)は前記第1及び第2の金属層(3)、 (4)間
に形成される層間絶縁膜、(6)は前記第1及び第2の
金属M(3)、(4)の連絡用開孔部である。かかる多
層配線を製造する場合は、まず半導体基板(1)上に公
知の方法で第1金属層(3)によシミ極及び配線を写真
食刻法により形成し、次いで前記第1金属層(3)と第
2金属層(4)との間に公知の技術によシ層間絶縁膜0
)を形成する。このとき、層間絶R膜(5)としては酸
化膜あるいは窒化膜等を用い、膜厚は層間耐圧及び配線
容量等の問題よJl、0.m 程度必要になる。そして
、写真食刻法によシ第1金属層(3)と第2金属層(4
)との連絡用開孔部(6)全形成する。次いで、前記開
孔部(6)及び第1金属層(3)ヲ含む半導体基板(1
)上の全面に第2金属層(4)を形成し、しかる後写真
食刻法によシ第2金属層(4)の配線及び第1金属層(
3)との接続を行なう方法がとられている。(5) is an interlayer insulating film formed between the first and second metal layers (3) and (4), and (6) is an interlayer insulating film formed between the first and second metal layers M (3) and (4). This is a communication opening. When manufacturing such multilayer wiring, first, stain electrodes and wiring are formed on the first metal layer (3) by photolithography on the semiconductor substrate (1) by a known method, and then the first metal layer (3) is formed on the semiconductor substrate (1) by photolithography. 3) and the second metal layer (4) using a known technique.
) to form. At this time, an oxide film, a nitride film, etc. is used as the interlayer isolation R film (5), and the film thickness is determined by Jl, 0.0. About m is required. Then, a first metal layer (3) and a second metal layer (4) are formed by photolithography.
) All communication openings (6) are formed. Next, a semiconductor substrate (1) including the opening (6) and the first metal layer (3) is formed.
), and then the wiring of the second metal layer (4) and the first metal layer (
3) is used.
ところで、とのような従来方法によシ層間絶縁膜(5)
及び第1金属層(3)と第2金属層(4)との連絡用開
孔部(6)全形成する場合、第1金属層(3)と第2金
属層(4)との層間絶縁膜(5)の膜厚は比較的厚く、
さらに連絡用開孔部(6)の斜面は第2金属層(4)の
形成時の断線を防ぐために比較的傾斜をゆるやかにする
必要がある。このため、仕上りの開孔部(6)は設計値
に比し極めて犬きくなシ、その開孔部壁が第2図中の点
線部で示す如く開孔部壁(a)及びΦ)まで後退する。By the way, the interlayer insulating film (5)
And when the communication opening (6) between the first metal layer (3) and the second metal layer (4) is completely formed, the interlayer insulation between the first metal layer (3) and the second metal layer (4) The film thickness of the film (5) is relatively thick;
Furthermore, the slope of the connecting hole (6) needs to be relatively gentle in order to prevent disconnection during formation of the second metal layer (4). For this reason, the finished opening (6) is extremely stiff compared to the design value, and the opening wall extends up to the opening wall (a) and Φ) as shown by the dotted line in Figure 2. fall back.
したがって、第1金属層(3)と第2金属層(4)の膜
質が同一であれば、第2金属層(4)による配線形成時
に第3図中の符号Iの領域に示す如く。Therefore, if the film quality of the first metal layer (3) and the second metal layer (4) is the same, then when wiring is formed using the second metal layer (4), as shown in the region I in FIG. 3.
第1金属層(3)の配線に断線が生じる。また、層間絶
縁膜(5)と第1金属層(3)下の絶縁膜(2)が同一
の膜質であれば、開孔部(6)の形成のための層間絶縁
膜(5)のエツチング時に第3図中の符号■の領域に示
す如く、第1金属層(3)下の絶縁膜(2)も同時にエ
ツチングされ、第2金属層(4)の形成時に段差が大き
くなるために、これによる第2金属層(4)の断線が生
じだシする。Disconnection occurs in the wiring of the first metal layer (3). Furthermore, if the interlayer insulating film (5) and the insulating film (2) under the first metal layer (3) are of the same film quality, the interlayer insulating film (5) may be etched to form the opening (6). At times, as shown in the region marked with the symbol ■ in FIG. 3, the insulating film (2) under the first metal layer (3) is also etched at the same time, and the step becomes large when the second metal layer (4) is formed. This causes disconnection of the second metal layer (4).
これらを防止するためには、あらかじめ設計段階におい
て第1金属層(3)による配線領域上に第2金属層(4
)との連絡用開孔部(6)が形成できるように、また連
絡用開孔部(6)を第2金属層(4)による配線が充分
にσえるように、連絡用開孔部(6)と第1金属層(3
)による配線領域との余裕(C)(第2図参照)、及び
連絡用開孔部(6)と第2金属層(4)との余裕(d)
(第2図参照)を充分とる必要がある。したがって、第
2図及び第3図に示す如く、第1金属層(3)による配
線間隔(e)及び第2金属層(4)による配線間隔(f
)の最小寸法は限られておシ、前述の如く余裕をとるた
めには第4図中の符号■及び■の領域の追加が必要とな
る。このことは、第2図及び第3図に示すセルサイズの
距離人が第4図に示すセルサイズの距離Bとなシ、セル
サイズ及びチップサイズの拡大をしいられるという欠点
があった。In order to prevent these, it is necessary to place the second metal layer (4) on the wiring area formed by the first metal layer (3) in advance at the design stage.
) so that the connecting hole (6) can be formed, and the wiring formed by the second metal layer (4) can be formed in the connecting hole (6) sufficiently. 6) and the first metal layer (3
) with the wiring area (C) (see Figure 2), and the communication opening (6) with the second metal layer (4) (d).
(See Figure 2). Therefore, as shown in FIGS. 2 and 3, the wiring spacing (e) due to the first metal layer (3) and the wiring spacing (f) due to the second metal layer (4).
) is limited, and in order to provide a margin as described above, it is necessary to add the areas marked ``■'' and ``■'' in FIG. This has the disadvantage that the cell size shown in FIGS. 2 and 3 requires an enlargement of the cell size and the chip size unless the distance B of the cell size shown in FIG. 4 is reached.
本発明は上記のような従来のものの欠点を除去するため
になされたもので、上層金属及び下層金属の眉間絶縁膜
をエツチング比の異なる2層の絶縁膜で形成し、かつ各
層金属の連絡用開孔部の構造を2段形状にすることによ
シ、との開孔部形成時の眉間絶縁膜のサイドエッチによ
る各金属層の断線を防止するとともに、各金属層による
配線の微細化を容易に行なうことのできる多層配線の製
造方法を提供することを目的としている。The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional method, and the insulating film between the eyebrows of the upper layer metal and the lower layer metal is formed by two layers of insulating film with different etching ratios, and the insulating film for connecting each metal layer is formed. By making the structure of the opening part into a two-stage shape, it is possible to prevent disconnection of each metal layer due to side etching of the glabella insulating film when forming the opening part, and also to miniaturize the wiring by each metal layer. It is an object of the present invention to provide a method for manufacturing multilayer wiring that can be easily performed.
以下、本発明の一実施例を図に基いて説明する。An embodiment of the present invention will be described below with reference to the drawings.
第5図は本発明方法によシ製造される多層配線の上層金
属と下層金属との連絡用開孔部の断面図であシ、図にお
いて、(1)は半導体基板、(りは半導体基板(1)上
に形成された絶縁膜としての厚い酸化膜、(3)は第1
の金属層、((イ)は第2の金属層である。FIG. 5 is a cross-sectional view of a communication opening between an upper metal layer and a lower metal layer of a multilayer wiring manufactured by the method of the present invention. In the figure, (1) is a semiconductor substrate; (1) a thick oxide film as an insulating film formed on the top; (3) the first
((A) is the second metal layer.
また、σ)は第1及び第2金属層(3) 、 (4)間
の第1絶縁膜、(8)は同じく第2の絶縁膜、(9)は
第1金属層(3)と第2金属層(4)との第1連絡用開
孔部、(10)は第1連絡用開孔部(9)内に形成され
た第2連絡用開孔部である。Also, σ) is the first insulating film between the first and second metal layers (3) and (4), (8) is the second insulating film, and (9) is the first insulating film between the first metal layer (3) and (4). The first communicating hole (10) with the second metal layer (4) is a second communicating hole formed in the first communicating hole (9).
次に、本発明による多層配線の製造方法を第6図乃至第
11図を参照して説明する。第6図において、比較的厚
い酸化膜(2)ヲ含む半導体基板(1)上に第1金属層
(3)による電極及び配線を形成し、次に後述する第2
金属層(4)(第5図参照)との絶縁のために第1絶縁
膜σ)及び第2絶縁膜(8)(第7図参照)を形成する
。この場合、まずCVD法あるいはスパッター法などの
方法によシ第1金属層(3)を含む全面に第6図に示す
如く酸化硅素による第1絶縁膜(7)を形成し、次いで
第1絶縁膜17′)上に第7図に示す如く、第1絶縁膜
q)の酸化硅素とエツチング比の異なる窒化硅素による
第2絶縁膜(8)金CVI) ?J、あるいはスパッタ
ー法により形成する。Next, a method for manufacturing a multilayer wiring according to the present invention will be explained with reference to FIGS. 6 to 11. In FIG. 6, electrodes and wiring are formed by a first metal layer (3) on a semiconductor substrate (1) including a relatively thick oxide film (2), and then a second metal layer (3), which will be described later, is formed.
A first insulating film σ) and a second insulating film (8) (see FIG. 7) are formed for insulation from the metal layer (4) (see FIG. 5). In this case, first, a first insulating film (7) made of silicon oxide is formed on the entire surface including the first metal layer (3) by a method such as a CVD method or a sputtering method, as shown in FIG. As shown in FIG. 7, a second insulating film (8) gold CVI) is formed on the film 17'), which is made of silicon nitride having a different etching ratio from the silicon oxide of the first insulating film q). J or sputtering method.
このとき、第2絶縁膜(8)の膜厚は第1絶縁膜(7)
の膜厚に比17充分厚く、たとえげ第1絶縁膜(7)の
膜厚は1000へ一2oooX、第2絶縁膜(8)の膜
厚ば5ooo−9oooX程度が適当である。次に写真
食刻法により第1金属層(3)と第2金属層(4)との
連絡・ 用開孔部全形成すべき領域2にの第2絶縁膜
(8)に、まず第8図に示す如く第1開孔部(9)を形
成する。At this time, the film thickness of the second insulating film (8) is equal to that of the first insulating film (7).
For example, the thickness of the first insulating film (7) is approximately 1000-200X, and the thickness of the second insulating film (8) is approximately 500-900X. Next, by photolithography, the second insulating film (8) in the area 2 where all the openings for connecting the first metal layer (3) and the second metal layer (4) are to be formed is first etched with the eighth metal layer (8). A first opening (9) is formed as shown in the figure.
この場合、第2絶縁膜(8)のエツチングに際[7ては
第2金縞層(4)の開孔部壁での断線を防ぐために、開
孔部壁の傾斜はゆるやかにすることが重重しく、1だ第
2絶縁膜(8)の膜厚は前述の如く比較的厚いために、
開孔部11i積は設計値に比し、かなりのサイドエッチ
畦をしいられる。なお、第8図中、(11)は第2絶縁
膜(8)のエツチングに際し塗布されたl/シストであ
る。In this case, when etching the second insulating film (8), the slope of the opening wall may be made gentle to prevent disconnection at the opening wall of the second gold striped layer (4). Since the second insulating film (8) is relatively thick as described above,
The product of the opening 11i has a considerable side etch ridge compared to the design value. In FIG. 8, (11) is l/cyst applied during etching of the second insulating film (8).
次いで、第2絶縁膜(8)に形成された第1開孔部(9
)内の第1絶縁膜σ)に同じく写真食刻法により第9図
に示す如く第2開孔部(10)全形成する。この場合、
第1絶縁膜σ)は第2絶H膜(8)に比し、充分膜厚は
薄いために、第2開化部(10)の開孔部壁に傾胴全つ
りる必要もなく、またエツチング時の設計値に対するサ
イドエッチMlもはとんどなく、開孔部面積は設削値に
対して椿めて精度良く形成できる(第101!’1参照
)。なJIF−1p+y 9 c+に:1i’イj(1
2)は第1絶縁膜(7)のエツチングに際17塗布され
たレジストである。次いで、第10図に示ず如(vジス
) (12)’に除去1. k後、第21:il孔(’
fit(10)内の第1金属層(3)と第2開化部(1
0)及び第1開孔部(9)を含む全面に第11図に示す
如<、py2妬属層(4)全公知の方法により形成し、
写真食刻法で第1金属層(3)との接続あるいは第2金
属層(4)による配線を形成して完了する。Next, the first opening (9) formed in the second insulating film (8) is opened.
As shown in FIG. 9, a second opening (10) is entirely formed in the first insulating film σ) in ) by the same photolithography method. in this case,
Since the first insulating film σ) is sufficiently thinner than the second insulating film (8), there is no need for the entire tilting body to hang on the wall of the opening of the second opening (10). The side etching Ml is almost the same as the design value during etching, and the opening area can be formed with high precision by making it even smaller than the cutting value (see No. 101!'1). JIF-1p+y 9 c+: 1i'ij(1
2) is a resist applied during etching of the first insulating film (7). Next, remove as shown in FIG. 10 (12)'. After k, 21st: il hole ('
The first metal layer (3) and the second opening part (1) in the fit (10)
As shown in FIG. 11, a py2 layer (4) is formed on the entire surface including the first hole (9) and the first opening (9) by any known method,
A connection with the first metal layer (3) or a wiring using the second metal layer (4) is formed by photolithography to complete the process.
このように、上記実施例によると、第1金属層(3)と
第2金属層(4)との層間絶縁膜全エツチング比の異な
る笛1および第2絶縁膜(7) 、 (8)で形成1〜
、かつ第1金属層(3)と第2金属層(4)の連絡用開
孔部を第1及び第2開孔部(9)、(10)にて2段構
造とすることにより、第1金属層(3)上の開孔部面積
が設計値に対し極めて精度良く形成できる。つまり、連
絡用開孔部(10)と第1金属層(3)による配線の余
裕(C)(第2図参照)と、連絡用開孔部(1o)と第
2金属層(4)による配線との余裕(d)(第2図参照
)を極めて少なくでき、パターンの微細化が可能になる
。1だ、従来のような連絡用開孔部(6)形成時の層間
絶縁膜(5)のサイドエッチによる第1及び第2金属層
の断線全防止することもできる。As described above, according to the above embodiment, the first metal layer (3) and the second metal layer (4) have different total etching ratios of the interlayer insulation films (7) and (8). Formation 1~
, and by forming the communication openings between the first metal layer (3) and the second metal layer (4) into a two-stage structure with the first and second openings (9) and (10), The area of the opening on the first metal layer (3) can be formed with extremely high precision relative to the design value. In other words, the wiring allowance (C) due to the connecting hole (10) and the first metal layer (3) (see Figure 2), and the wiring margin (C) due to the connecting hole (1o) and the second metal layer (4). The margin (d) (see FIG. 2) with respect to the wiring can be extremely reduced, making it possible to miniaturize the pattern. 1. Disconnection of the first and second metal layers due to side etching of the interlayer insulating film (5) when forming the connecting hole (6) as in the conventional method can be completely prevented.
なお、上記実施例においては第1−絶縁膜(7)として
酸化硅素、第2絶縁膜(8)として窒化硅素を用いたが
、逆に第1絶縁膜(7)として窒化硅素、第2絶縁膜(
8)とI−て酸化硅素を用いても上記実施例と同様の効
果を奏する。さらに、上記実施例においては′2層の金
属配線について述べたが、3層以上の多層配線における
下層金属と上層金属間の連絡用開孔部においても適用可
能である。In the above embodiment, silicon oxide was used as the first insulating film (7) and silicon nitride was used as the second insulating film (8); film(
8) and I- Even if silicon oxide is used, the same effect as in the above embodiment can be obtained. Furthermore, although the above embodiments have been described with respect to two-layer metal wiring, the present invention can also be applied to communication openings between lower and upper metal layers in multilayer wiring of three or more layers.
以−1−のように本発明によれば、多層配線の層間絶縁
膜をエツチング比の異なる2層の絶縁膜によ)形成し、
さらに下層金属と−L層金属との連絡用開孔部の断面も
2段構造とするととによ如、下層金属上の開孔部面積が
設計値に対して極めて精度よく形成でき、したがって、
多層配線における」二層金属及び下層金属の断線が防止
できるとともに、微細パターン化がはかれるなどのすぐ
れた効果がある。As described in -1- below, according to the present invention, the interlayer insulating film of the multilayer wiring is formed by two layers of insulating films with different etching ratios,
Furthermore, if the cross section of the communication hole between the lower layer metal and the -L layer metal is also made into a two-stage structure, the area of the hole on the lower layer metal can be formed with extremely high precision relative to the design value, and therefore,
It has excellent effects such as preventing disconnection of the second layer metal and lower layer metal in multilayer wiring, as well as enabling fine patterning.
第1図は従来方法による多層配線の」二層金属と下I婿
金属との連絡用開孔部の断面図、第2図は従来方法によ
る多層配線の1セルの断面図、第3図は従来方法による
多層配線の説明に供する1セルの断面図、第4図は従来
方法による多層配線の欠点を防止するために拡大をしい
られた1セルの断面図、第5図は本発明方法の一実施例
を説明するための多層配線による上層金属と下層金属ど
の連絡用開孔部の断面図、第6図乃至第11図t」:同
じく本発明による多層配線の製造方法の工程断面図であ
る。
(1)・・・・半導体基板、(2)・・・・酸化膜、(
3)・・・・第1金属層、(4)・・・・第2金属層、
(!i)・・・・層間絶縁膜、(6)・・・・各金属層
連絡用開孔部、σ)・・・・第1絶縁膜(第1層間絶縁
膜)、(8)・・・・第2絶縁膜(第2層間絶縁膜)、
(9)・・・・第1開孔部、(10)・・・・第2開孔
部、(11)、(12)−−−−レジスト、(a) 、
(b) −・・・開孔部壁、(C)・・・・第1金属
層による配線と開孔部との余裕、(d)・・・・第2金
属層による配線と開孔部との余裕、(e)・・・・第1
金属層による配線の最小間隔、(f)・・・・第2金属
層による配線の最小間隔、(g)・・・・最終開孔部、
(I)・・・・第1金属層の断線部、(U)・・・・第
2金属層の断線部、(III)・・・・第2金属層によ
る配線の追加領域、(■)・・・・第1金属層による配
線の追加領域、A・・・・最小セルサイズ、B・・・・
第1,2金属層の断線防止のためにしいられた最小セル
サイズ。
代 理 人 葛 野 信 −(11
)
第5図
第1図
第2図
第3図
第4図
第6図
第7図
第8図
―ト−二二が
第9図
第10図
第11図Figure 1 is a cross-sectional view of a communication hole between the second layer metal and the lower layer metal in a conventional multilayer wiring, Figure 2 is a cross-sectional view of one cell in a conventional multilayer wiring, and Figure 3 is a cross-sectional view of one cell in a conventional multilayer wiring. FIG. 4 is a cross-sectional view of one cell to explain multilayer wiring using the conventional method. FIG. 4 is a cross-sectional view of one cell enlarged to prevent the drawbacks of multilayer wiring using the conventional method. FIG. 6 to 11 are cross-sectional views of connecting holes between the upper layer metal and the lower layer metal in the multilayer wiring for explaining one embodiment. be. (1)... Semiconductor substrate, (2)... Oxide film, (
3)...first metal layer, (4)...second metal layer,
(!i)...Interlayer insulating film, (6)...Openings for connecting each metal layer, σ)...First insulating film (first interlayer insulating film), (8)... ... second insulating film (second interlayer insulating film),
(9)...First opening, (10)...Second opening, (11), (12)---Resist, (a),
(b) -... Wall of the opening, (C)... Margin between the wiring made of the first metal layer and the opening, (d)... Wiring made of the second metal layer and the opening margin, (e)...1st
Minimum interval between wirings in the metal layer, (f) Minimum interval between wirings in the second metal layer, (g) Final opening,
(I)...Disconnection in the first metal layer, (U)...Disconnection in the second metal layer, (III)...Additional area for wiring by the second metal layer, (■) ...Additional area for wiring due to the first metal layer, A...Minimum cell size, B...
The minimum cell size specified to prevent disconnection of the first and second metal layers. Agent Shin Kuzuno - (11
) Figure 5 Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 - To-22 is Figure 9 Figure 10 Figure 11
Claims (1)
層の金属膜を形成する工程と、前記下層金属膜全選択的
に除去する工程と、前記下層金属膜を含む全面を第1絶
縁膜で覆う工程と、前記第1絶縁膜とエツチング比の異
なる第2絶縁膜全前記第1絶縁膜上全面に該第1絶縁膜
厚よ)も厚く覆う工程と、前記第2絶縁膜に第1開孔部
全形成する工程と、前記第1開孔部内の第1絶縁膜に第
2開孔部全形成する工程と、前記第1開孔部と第2開孔
部及び第2開孔部内の下層金属換金含む半導体基板上の
全面に上層金属膜を形成する工程全具備してなることを
特徴とする半導体装置の製造方法。 C)第1絶縁膜として酸化硅素または酸化硅素を主成分
とする物質を用い、第2絶縁膜として窒化硅素音用いる
こと全特徴とする特許請求の範囲第1項記載の半導体装
置の製造方法。 0)第1絶縁膜として窒化硅素を用い、第2絶縁膜とし
て酸化硅素捷たは酸化硅素を主成分とする物質音用いる
ことを特徴とする特許請求の範囲第1項記載の半導体装
置の製造方法。[Scope of Claims] α) In the step of forming a multilayer metal wiring on a semiconductor substrate, there are a step of forming a lower metal film, a step of selectively removing the entire lower metal film, and a step of removing the entire surface including the lower metal film. a step of covering with a first insulating film; a step of covering the entire surface of the first insulating film with a second insulating film having a different etching ratio from the first insulating film; a step of forming all the first apertures in the film; a step of forming all the second apertures in the first insulating film in the first apertures; 2. A method for manufacturing a semiconductor device, comprising the steps of forming an upper layer metal film on the entire surface of a semiconductor substrate including a lower layer metal layer in an opening. C) The method for manufacturing a semiconductor device according to claim 1, characterized in that silicon oxide or a substance containing silicon oxide as a main component is used as the first insulating film, and silicon nitride is used as the second insulating film. 0) Manufacture of a semiconductor device according to claim 1, characterized in that silicon nitride is used as the first insulating film, and silicon oxide film or a material containing silicon oxide as a main component is used as the second insulating film. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13275582A JPS5921043A (en) | 1982-07-27 | 1982-07-27 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13275582A JPS5921043A (en) | 1982-07-27 | 1982-07-27 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5921043A true JPS5921043A (en) | 1984-02-02 |
Family
ID=15088793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13275582A Pending JPS5921043A (en) | 1982-07-27 | 1982-07-27 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5921043A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0418437U (en) * | 1990-06-01 | 1992-02-17 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5384580A (en) * | 1976-12-29 | 1978-07-26 | Fujitsu Ltd | Manufacture for semiconductor device |
JPS5455388A (en) * | 1977-10-12 | 1979-05-02 | Matsushita Electric Ind Co Ltd | Production of mos type semiconductor device |
-
1982
- 1982-07-27 JP JP13275582A patent/JPS5921043A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5384580A (en) * | 1976-12-29 | 1978-07-26 | Fujitsu Ltd | Manufacture for semiconductor device |
JPS5455388A (en) * | 1977-10-12 | 1979-05-02 | Matsushita Electric Ind Co Ltd | Production of mos type semiconductor device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0418437U (en) * | 1990-06-01 | 1992-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4617193A (en) | Planar interconnect for integrated circuits | |
JPH0982804A (en) | Semiconductor device and manufacture thereof | |
JPS62118543A (en) | Semiconductor integrated circuit device | |
JPS5921043A (en) | Manufacture of semiconductor device | |
JPH05226475A (en) | Manufacture of semiconductor device | |
JP2001345378A (en) | Semiconductor device and method of manufacturing the same | |
JPH0388351A (en) | Manufacture of semiconductor device | |
EP0296718A2 (en) | A coplanar and self-aligned contact structure | |
JPH08236622A (en) | Semiconductor device and fabrication thereof | |
JPS62136857A (en) | Manufacture of semiconductor device | |
JPH04109654A (en) | Semiconductor device and manufacture thereof | |
JPH04303943A (en) | Manufacture of semiconductor device | |
JPS61239646A (en) | Formation of multilayer interconnection | |
JPS5966125A (en) | Manufacture of semiconductor device | |
JPS63107043A (en) | Forming method of conductive line for semiconductor device | |
JPS62293644A (en) | Manufacture of semiconductor device | |
JPS6235537A (en) | Semiconductor device and manufacture thereof | |
JPH079933B2 (en) | Method for manufacturing semiconductor device | |
JPS60124950A (en) | Semiconductor device having multilayer interconnection structure | |
JPS6149439A (en) | Manufacture of semiconductor device | |
JPS60177652A (en) | Manufacture of semiconductor device | |
JPH0936222A (en) | Semiconductor device and its manufacture | |
JPH0542139B2 (en) | ||
JPH07135249A (en) | Semiconductor device and manufacture thereof | |
JPS60245252A (en) | Multilayer interconnection member |