JPS59191263A - Manufacture of cell plate - Google Patents
Manufacture of cell plateInfo
- Publication number
- JPS59191263A JPS59191263A JP58066082A JP6608283A JPS59191263A JP S59191263 A JPS59191263 A JP S59191263A JP 58066082 A JP58066082 A JP 58066082A JP 6608283 A JP6608283 A JP 6608283A JP S59191263 A JPS59191263 A JP S59191263A
- Authority
- JP
- Japan
- Prior art keywords
- active material
- filling
- active substance
- substrate
- porous metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0416—Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は三次元的に連続する骨格構造を倚する金属多孔
体を基板とし、該基板に粉末状態の活物質を充填する電
池用゛電極板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention is directed to a battery which uses a porous metal material having a three-dimensionally continuous skeleton structure as a substrate and fills the substrate with active material in powder form. The present invention relates to a method of manufacturing an electrode plate.
(ロ)従来技術
電池用電極板、特にアル−h IJ蓄電池用の極板は、
従来より主として焼結式極板が用いられてSす、たとえ
ばニッケル陽極板であれば、二・ンケル粉末を生成分と
するスラリーを極板芯体に塗着後焼結して得た多孔性基
板に二・ノγルの塩溶液を含浸し、次いでアルカリで水
酸化物に置換下ることによって製造されている。この左
造方法は、機械的強度に優れると共に高率放電特性及び
サイクル寿命の面でも優れた性能を有する極板が寿られ
るという利点を持つ反面、製造工程が複雑であると共に
製造に長時間を要し、また製造コストが高1/)という
問題点がある。(b) Prior art electrode plates for batteries, especially electrode plates for Al-h IJ storage batteries,
Traditionally, sintered electrode plates have been mainly used.For example, in the case of nickel anode plates, the porous structure is obtained by applying a slurry containing Ni-Nkel powder to the electrode plate core and then sintering it. It is manufactured by impregnating a substrate with a di-norm salt solution and then substituting the hydroxide with an alkali. This left-making method has the advantage of long-lasting electrode plates that have excellent mechanical strength, high-rate discharge characteristics, and cycle life, but on the other hand, the manufacturing process is complicated and takes a long time to manufacture. There is a problem that the manufacturing cost is high (1/).
この様な製法上の問題を解消する製造方法として、パン
チング板等の極板芯体に溶物質ペーストを塗着乾燥する
方法も知られでいるが、極板性能の面で焼結式極板(こ
比較しC数段劣っている。As a manufacturing method that solves these manufacturing problems, a method is known in which a molten paste is applied to the core of an electrode plate such as a punched plate and then dried, but in terms of electrode plate performance, sintered electrode plates are (Compared to this, C is several steps inferior.
而して、近年に至っては三次元柵状骨格構造を有する金
属多孔体(以下スポンジ状金属多孔体)を基板として、
これに活物質を充填する製造方法が提案されている。こ
のスポンジ状金属多孔体は多孔度が約95%と焼結式基
板の約8o%を人き(上回わるため、焼結式基板と比較
して活物質の充填量が増加し高容量の極板を製造するこ
とができ、また、孔径も300〜700μと焼結式基板
に比較して100倍程度大きいため活物質を溶解せずl
こ直接充填できる。更にこの基板は導電マトリックスが
しつかりできCいるため、ペースト式の様に多旨の導電
剤を添加する必要がないという利点かある。In recent years, porous metal bodies (hereinafter referred to as sponge-like porous metal bodies) having a three-dimensional fence-like skeleton structure have been used as substrates.
A manufacturing method has been proposed in which this is filled with an active material. This sponge-like metal porous material has a porosity of approximately 95%, which is approximately 80% higher than that of the sintered substrate, so the amount of active material filled increases compared to the sintered substrate, resulting in high capacity. It is possible to manufacture electrode plates, and since the pore diameter is 300 to 700μ, which is about 100 times larger than that of sintered substrates, it is possible to manufacture electrode plates without dissolving the active material.
This can be filled directly. Furthermore, since the conductive matrix of this substrate is fixed, there is an advantage that there is no need to add various conductive agents as in the case of a paste type.
以上の様にスポンジ状金属多孔体を基板として用いた極
板は優れた特徴を持っており、製造方法として活物質粉
末と導電剤粉末との混合粉末に糊料液を加えてペースト
状とし、スポンジ状金属多孔体に摺り込む方法、あるい
は活物質粉末を振動及び吹込みによってスポンジ状金属
多孔体に充填する方法が提案され′Cいる。しかし、前
者の製造方法は、焼結式に比較して簡略化されているが
、十分に合理化された製造方法とは言えず、ペースト状
活物質を基板の細孔内に均一に高密度に充填することが
難しく、またこの問題点を解消するため、予めスポンジ
状金属多孔体に液体を含有させ基板の細孔内にペースト
状活物質を摺り込む方法が特公昭55−39109号公
報及び特公昭56−’r7664号公報で開示されCい
るが、この方法に於いても、ペーストが空孔内の液体と
混合するため、活物質ぞ度やペーストの流動性が時間と
共に変化し、充填量を調整するのが困難であり、またペ
ーストの含液率が高まるため、充填量が少な(なるとい
う問題点があった。As described above, an electrode plate using a sponge-like porous metal material as a substrate has excellent characteristics, and the manufacturing method is to add a glue liquid to a mixed powder of active material powder and conductive agent powder to form a paste. A method of sliding active material powder into a sponge-like porous metal body, or a method of filling a sponge-like porous metal body with active material powder by vibration and blowing has been proposed. However, although the former manufacturing method is simplified compared to the sintering method, it cannot be said to be a fully rationalized manufacturing method, and the paste-like active material is uniformly and densely packed within the pores of the substrate. In order to solve this problem, a method is disclosed in Japanese Patent Publication No. 55-39109 and Japanese Patent Publication No. 55-39109, in which a sponge-like metal porous material is impregnated with a liquid and a paste-like active material is rubbed into the pores of the substrate. Although disclosed in Publication No. 56-'r7664, in this method as well, since the paste mixes with the liquid in the pores, the degree of active material and the fluidity of the paste change over time, and the filling amount Since it is difficult to adjust the amount of paste and the liquid content of the paste increases, there is a problem that the amount of filling is small.
後者は、スポンジ状金属多孔体に活物質を充填する際増
粘剤を用いずにも容易に且つ均一に充填することが可能
であり、高い利用率及び体積効率か得られる。しかし、
実M検討を進めていく中で、活物質の粒径の相異4こよ
り、活物質充項討にバラツキが生じ、充填量が不充分で
あったり、極板の初期容量が低くなるという問題が生じ
ることがわかった。In the latter case, the active material can be easily and uniformly filled into the sponge-like porous metal material without using a thickener, and a high utilization rate and volumetric efficiency can be obtained. but,
As we proceeded with the actual M study, we found that due to the difference in the particle size of the active material, there would be variations in the amount of active material being filled, leading to problems such as insufficient filling amount and low initial capacity of the electrode plate. It was found that this occurs.
(ハ)発明の目的
本発明はかかる点に鑑み、スポンジ状金属多孔体に粉末
状態の活物質を直接充填する充填方法に於いて、活物質
粉体の粒径及び乾燥状態の見掛は密度を規制することに
より、活物質の充填量を増加させ、極板の初期容量の低
下を防止し、極板性能のバラツキをな(すことを目的と
する。(c) Purpose of the Invention In view of the above, the present invention provides a filling method in which a sponge-like porous metal body is directly filled with a powdered active material. The purpose of this is to increase the filling amount of active material, prevent a decrease in the initial capacity of the electrode plate, and eliminate variations in the performance of the electrode plate.
に)発明の構成
本発明は三次元的に連続する骨格構造を有する金属多孔
体を基体とし、この菅属多孔体内に液体を含浸させたの
ち活物質粉体を液中に沈降させる充填方法、及び前記金
属多孔体を活物質粉体ベッド内に入れ振動を与えること
によって充填させる充填方法等の金属多孔体(こ粉末状
態の活物質あるいは粉末状態の活物質を主体とする混合
体を直接充填する′覗池用嵐極板の製造方法に於いて、
前記活物質の粒子径を前記多孔体の平均孔径の1/4(
14下で、且つ充填時の乾燥状態の見掛は密度を0.9
y/ce9J上に規制するものである。B) Structure of the Invention The present invention provides a filling method in which a porous metal body having a three-dimensionally continuous skeleton structure is used as a base, and the porous body is impregnated with a liquid, and then active material powder is precipitated in the liquid; and a method of filling the metal porous body by placing the metal porous body in an active material powder bed and applying vibration. In the method of manufacturing storm pole plates for ponds,
The particle diameter of the active material is set to 1/4 of the average pore diameter of the porous body (
14, and the apparent density in the dry state at the time of filling is 0.9.
y/ce9J.
(ホ)実施例
本発明に関係する実験及び実施例を以下に示し説明する
。(e) Examples Experiments and examples related to the present invention are shown and explained below.
電極基板として平均孔径が約300μ及び約500μ(
基体メーカは夫々7 Q Ce1l/1nch及び45
Ce1l/1nchと表示)であり、厚みが2驕であ
る2種類のスポンジ状ニッケル多孔体を用い、活m質と
して粉砕程度を変化させ粒子径を4均一とした異なる粒
子径を有するa種類の水酸化ニッケルを用い゛C基板に
活物質を充填し、活物質の粒子径、スポンジ状ニッケル
多孔体への充填量及び活物質の乾燥状態の見掛は密度を
測定した。尚、活物質の粉末粒径はフィンシャーサブシ
ーブサイザーにより測定を行ない(以下この測定値をフ
ィッシャーサイズとする)、充填方法はスポンジ状ニッ
ケル多孔体を水に浸漬してその空孔を完全に水と置換し
た後、この多孔体を水より取り出し水平に静置し°C上
方より水酸化ニッケル粉末を微虚ずつ落下させ、スポン
ジ状ニッケルに水酸化ニッケルを充填し、スポンジ状ニ
ッケルの表面空孔が完全に水酸化ニッケルにより充填さ
れた段階で充填操作を中止させる方法を用いた。結東を
第1表に示す。As an electrode substrate, the average pore diameter is about 300μ and about 500μ (
The base manufacturers are 7 Q Ce1l/1nch and 45 respectively.
Using two types of sponge-like porous nickel materials, each having a thickness of 2 mm, the pulverization degree of the active material was changed to make the particle size uniform. A C substrate was filled with an active material using nickel hydroxide, and the particle size of the active material, the amount filled into the sponge-like porous nickel body, and the apparent dry state and density of the active material were measured. The powder particle size of the active material is measured using a Finscher subsieve sizer (hereinafter this measured value is referred to as the Fischer size), and the filling method is to completely fill the pores by immersing a sponge-like porous nickel material in water. After displacing the water with water, the porous body was taken out of the water and left to stand horizontally, and nickel hydroxide powder was dropped little by little from above °C to fill the sponge-like nickel with nickel hydroxide. A method was used in which the filling operation was stopped when the holes were completely filled with nickel hydroxide. The results are shown in Table 1.
第 1 表
表よりわかる様に平均孔径約300μのスポンジ状ニッ
ケル多孔体を用いた場合はフィッシャーサイズ6.0μ
tata1μ以下の活物質粉末を充填したとき、また平
均孔径約500μのスポンジ状ニッケルを出いた場合は
フイツシY−サイズ3.OP吸上8.3μ以下の活物質
粉末を充填し1こときに夫々最大充填量が得ら、イする
。そしC両者は活物質の粒子径がスポンジ状ニッケル多
孔体の平均孔径の約1/40〜1760以下で、商社つ
活物質のフィッシャーサイズか2.2μ教上で晶充填漱
が得られているところで共通しCいる。この理由は以下
の様に考えられる。スポンジ状ニッケル多孔体は空孔の
平均孔径が夫々的300P及び約500μのものを用い
たか、この基板を仔細に観察して゛みると、平均孔径の
1/6あるいはそれ以下の径の空孔が存在することがわ
かった。また実験に用いた活@質粉末をさらに325メ
ツシユの篩にかけると晶上に0.5〜20%の活物質が
粉砕の程度に応じで残り、活物質粉末中には大粒径(a
十IL)の粒子が存在・す゛ることかわかった。従って
基板の最小孔径と活物質の最大粒径との比は実際には2
:1〜3:1であり、フィッシャーサイズ10.6〜6
.1μと粒径が比較的大きな活物質は基板の最小孔径と
活物質の最大粒径との比が小さくなり、それに伴い大粒
径の粒子の割合が多(なり基板の空孔を塞いでしまい充
填性を悪(している。また、基板の最小孔径と活物質の
最大粒径との寸法比が2:1〜3:1であるにもかかわ
らず大粒径の粒子の割合が多い粉体の充填性が悪(なる
理由は次の様に推測される。粉体をペースト化し擦り具
の様な治具を使用し′Cスポンジ状ニッケルに圧入する
方法では、基体円部で粒子が基板の網状骨格に突き当っ
て動きが阻まれても粒子の周囲にすべりを助ける糊料が
存在し、そこへ外力が加えられるため、さらに基板内部
へ多動できる。これに対して、上記実験の様に粒子の自
・重を利用した充填法を採ると、基板内部で粒子が網状
骨格により動きを阻まれた場合、その粒子はそこで完全
に静止してしまう。そしてこの粒子が大きなものであれ
ば基板中の空孔の開口面積を小さくし後から入って来た
粒子の動きをも止めごしまい、大粒径の粒子の割合が多
い粉体は充填量が少なくなる。次にフィッシャーサイズ
が2.2μ鼠下の活物質粉体を用いたときに充填量が減
少した理由は、フィッシャーサイズの減少に伴なって、
活vJ質の見掛は密度が減少していることに起因すると
考えら2れ、活物質の粒子表面の凹凸、形状によるもの
と推測される。As can be seen from Table 1, when a sponge-like porous nickel material with an average pore diameter of approximately 300μ is used, the Fisher size is 6.0μ.
When filled with active material powder of tata 1μ or less, or when sponge-like nickel with an average pore diameter of about 500μ is filled, the size is Y-size 3. Fill the active material powder with an OP wicking capacity of 8.3μ or less to obtain the maximum filling amount at one time. In both cases, the particle size of the active material is about 1/40 to 1,760 or less of the average pore size of the sponge-like porous nickel material, and a crystal-filled filtrate is obtained on the Fisher size or 2.2μ of the trading company active material. By the way, they have C in common. The reason for this is thought to be as follows. The sponge-like nickel porous material used had pores with average pore diameters of 300P and 500μ, respectively.When this substrate was closely observed, it was found that pores with a diameter of 1/6 or less of the average pore diameter were used. It turns out that it exists. Furthermore, when the active material powder used in the experiment is further passed through a 325-mesh sieve, 0.5 to 20% of the active material remains on the crystal depending on the degree of pulverization, and the active material powder contains large particles (a
It was found that particles of 10 IL) exist. Therefore, the ratio between the minimum pore size of the substrate and the maximum particle size of the active material is actually 2.
:1-3:1, Fisher size 10.6-6
.. For an active material with a relatively large particle size of 1μ, the ratio of the minimum pore size of the substrate to the maximum particle size of the active material becomes small, and accordingly, the proportion of large particles becomes large (as a result, they block the pores of the substrate). In addition, the powder has a large proportion of large particles even though the size ratio between the minimum pore size of the substrate and the maximum particle size of the active material is 2:1 to 3:1. The reason for the poor filling properties of the body is presumed to be as follows.In the method of turning powder into a paste and press-fitting it into sponge-like nickel using a jig such as a rubbing tool, particles are formed in the circular part of the base. Even if the particle hits the network skeleton of the substrate and is blocked, there is a glue around the particle that helps it slide, and an external force is applied to it, allowing it to move further into the substrate.In contrast, in the experiment described above, When a filling method that utilizes the particle's own weight is adopted, if the movement of the particle is blocked by the network skeleton inside the substrate, the particle will come to a complete standstill. If so, it will reduce the opening area of the pores in the substrate and stop the movement of particles that enter later, and powders with a high proportion of large-sized particles will have a small filling amount.Next, the Fischer size The reason why the filling amount decreased when using active material powder with a particle diameter of less than 2.2μ is that as the Fischer size decreases,
It is thought that the appearance of active VJ quality is due to a decrease in density2, and it is assumed that this is due to the unevenness and shape of the particle surface of the active material.
したがって、活物質粉体が基板内の空孔に効率良(充填
されても、活物質の充填量は実質的に減少したと考えら
れる。また見掛は密度がフィッシャーサイズの減少に伴
い小さくなっても、フィッシャーサイズ3μu上の活物
質粉体の充填量か高い理由は、活物質粒子の小径化によ
る基板内の空孔への充填率の同上が、活物質粉末の見掛
は密度の減少による充填量の減少に比し大きいためと考
えられる。したがって、活物質の充填時の作業性及び完
成極板とした時の性能を考慮すると、充填の際活物質の
乾燥状態の見掛は密度は0.9y/cti、望ましくは
1.0y10f以上とし、且つ活物質の粒径は、基体孔
径の1/40〜11501a下としたとき高い充填効率
が得られることがわかる。Therefore, even if the active material powder efficiently fills the pores in the substrate, the amount of active material packed is considered to have substantially decreased.Also, the apparent density decreases as the Fischer size decreases. However, the reason why the filling amount of active material powder above Fischer size 3 μu is high is that the filling rate of the pores in the substrate is the same due to the smaller diameter of the active material particles, but the apparent density of the active material powder is reduced. Therefore, considering the workability when filling the active material and the performance when it is made into a completed electrode plate, the apparent dry state of the active material during filling is due to the density. It can be seen that high filling efficiency can be obtained when the particle size of the active material is 1/40 to 11501a below the substrate pore diameter.
次に上記実験により活物質を充填した基板にテフロンデ
ィスパージョンを付加し乾燥して活物質を基板内に固定
し、更に300 Ky/cdの圧力で加圧し完成極板と
した。この極板を苛性アルカリ電解液中でカドミウム極
板と組み合わせて充放電を行ない、活物質の利用率と高
率放電特性を測定した。尚、放電は高率放電時のみ4C
で行ない、その他は0.10で放電し、高率放電特性は
1oサイクル目の0.1C放電容獣を100%とした時
の比率である。この結果を第2表に示す。Next, Teflon dispersion was added to the substrate filled with the active material according to the above experiment and dried to fix the active material within the substrate, and further pressurized at a pressure of 300 Ky/cd to obtain a completed electrode plate. This electrode plate was combined with a cadmium electrode plate in a caustic alkaline electrolyte and charged and discharged, and the utilization rate of the active material and high rate discharge characteristics were measured. In addition, the discharge is 4C only during high rate discharge.
The discharge was carried out at 0.10 in the other cases, and the high rate discharge characteristic is the ratio when the 0.1C discharge capacity at the 10th cycle is taken as 100%. The results are shown in Table 2.
第2表
第2表より明らかな様にフィッシャーサイズ6゜1μa
上の活物質を充填した極板の初期の利用率は低い。しか
し充放電を繰り返すことにより利用率は活物質のフィッ
シャーサイズに関係なくIII+各同−レベルに達し、
利用率の差は解消される。また基板のスポンジ状ニッケ
ルの平均孔径が人。きくなると商事放電性能は低下して
いる。As is clear from Table 2, Fisher size is 6゜1μa.
The initial utilization rate of the electrode plate filled with the above active material is low. However, by repeating charging and discharging, the utilization rate reaches the III+ level regardless of the Fischer size of the active material.
The difference in utilization rate will be eliminated. Also, the average pore size of the substrate's sponge-like nickel is approximately 100%. As the temperature increases, Shoji discharge performance decreases.
実験に於いCは2種類の孔径の異なる基板の試験を示し
たが、吏(こ平均孔径の小ざな基板を用いた場合は、平
均粒径の小さな/fj吻實を使用せねばならず、見掛は
密度が0.9y/arl より小さな活物質が必要な
平均孔径を有する基板を用いる拭(になると十分な活物
質の充填量は得られなくなる。In the experiment, C showed tests on two types of substrates with different pore sizes, but if a substrate with a small average pore size was used, it was necessary to use a substrate with a small average particle size. If a substrate with an average pore diameter that requires an active material with an apparent density of less than 0.9 y/arl is used, a sufficient amount of active material cannot be obtained.
また基板の孔径を均質化する試みも考えられるか、発泡
ポリウレタンを材料とする現在のスポンジ状金属多孔体
の製造方法lこ於いCは、現段階a上に孔径を均一化す
ることは難しく、また繊維のマット状多孔体を出発物質
に用いた基板についCも同様な結果しか得られず基板の
孔径を均質化することは困難である。It may also be possible to try to homogenize the pore size of the substrate, or the current manufacturing method of sponge-like metal porous bodies made of polyurethane foam. In addition, with respect to a substrate using a mat-like porous material of fibers as a starting material, similar results were obtained with C, and it was difficult to homogenize the pore diameter of the substrate.
次に実施例を以下に示し説明する。Next, examples will be shown and explained below.
〔実施例1〕
平均孔径約300μのスポンジ状ニッケル多孔体(厚さ
1.5−、 )を基板に用い4%のテフロンディスパー
ジョン液中に浸漬し、この基板に液を保持させたまま取
り出し水平に静置して、フィッシャーサイズ4.4μの
水酸化ニッケル85i1%、ニッケ)Lt粉末(INC
O社製、+255)10ffilt%、フィッシャーサ
イズ3μの水酸化コバルト5重量%を、混合してなる粉
体を前記基板の上方から少量ずつ落下させで充填し、充
填終了後乾燥して6001の圧力で加圧して完成極板と
した。[Example 1] A sponge-like porous nickel material (thickness: 1.5 mm) with an average pore diameter of about 300 μm was used as a substrate, immersed in a 4% Teflon dispersion solution, and taken out while retaining the solution on the substrate. Stand it horizontally and add nickel hydroxide 85i1%, nickel) Lt powder (INC) with a Fischer size of 4.4μ.
Made by Company O, +255) 10ffilt%, 5% by weight of cobalt hydroxide with a Fischer size of 3μ is mixed and filled into the substrate by dropping it little by little from above, and after filling is completed, it is dried and the pressure is set to 6001. Pressure was applied to form a completed electrode plate.
〔実施例2〕
実施例1に於いて、基板に平均孔径約500μのスポン
ジ状ニッケル多孔体を使用して、゛・その他の条件は同
一で極板を作製した。[Example 2] In Example 1, an electrode plate was prepared using a sponge-like porous nickel material with an average pore diameter of about 500 μm as the substrate, and under the same conditions as above.
〔比較例1〕
実施例1に於いて、水数化ニッケルはフィッシャーサイ
ズio、6μのものを使用し、その他の条件は同一で極
板を作製した。[Comparative Example 1] In Example 1, an electrode plate was prepared using hydrated nickel having a Fisher size of io and 6 μm, and other conditions were the same.
〔比較例2〕
実施例1に於い゛C1水酸化ニッケルはフィッシャーサ
イズ1.7μのものを使用し、その他の条件は同一で極
板を作製した。[Comparative Example 2] An electrode plate was prepared under the same conditions as in Example 1 except that C1 nickel hydroxide having a Fischer size of 1.7 μm was used.
前記実施例及び比較例で作製した極板の基板空孔単位体
積当りの充填量を測定し、次いで実施例及び比較例の極
板を用い通虜のニッケルーカドミウム電池を構成し電池
の性能を測定した。この結果を実施例1、実施例2、比
較例1及び比較例2の極板を用いた電池を夫々A、B、
C及びDとして第3表及び区に示す。尚、第6図の高率
放電特性は0.10放電8Mを100%とした時の40
放電谷量であり、図は電池のサイクル特性図である。The amount of filling per unit volume of pores in the electrode plates prepared in the Examples and Comparative Examples was measured, and then the electrode plates of the Examples and Comparative Examples were used to construct a nickel-cadmium battery, and the performance of the battery was evaluated. It was measured. These results were compared to batteries A, B, and B using the electrode plates of Example 1, Example 2, Comparative Example 1, and Comparative Example 2, respectively.
Shown as C and D in Table 3 and Ward. In addition, the high rate discharge characteristics in Figure 6 are 40 when 0.10 discharge 8M is taken as 100%.
This is the discharge valley amount, and the figure is a cycle characteristic diagram of the battery.
第3表
第3表より活物質の充填量は実施例である電池A及びB
の極板が、比較例である電池C及びDに比し大幅に増加
し′Cいることがわかり、0.1C放電の切期利用率及
び3サイクル目の利用率も電池A及びBは旨い値を示し
でいる。この利用率は電池りも冒い値を示しているが、
活物質の充填量が少ないため、容量は電池A及びBに比
し小さくなる。また高率放電特性については前述の様に
基板の空孔径の大きい電池Bが他の電池に比し若干劣っ
ている。次に図面よりサイクル特性は電池A及びBが充
放電初期及び300サイクル以降に於いても安定した利
用率を示すのに対し、電池Cはサイクル初期で利用率が
低(、電池りは200サイクルを越えると利用率の低下
が大きくなった。また電池A及びBの極板の活物質の充
填状態はバラツキな(均一であった。Table 3 From Table 3, the filling amount of active material is shown in Examples for batteries A and B.
It can be seen that the number of electrode plates has increased significantly compared to Batteries C and D, which are comparative examples, and Batteries A and B also have better utilization rates at the cut-off stage and at the third cycle of 0.1C discharge. It shows the value. Although this usage rate shows a value that is worse than the battery life,
Since the filling amount of active material is small, the capacity is smaller than that of batteries A and B. In addition, regarding high rate discharge characteristics, as mentioned above, battery B, which has a large pore diameter in the substrate, is slightly inferior to other batteries. Next, from the drawing, the cycle characteristics show that batteries A and B show a stable utilization rate at the beginning of charging and discharging and even after 300 cycles, whereas battery C has a low utilization rate at the beginning of the cycle (battery C shows a stable utilization rate after 200 cycles). When the value exceeded 1, the reduction in the utilization rate became large.Furthermore, the filling state of the active material in the electrode plates of batteries A and B was uneven (uniform).
更に乾燥した活物質粉末を入れた容器内にスポンジ状ニ
ッケル多孔体を入れ振動を加えることにより、スポンジ
状ニツTル多孔体内に活物質を充填する充填方法を用い
同機な実験を試みると前述とほぼ同様な結果が得られた
。したかっC本発明は三次元構造を有する金属多孔体に
粉末状態の活物質を直接充填する充填方法を用いC製造
でさる極板に広く適用でき・るものである。Furthermore, by placing a sponge-like porous nickel material in a container containing dried active material powder and applying vibration, a similar experiment was attempted using a filling method in which the active material was filled into the sponge-like porous nickel material. Almost similar results were obtained. The present invention can be widely applied to electrode plates manufactured by C manufacturing using a filling method in which a porous metal body having a three-dimensional structure is directly filled with a powdered active material.
(へ)発明の効果
本発明によりスポンジ状mF多孔体に粉末状!Sの活物
質を直接充填する充填方法に於いて、活物質の粒子径を
スポンジ状金属の平均孔径の1/4゜以下に規制し、且
つ活物質の乾祐状態の見掛げ1ぞ度を0.9y/cyA
以上に規制丁巳ことで高充填虐が得られ、極板の初期
容jの低下もfA <、また極板性能のバラツキも略解
消される。(f) Effects of the Invention The present invention produces a sponge-like mF porous material in powder form! In the filling method of directly filling the active material of S, the particle size of the active material is regulated to 1/4 degree or less of the average pore diameter of the sponge-like metal, and the apparent dry state of the active material is 0.9y/cyA
By regulating as described above, a high filling capacity can be obtained, a decrease in the initial volume j of the electrode plate becomes less than fA, and variations in the electrode plate performance are almost eliminated.
図面は7I池のWj−イクル特性図である。 The figure is a Wj-cycle characteristic diagram of pond 7I.
Claims (1)
を基板とし、該基板に粉末状態の活物質あるいは活物質
を主体とした粉末状態の混合体を直接充填する°電池用
電極板の製造方法に於て、前記活物質の粒子径が前記金
属多孔体の平均孔径の1/40a下であり、且つ充填時
の乾燥状態の見掛は密度が0.9ylcrRLJ上であ
ることを特徴とする電池用電極板の製造方法。 +21 R記活物質の充填方法が、前記金属多孔体内
に液体を含浸させたのち、活物質粉体を液中に沈降させ
る充填方法である特許請求の範囲第1項記載の電池用電
極板の製造方法。 (3) 前記活物質の充填方法が、前記金属多孔体を
活物質粉体ベッド内に入れ振動を4えることによって充
填させる充填方法である特許請求の範囲第1項記載の電
池用電極板の製造方法。[Claims] (11) A porous metal body having a three-dimensionally continuous skeleton structure is used as a substrate, and the substrate is directly filled with a powdered active material or a powdered mixture mainly composed of the active material. In the method for manufacturing an electrode plate for a battery, the particle size of the active material is 1/40a or less of the average pore size of the metal porous body, and the apparent density of the dry state at the time of filling is 0.9ylcrRLJ or more. A method for manufacturing an electrode plate for a battery, characterized in that: +21 The filling method for the active material described in R is a filling method in which the porous metal body is impregnated with a liquid, and then the active material powder is precipitated in the liquid. A method for manufacturing an electrode plate for a battery according to claim 1. (3) The method for filling the active material includes filling the porous metal body by placing the porous metal body in an active material powder bed and applying vibration. A method for manufacturing a battery electrode plate according to claim 1, which is a method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58066082A JPS59191263A (en) | 1983-04-13 | 1983-04-13 | Manufacture of cell plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58066082A JPS59191263A (en) | 1983-04-13 | 1983-04-13 | Manufacture of cell plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59191263A true JPS59191263A (en) | 1984-10-30 |
Family
ID=13305572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58066082A Pending JPS59191263A (en) | 1983-04-13 | 1983-04-13 | Manufacture of cell plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59191263A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013243063A (en) * | 2012-05-22 | 2013-12-05 | Furukawa Sky Kk | Method of manufacturing electrode using porous metal collector |
-
1983
- 1983-04-13 JP JP58066082A patent/JPS59191263A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013243063A (en) * | 2012-05-22 | 2013-12-05 | Furukawa Sky Kk | Method of manufacturing electrode using porous metal collector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59191263A (en) | Manufacture of cell plate | |
JPH0578141B2 (en) | ||
JPS6040667B2 (en) | Manufacturing method of nickel electrode | |
JP3555177B2 (en) | Sealed lead-acid battery | |
JP3253476B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP2615538B2 (en) | Nickel positive electrode for alkaline storage batteries | |
JPH0366780B2 (en) | ||
JP3443209B2 (en) | Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same | |
JP2983647B2 (en) | Method for producing non-sintered positive electrode for alkaline storage battery | |
JP3369783B2 (en) | Method for producing nickel hydroxide electrode for alkaline storage battery and alkaline storage battery | |
JP3276730B2 (en) | Manufacturing method of alkaline storage battery | |
JPS63170853A (en) | Paste type nickel positive electrode | |
JPH10270017A (en) | Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith | |
JP2525320B2 (en) | Positive electrode for alkaline secondary battery | |
JP3146014B2 (en) | Method for producing paste-type nickel electrode | |
JPH0340894B2 (en) | ||
JP5064792B2 (en) | Sintered nickel positive electrode for alkaline storage battery and alkaline storage battery | |
JPH04274163A (en) | Manufacture of not sintered nickel cathode | |
JPH07335210A (en) | Electrode for alkaline battery | |
JPS62100945A (en) | Manufacture of sintered substrate for nickel-cadmium-alkaline storage battery | |
JP2008257898A (en) | Sintered substrate and alkaline storage battery using it | |
JPH04296453A (en) | Nickel sintered substrate for alkaline secondary battery | |
JPS62206762A (en) | Manufacture of electrode for battery | |
JPH061697B2 (en) | Manufacturing method of cadmium plate for alkaline storage battery | |
JPH10199519A (en) | Nickel electrode and manufacture thereof |