JPH0366780B2 - - Google Patents

Info

Publication number
JPH0366780B2
JPH0366780B2 JP57166863A JP16686382A JPH0366780B2 JP H0366780 B2 JPH0366780 B2 JP H0366780B2 JP 57166863 A JP57166863 A JP 57166863A JP 16686382 A JP16686382 A JP 16686382A JP H0366780 B2 JPH0366780 B2 JP H0366780B2
Authority
JP
Japan
Prior art keywords
sintering
nickel
paste
microballoons
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57166863A
Other languages
Japanese (ja)
Other versions
JPS5956361A (en
Inventor
Mitsuo Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP57166863A priority Critical patent/JPS5956361A/en
Publication of JPS5956361A publication Critical patent/JPS5956361A/en
Publication of JPH0366780B2 publication Critical patent/JPH0366780B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ蓄電池、特に焼結式ニツケル
−カドミウム電池の焼結基板の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in sintered substrates for alkaline storage batteries, particularly sintered nickel-cadmium batteries.

従来の技術 従来、焼結基板の気孔率を高める方法として、
炭酸ニツケル、炭酸マグネシウム、炭酸リチウム
等の炭酸塩を混合し、焼結温度付近でCO2ガスの
発生を利用し発泡させる無機化合物発泡法あるい
は有機発泡剤を利用した有機発泡剤法等を使用し
ていた。
Conventional technology Conventionally, as a method of increasing the porosity of a sintered substrate,
An inorganic compound foaming method in which carbonates such as nickel carbonate, magnesium carbonate, and lithium carbonate are mixed and foamed using the generation of CO 2 gas near the sintering temperature, or an organic foaming agent method in which an organic foaming agent is used is used. was.

発明が解決しようとする課題 無機化合物を用いる方法は、ニツケル塩以外は
いずれも焼結後残渣が残り、基板強度を低下さ
せ、又は基板抵抗を増加させる。又ニツケル塩も
還元時に著しい凝集力が働く等の為にあまり高多
孔度を得ることができない等の欠点があつた。
Problems to be Solved by the Invention All methods using inorganic compounds, other than nickel salt, leave residues after sintering, reducing substrate strength or increasing substrate resistance. Nickel salts also have drawbacks such as the inability to obtain very high porosity due to significant cohesive force acting during reduction.

有機発泡剤を使用した場合、使用される発泡剤
は粉末、又はフレーク状であるが、粒子径が不均
一であり、また均一な分散も困難である為に該多
孔体は均一性が劣り、均一な多孔質を製造する方
法としては不適当であつた。
When an organic blowing agent is used, the blowing agent used is in the form of powder or flakes, but the particle size is uneven and uniform dispersion is difficult, so the porous body has poor uniformity. This method was inappropriate as a method for producing uniform porous material.

今迄の有機発泡剤は、その発泡原理に於て発泡
剤自体が分解し、その時生成するガスにより膨張
作用を有するものであるために、粒子径の不均一
さはそのまま発泡能力に比例し、例え均一な粒径
をもつ粒子ができたとしてもその形状が全く不規
則であるために発泡剤の質量は不均一であるとい
う欠点を有する。
Conventional organic foaming agents have a foaming principle in which the foaming agent itself decomposes and the gas generated at that time has an expanding effect, so the non-uniformity of the particle size is directly proportional to the foaming ability. Even if particles with a uniform particle size are formed, their shape is completely irregular, resulting in a disadvantage that the mass of the blowing agent is non-uniform.

従つてニツケル−カドミウム電池用焼結基板と
しては使用に耐えるものではなかつた。
Therefore, it was not suitable for use as a sintered substrate for nickel-cadmium batteries.

本発明は、上記従来の問題点を除去した、多孔
度が大で、強度の優れた、均一の孔径を有するア
ルカリ蓄電池用焼結基板を提供することを目的と
する。
An object of the present invention is to provide a sintered substrate for an alkaline storage battery that eliminates the above-mentioned conventional problems and has large porosity, excellent strength, and uniform pore diameter.

課題を解決するための手段 本発明は上記目的を達成するべく、 焼結用ニツケル粉末と発泡性有機高分子マイク
ロバルーンと有機質バインダー及び芯金を準備
し、 焼結用ニツケル粉末と発泡性有機高分子マイク
ロバルーンを混合する工程、 次に有機質バインダーを溶解した水溶液をニツ
ケル粉末とマイクロバルーン混合物に加えて混練
しペースト状物とする工程、 次にペースト状物を芯金に塗着する工程、 次に塗着ペーストを乾燥し、加熱発泡させる工
程、 次にバインダー及びマイクロバルーンを揮発さ
せながら焼結する工程、 を有することを特徴とするアルカリ蓄電池用基板
である。
Means for Solving the Problems In order to achieve the above object, the present invention prepares nickel powder for sintering, a foamable organic polymer microballoon, an organic binder, and a core bar, and prepares a nickel powder for sintering, a foamable organic polymer A process of mixing molecular microballoons, Next a process of adding an aqueous solution containing an organic binder to the nickel powder and microballoon mixture and kneading it into a paste, Next a process of applying the paste to the metal core, Next This is a substrate for an alkaline storage battery characterized by comprising the steps of: drying the coating paste, heating and foaming it, and then sintering the binder and microballoons while volatilizing them.

作 用 発泡性マイクロバルーンは他のマイクロバルー
ンでもよく見られる如く、非常に均一でしかも真
球に近い形状であり、その粒度分布もコントロー
ルできる状態である。
Function The expandable microballoon, as is often seen with other microballoons, is extremely uniform and has a shape close to a perfect sphere, and its particle size distribution can also be controlled.

発泡原理から見ても中空球内部に封入された液
体又は気体により膨張し、その膨張は中空球を延
伸させ球の直径を拡大することにより発泡剤の如
き役割を果す。
From the perspective of the foaming principle, the hollow sphere expands due to the liquid or gas sealed inside it, and the expansion stretches the hollow sphere and enlarges its diameter, thereby acting as a foaming agent.

実施例 以下、本発明の詳細について一実施例により説
明する。
Example Hereinafter, the details of the present invention will be explained with reference to an example.

カーボニルニツケル粉90重量部とメチルメタア
クリレート系樹脂で皮膜を形成した発泡性マイク
ロバルーン10重量部を混合する。カルボキシメチ
ルセルロースを水に溶解した3%水溶液をニツケ
ル粉とマイクロバルーン混合物に加えて混練しペ
ースト状物とする。
90 parts by weight of carbonyl nickel powder and 10 parts by weight of expandable microballoons coated with methyl methacrylate resin are mixed. A 3% aqueous solution of carboxymethylcellulose dissolved in water is added to the nickel powder and microballoon mixture and kneaded to form a paste.

このペースト状物を支持芯金となる穿孔ニツケ
ルメツキ鋼板に塗着し所定の厚さとする。その
後、150℃で乾燥し、発泡させる。
This paste-like material is applied to a perforated nickel-plated steel plate that will serve as a supporting core to a predetermined thickness. It is then dried at 150°C and foamed.

還元雰囲気中で1000〜1100℃にて約10分間焼結
する。この焼結中にカルボキシメチルセルロー
ス、メチルメタアクリレート系樹脂のマイクロバ
ルーンは揮発する。これによつて0.65mmの厚さ焼
結基板を得た。このようにしてできたニツケル焼
結基板は多孔度92.6%で平均孔径が約50μであつ
た。発泡性有機高分子マイクロバルーンの添加
量、発泡温度を変えることにより95〜97%の多孔
度を有する焼結基板を得ることも可能である。
Sinter at 1000-1100°C for about 10 minutes in a reducing atmosphere. During this sintering, the carboxymethyl cellulose and methyl methacrylate resin microballoons evaporate. As a result, a sintered substrate with a thickness of 0.65 mm was obtained. The nickel sintered substrate thus produced had a porosity of 92.6% and an average pore diameter of about 50μ. It is also possible to obtain a sintered substrate having a porosity of 95 to 97% by changing the amount of the expandable organic polymer microballoons added and the foaming temperature.

尚、第4図に工程のフロー図を示した。 Incidentally, FIG. 4 shows a flow diagram of the process.

本発明により得られた多孔度92.6%の焼結基板
を用いて、水酸化ニツケル活物質を充填した。充
填は、硝酸ニツケル溶液を真空含浸しアルカリ溶
液中で中和して水酸化ニツケルとする。この含浸
回数と充填量の関係を第2図に示した。
A sintered substrate with a porosity of 92.6% obtained according to the present invention was used to fill a nickel hydroxide active material. For filling, nickel nitrate solution is vacuum impregnated and neutralized in an alkaline solution to form nickel hydroxide. The relationship between the number of impregnations and the amount of filling is shown in FIG.

発泡性マイクロバルーンを混合しない現行の焼
結基板Bと本発明の焼結基板Aとを同一の6回含
浸操作により充填される活物質量を比較すると、
充填量は本発明によるものが、25%増加し、現行
の焼結基板では400mAh/c.c.の極板となる。これ
に対して、本発明の焼結基板では500mAh/c.c.の
極板となる。
Comparing the amount of active material filled by the same 6-time impregnation operation between the current sintered substrate B that does not mix foaming microballoons and the sintered substrate A of the present invention,
The filling amount according to the present invention is increased by 25%, and the current sintered substrate has a charge of 400 mAh/cc. On the other hand, the sintered substrate of the present invention has an electrode plate of 500 mAh/cc.

第1図に本発明に用いた発泡性マイクロバルー
ンの加熱温度と膨張倍率の一例(加熱時間1分)
を示した。発泡性マイクロバルーンは、膨張倍率
が極めて高く必要な粒子径を任意に選択できる。
Figure 1 shows an example of the heating temperature and expansion ratio of the foamable microballoon used in the present invention (heating time: 1 minute)
showed that. The expandable microballoon has an extremely high expansion ratio, and the required particle size can be arbitrarily selected.

樹脂球、粒子に比較し、その添加量はマイクロ
バルーンの中空度が97〜99%程度にも達し得るこ
とにより、その使用量を1/100〜3/100程度に減少
できる。現在使用されているカルボキシメチルセ
ルロース以下の使用量でよく、残在カーボンある
いは分解ガスの影響が殆んどない。
Compared to resin spheres and particles, the amount added can be reduced to about 1/100 to 3/100 because the hollowness of microballoons can reach about 97 to 99%. The amount used is less than the amount of carboxymethyl cellulose currently used, and there is almost no influence from residual carbon or cracked gas.

第3図に本発明によるニツケル正極板と現行の
ニツケル正極板の放電特性を示した。本発明によ
る正極板は、放電々圧特性が優れている。
FIG. 3 shows the discharge characteristics of the nickel positive electrode plate according to the present invention and the current nickel positive electrode plate. The positive electrode plate according to the present invention has excellent discharge voltage characteristics.

この事より焼結基板は、充分に使用に耐える強
度を有することが確認された。又、発泡性マイク
ロバルーンはフエノールマイクロバルーン等のよ
うに膨張性のないマイクロバルーンよりもはるか
に少量の使用で所定の多孔度が得られる。しか
も、焼結時には発泡により骨格構造が決定された
粒子を焼結することになり、多孔度の減少が少な
くしかも、強度の大なる焼結基板となる。
This confirmed that the sintered substrate had sufficient strength to withstand use. Furthermore, a predetermined porosity can be obtained by using a much smaller amount of expandable microballoons than non-expandable microballoons such as phenol microballoons. Furthermore, during sintering, particles whose skeleton structure has been determined by foaming are sintered, resulting in a sintered substrate with less reduction in porosity and greater strength.

発明の効果 上述した如く、本発明は多孔度が大で、強度の
優れた、均一の孔径を有するアルカリ蓄電池用焼
結基板を提供することが出来るので、その工業的
価値は極めて大である。
Effects of the Invention As described above, the present invention can provide a sintered substrate for alkaline storage batteries having high porosity, excellent strength, and uniform pore diameter, and therefore has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた発泡性マイク
ロバルーンの加熱温度と膨張倍率の一例、第2図
は本発明によるニツケル基板への含浸回数とニツ
ケル正極容量との関係曲線図、第3図は本発明に
よるニツケル正極板A及び従来品正極板Bの1/5
C放電時の特性曲線である。第4図は工程のフロ
ー図を示した図である。 A……本発明品、B……従来品。
FIG. 1 is an example of the heating temperature and expansion ratio of the foamable microballoon used in the example of the present invention, FIG. 2 is a relationship curve between the number of times of impregnation of a nickel substrate and the capacity of the nickel positive electrode according to the present invention, and FIG. The figure shows 1/5 of the nickel positive electrode plate A according to the present invention and the conventional positive electrode plate B.
This is a characteristic curve during C discharge. FIG. 4 is a diagram showing a flow diagram of the process. A...Product of the present invention, B...Conventional product.

Claims (1)

【特許請求の範囲】 1 焼結用ニツケル粉末と発泡性有機高分子マイ
クロバルーンと有機質バインダー及び芯金を準備
し、 焼結用ニツケル粉末と発泡性有機高分子マイク
ロバルーンを混合する工程、 次に有機質バインダーを融解した水溶液をニツ
ケル粉末とマイクロバルーン混合物に加えて混練
しペースト状物とする工程、 次にペースト状物を芯金に塗着する工程、 次に塗着ペーストを乾燥し、加熱発泡させる工
程、 次にバインダー及びマイクロバルーンを揮発さ
せながら還元雰囲気中で焼結する工程、 を有することを特徴とするアルカリ蓄電池用基板
の製造法。
[Claims] 1. A step of preparing nickel powder for sintering, a foamable organic polymer microballoon, an organic binder, and a core metal, and mixing the nickel powder for sintering and a foamable organic polymer microballoon, and then A process in which an aqueous solution containing a melted organic binder is added to the nickel powder and microballoon mixture and kneaded to form a paste, then a process in which the paste is applied to the metal core, and then the applied paste is dried and foamed by heating. A method for producing a substrate for an alkaline storage battery, comprising: a step of sintering in a reducing atmosphere while volatilizing the binder and microballoons.
JP57166863A 1982-09-25 1982-09-25 Manufacture of substrate for alkaline storage battery Granted JPS5956361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57166863A JPS5956361A (en) 1982-09-25 1982-09-25 Manufacture of substrate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57166863A JPS5956361A (en) 1982-09-25 1982-09-25 Manufacture of substrate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS5956361A JPS5956361A (en) 1984-03-31
JPH0366780B2 true JPH0366780B2 (en) 1991-10-18

Family

ID=15839033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57166863A Granted JPS5956361A (en) 1982-09-25 1982-09-25 Manufacture of substrate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS5956361A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205967A (en) * 1984-03-29 1985-10-17 Shin Kobe Electric Mach Co Ltd Manufacture of porous sintered substrate for sealed alkaline battery
JPH08291304A (en) * 1995-02-23 1996-11-05 Mitsubishi Materials Corp Porous metal plate with large specific surface area
JPH09143511A (en) * 1995-11-29 1997-06-03 Mitsubishi Materials Corp Porous metallic body having large specific surface area
JPH08333605A (en) * 1995-04-03 1996-12-17 Mitsubishi Materials Corp Porous metallic plate having large specific surface area

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132293A (en) * 1974-09-13 1976-03-18 Seikosha Kk HYOJISOCHI
JPS538895A (en) * 1976-07-13 1978-01-26 Toyoda Mach Works Ltd Grinding process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132293A (en) * 1974-09-13 1976-03-18 Seikosha Kk HYOJISOCHI
JPS538895A (en) * 1976-07-13 1978-01-26 Toyoda Mach Works Ltd Grinding process

Also Published As

Publication number Publication date
JPS5956361A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
EP0764489B1 (en) Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery
JPH05114402A (en) Nickel positive electrode
JPH0366780B2 (en)
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPS6359228B2 (en)
JPH0734366B2 (en) Battery electrode manufacturing method
JP4079667B2 (en) Sintered substrate for alkaline storage battery and manufacturing method thereof
JP2798700B2 (en) Method for producing sintered substrate for alkaline storage battery
JPH04248269A (en) Manufacture of sintered substrate for alkaline storage battery
JPS57194458A (en) Manufacture of nickel electrode for alkaline storage battery
JPS62140359A (en) Electrode for cell
JP3276730B2 (en) Manufacturing method of alkaline storage battery
JPS60170167A (en) Manufacturing method for alkaline cell electrode
JPS59191263A (en) Manufacture of cell plate
JPS62100945A (en) Manufacture of sintered substrate for nickel-cadmium-alkaline storage battery
JPH08130010A (en) Manufacture of nickel electrode for nickel-hydrogen secondary battery
JP3783457B2 (en) Method for producing sintered substrate for alkaline storage battery
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JPH10289712A (en) Manufacture of hydrogen-storage alloy electrode
JP3369783B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and alkaline storage battery
JPH07335210A (en) Electrode for alkaline battery
JPH0123900B2 (en)
JP2000058048A (en) Manufacture of non-sintered cadmium negative electrode for alkaline storage battery
JPS5931833B2 (en) Manufacturing method for battery electrodes
JPH04296453A (en) Nickel sintered substrate for alkaline secondary battery