JPH10199519A - Nickel electrode and manufacture thereof - Google Patents

Nickel electrode and manufacture thereof

Info

Publication number
JPH10199519A
JPH10199519A JP9000996A JP99697A JPH10199519A JP H10199519 A JPH10199519 A JP H10199519A JP 9000996 A JP9000996 A JP 9000996A JP 99697 A JP99697 A JP 99697A JP H10199519 A JPH10199519 A JP H10199519A
Authority
JP
Japan
Prior art keywords
electrode
cobalt compound
nickel hydroxide
nickel
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9000996A
Other languages
Japanese (ja)
Inventor
Kengo Furukawa
健吾 古川
Minoru Kurokuzuhara
実 黒葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP9000996A priority Critical patent/JPH10199519A/en
Publication of JPH10199519A publication Critical patent/JPH10199519A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To attain uniform closest packing in an electrode plate and reduce the quantity of an additive so as to obtain an electrode of a low price and high energy density by specifying the ratio of the cobalt compound powder particle diameter to the nickel hydroxide powder particle diameter of an electrode that are filled in an alkali resistant metallic porous body. SOLUTION: A nickel electrode composed of nickel hydroxide powder and a cobalt compound additive agent is left, as it is, in an alkali electrolytic liquid before formation so as to resolve the cobalt compound as a bivalent complex ion, and to be uniformly dispersed in the electrode, to be changed in CoOOH during the initial discharging time, and thus conductivity between active material particles is secured. Then, any cobalt compound left out of alteration can not be changed to CoOOH regardless of its repetition of cycles. Although an excessive quantity of cobalt compound is added so as to effectively use active material, since the nickel hydroxide powder made to have high density has a spherical shape, high density filling is limited to some extent, the cobalt compound particle diameter is set to be less than 1/10 of the nickel hydroxide particle diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル電極及びそ
の製造方法に関するものである。
The present invention relates to a nickel electrode and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、ポータブルエレクトロニクス機器
の小型軽量化に伴い、その電源である電池にも高エネル
ギー密度化が望まれている。従来のアルカリ電池のニッ
ケル電極は、焼結式電極と呼ばれているものであり、ニ
ッケル粉末を穿孔鋼板などの芯金に焼結させた多孔基板
に硝酸ニッケル塩溶液を含浸した後、アルカリ水溶液中
で水酸化物にして充填する、いわゆる溶液含浸法で製造
するものである。しかし、そのニッケル正極のエネルギ
ー密度は約400mAh/cc が限界であった。また、焼結式電
極は必要容量を確保するために、煩雑な活物質の充填工
程を何度も繰り返す必要があり、長時間を要し、製造コ
ストが高いという問題があった。
2. Description of the Related Art In recent years, as portable electronic devices have become smaller and lighter, it has been desired to increase the energy density of batteries as power sources. The nickel electrode of a conventional alkaline battery is called a sintering electrode. A nickel substrate is impregnated with a nickel nitrate solution on a porous substrate obtained by sintering nickel powder on a core metal such as a perforated steel sheet, and then an alkaline aqueous solution is used. It is manufactured by a so-called solution impregnation method in which a hydroxide is filled in the solution, and filling is performed. However, the energy density of the nickel positive electrode was limited to about 400 mAh / cc. In addition, in order to secure a required capacity, a sintered electrode needs to repeat a complicated step of filling an active material many times, and there is a problem that a long time is required and a manufacturing cost is high.

【0003】一方、現在では、高容量化を目的として、
従来低密度であった水酸化ニッケル粉末粒子の内部細孔
の成長を制御して高密度化し、電極への高密度充填を図
ったペースト式電極が主流になりつつある。ペースト式
電極は焼結式電極よりも高多孔度な耐アルカリ性金属基
板に、水酸化ニッケル粉末を水等でペースト状となした
ものを直接充填するものである。このペースト式電極に
おいては、活物質充填量を確保するため基板の充填スペ
ースを大きくしている。そのためペースト式電極は、焼
結式電極の基板よりも活物質に対する集電性が乏しいの
で、導電性を付与する添加剤として、例えば金属コバル
ト、コバルト化合物などが不可欠であった。
On the other hand, at present, for the purpose of increasing the capacity,
Past-type electrodes which control the growth of internal pores of nickel hydroxide powder particles, which had conventionally been low-density, to increase the density thereof, and achieve high-density filling of the electrodes are becoming mainstream. The paste-type electrode is one in which an alkali-resistant metal substrate having a higher porosity than that of the sintered electrode is directly filled with nickel hydroxide powder which is made into a paste with water or the like. In this paste type electrode, the filling space of the substrate is increased in order to secure the active material filling amount. Therefore, the paste type electrode has a lower current collecting property for the active material than the substrate of the sintered type electrode, and therefore, for example, metal cobalt, a cobalt compound or the like is indispensable as an additive for imparting conductivity.

【0004】[0004]

【発明が解決しようとする課題】ここで、コバルト化合
物は初充電時に不可逆な反応により安定なCoOOHへ
と変化し、このCoOOHにより水酸化ニッケル粒子間
の導通が達成される。しかしながら金属コバルト粉末は
CoOOHへの変化時に Co → CoOOH + 3e- と3電子反応であるため電気量が多く必要となり、正
極、負極の容量バランスが崩れてしまい、電池寿命が短
くなるなどの問題があった。そこで、金属コバルトに代
えて、下記の如く反応電子数が少ない2価のコバルトイ
オンを形成するコバルト化合物の添加、特にアルカリへ
の溶解度が他と比べ高いCoOの添加が有効であること
を、例えば特公平7−77129号などで提案してき
た。
Here, the cobalt compound changes to stable CoOOH by an irreversible reaction at the time of initial charge, and the CoOOH achieves conduction between the nickel hydroxide particles. However, since the metal cobalt powder undergoes a three-electron reaction with Co → CoOOH + 3e when changing to CoOOH, a large amount of electricity is required, and the capacity balance between the positive electrode and the negative electrode is lost, and the battery life is shortened. there were. Therefore, it was found that the addition of a cobalt compound that forms divalent cobalt ions having a small number of reactive electrons as described below, in particular, the addition of CoO having a higher alkali solubility than the others, is effective, for example, in place of metal cobalt. It has been proposed in Japanese Patent Publication No. 7-77129.

【0005】Co2+イオン → CoOOH + e- 近年開発実用化されてきているニッケル水素化物電池や
ニッケルカドミウム電池の高エネルギー密度化にはCo
O添加は不可欠である。ところで水酸化ニッケル粉末粒
子の内部細孔成長を制御した高密度水酸化ニッケル粉末
は、従来の不定形であった低密度水酸化ニッケルと異な
り、粒子形態が球状に発達している。このため粉末の充
填性は不定形水酸化ニッケルを使用した場合に比較して
良好ではあるものの、形態が球状であるため最密度に充
填したとしてもある程度の充填隙間が生じてしまう。従
って、十分な正極利用率を確保するには活物質全体に対
し8〜12wt%ものCoO添加が必要であり、電池材
料コストを引き上げてしまったり、また活物質である水
酸化ニッケルの充填量そのものも制限されてしまうとい
った問題があった。
[0005] Co 2+ ions → CoOOH + e - The high energy density of the nickel hydride batteries or nickel-cadmium batteries have been recently developed practical Co
O addition is essential. By the way, the high-density nickel hydroxide powder in which the internal pore growth of the nickel hydroxide powder particles is controlled is different from the low-density nickel hydroxide having a conventional amorphous shape, in that the particle morphology develops into a spherical shape. For this reason, although the filling property of the powder is better than the case where amorphous nickel hydroxide is used, a certain amount of filling gap occurs even if the powder is filled to the highest density because of its spherical shape. Therefore, in order to secure a sufficient positive electrode utilization rate, it is necessary to add CoO as much as 8 to 12% by weight based on the whole active material, thereby increasing the cost of the battery material, or increasing the amount of nickel hydroxide as the active material itself. Was also limited.

【0006】[0006]

【課題を解決するための手段】本発明の第1は、水酸化
ニッケル粉末に、アルカリ電解液に溶解して2価のコバ
ルト錯イオンを生成するコバルト化合物粉末を添加した
活物質を耐アルカリ性金属多孔体に充填してなるニッケ
ル電極において、該コバルト化合物粉末の粒径を水酸化
ニッケル粉末の粒径の10分の1以下としたことを特徴
とするニッケル電極である。
The first object of the present invention is to provide an alkali-resistant metal which is obtained by adding a nickel compound powder and a cobalt compound powder which is dissolved in an alkaline electrolyte to form a divalent cobalt complex ion. In a nickel electrode filled in a porous body, the particle diameter of the cobalt compound powder is set to 1/10 or less of the particle diameter of the nickel hydroxide powder.

【0007】本発明の第2は、前記コバルト化合物が、
水酸化ニッケルに対し、金属Co換算で2〜6wt%の
範囲で添加されていることを特徴とする請求項1記載の
ニッケル電極である。
A second aspect of the present invention is that the cobalt compound is
2. The nickel electrode according to claim 1, wherein said nickel electrode is added to nickel hydroxide in a range of 2 to 6 wt% in terms of metal Co.

【0008】本発明の第3は、水酸化ニッケル粉末に、
アルカリ電解液に溶解して2価のコバルト錯イオンを生
成するコバルト化合物粉末を添加した活物質を用いるニ
ッケル電極の製造方法において、該コバルト化合物粉末
の粒径を水酸化ニッケル粉末の粒径の10分の1以下に
分級する工程1と、このコバルト化合物に水酸化ニッケ
ル粉末を加えて電池活物質ペーストとする工程2と、こ
のペーストを耐アルカリ性金属多孔体に充填する工程3
からなることを特徴とするニッケル電極の製造方法であ
る。
[0008] A third aspect of the present invention is to provide nickel hydroxide powder with:
In a method for manufacturing a nickel electrode using an active material to which a cobalt compound powder that dissolves in an alkaline electrolyte to form a divalent cobalt complex ion is added, the particle size of the cobalt compound powder is set to 10 times the particle size of the nickel hydroxide powder. A step 1 of classifying the cobalt compound into one part or less, a step 2 of adding nickel hydroxide powder to the cobalt compound to form a battery active material paste, and a step 3 of filling the paste into an alkali-resistant porous metal.
And a method for producing a nickel electrode.

【0009】[0009]

【作用】水酸化ニッケル粉末とコバルト化合物添加剤か
らなるニッケル電極は、化成前にアルカリ電解液中に浸
漬放置することで、コバルト化合物を2価の錯イオンと
して溶解させて電極中に均一分散させ、その後初回充電
時に安定なCoOOHへと変化させ、活物質粒子間の導
電性をCoOOHで確保する。
A nickel electrode comprising nickel hydroxide powder and a cobalt compound additive is immersed in an alkaline electrolyte before chemical formation to dissolve the cobalt compound as a divalent complex ion and uniformly disperse it in the electrode. After that, it is changed to stable CoOOH at the time of initial charging, and the conductivity between the active material particles is secured by CoOOH.

【0010】しかしながら、コバルト化合物はアルカリ
に対する溶解度が低く、またCoOOHは非常に緻密に
活物質を被ってしまうため、初回充電時にCoOOHに
変化せず取り残されたコバルト化合物は、2価の錯イオ
ンとして活物質粒子間へ拡散できず、サイクルを繰り返
してもCoOOHに変化することはない。このため十分
な活物質の有効利用をするために予め過剰量のコバルト
化合物を添加し、活物質粒子間へ十分に2価のコバルト
錯イオンを拡散させる必要があった。
However, since the cobalt compound has low solubility in alkali and CoOOH covers the active material very densely, the cobalt compound which is not changed to CoOOH during the first charge and is left as a divalent complex ion It cannot be diffused between the active material particles, and does not change to CoOOH even if the cycle is repeated. For this reason, it is necessary to add an excessive amount of a cobalt compound in advance to sufficiently utilize the active material effectively, and to sufficiently diffuse the divalent cobalt complex ion between the active material particles.

【0011】また、高密度化した水酸化ニッケル粉末は
球状形態であるため、高密度に充填するには限界があっ
た。
Also, since the densified nickel hydroxide powder has a spherical shape, there is a limit in filling the powder at a high density.

【0012】本発明は添加するコバルト化合物の粒径を
水酸化ニッケル粒子の粒径の少なくとも10分の1以下
とすることで電極中での均一最密充填を図り、同時に添
加量を削減して、高エネルギー密度化及び電池コスト削
減を達成したものである。
The present invention achieves uniform close packing in the electrode by reducing the particle size of the cobalt compound to be added to at least one-tenth of the particle size of the nickel hydroxide particles, and at the same time reduces the amount of addition. , High energy density and reduction in battery cost.

【0013】[0013]

【実施例】以下、実施例に基づき本発明を説明する。市
販のCoOを粒子径が0.1 〜0.5 μmの範囲に湿式分級
したものに粒径が5〜50μmの高密度水酸化ニッケル粉
末を5重量部対95重量部の比率で混合してペースト状
となし、耐アルカリ性金属基板に充填して本発明ニッケ
ル電極を得た。一方、比較のためCoOを湿式分級せず
にCoOと高密度水酸化ニッケル粉末との比率が10重
量部対90重量部となるように混合したペーストを耐ア
ルカリ性金属基板に充填した比較電極1、及び同じく湿
式分級せずにCoOと高密度水酸化ニッケル粉末との比
率が5重量部対95重量部となるように混合したペース
トを耐アルカリ性金属基板に充填した比較電極2を作成
した。これらのニッケル電極を通常のカドミウム電極を
相手極として液過剰の開放型電池を作成し、充放電を行
った。その結果を表1に示す。
The present invention will be described below with reference to examples. A commercially available CoO obtained by wet classification to a particle size of 0.1 to 0.5 μm is mixed with a high-density nickel hydroxide powder having a particle size of 5 to 50 μm at a ratio of 5 parts by weight to 95 parts by weight to form a paste. The nickel electrode of the present invention was obtained by filling an alkali-resistant metal substrate. On the other hand, for comparison, a comparative electrode 1 in which a paste obtained by mixing CoO and high-density nickel hydroxide powder in a ratio of 10 parts by weight to 90 parts by weight without wet classification of CoO into an alkali-resistant metal substrate, Also, a comparative electrode 2 was prepared by filling a paste mixed with CoO and high-density nickel hydroxide powder in a ratio of 5 parts by weight to 95 parts by weight without wet classification in an alkali-resistant metal substrate. Using these nickel electrodes as a counter electrode of a normal cadmium electrode, an open-type battery with excess liquid was prepared and charged and discharged. Table 1 shows the results.

【0014】[0014]

【表1】 [Table 1]

【0015】表1中で放電利用率は水酸化ニッケルの理
論容量を1グラム当たり290mAhとしたときの3サイクル
目の放電容量を理論容量で割ったものに100 をかけたも
のである。表1から明かなとおり、本発明ニッケル電極
はCoOの添加量を1/2にしても十分な容量を得るこ
とができることがわかる。
In Table 1, the discharge utilization rate is obtained by dividing the discharge capacity at the third cycle when the theoretical capacity of nickel hydroxide is 290 mAh per gram by the theoretical capacity and multiplying by 100. As is clear from Table 1, the nickel electrode of the present invention can obtain a sufficient capacity even when the addition amount of CoO is Co.

【0016】また、上記充放電試験後の本発明電極と比
較電極2のX線回折図をそれぞれ図1、図2に示す。水
酸化ニッケルに対するCoOの添加量が同一であるにも
かかわらず、図2の比較電極2ではCoOの特徴的な回
折ピークが36.6度及び42.2度付近に観察されCoOが残
存していることがわかる。これに対し、図1の本発明電
極ではCoOの回折ピークが観測されず、CoOが完全
に溶解していることがわかる。
The X-ray diffraction diagrams of the electrode of the present invention and the comparative electrode 2 after the above-mentioned charge / discharge test are shown in FIGS. Despite the same amount of CoO added to nickel hydroxide, the characteristic diffraction peak of CoO was observed at around 36.6 degrees and 42.2 degrees in the comparative electrode 2 of FIG. 2, indicating that CoO remained. . On the other hand, no diffraction peak of CoO was observed in the electrode of the present invention shown in FIG. 1, indicating that CoO was completely dissolved.

【0017】図3は本発明電極のCoOOHの導電性ネ
ットワーク形成を示した模式図である。本発明電極はC
oOの粒径を水酸化ニッケルの粒径の10分の1以下に
分級しているため、CoOの粒子が水酸化ニッケルの粒
子の高密度な充填の隙間に均一に分散していると考えら
れる。また、粒径が小さいため比表面積が大きくなり、
CoOの溶解が促進され、従来よりも少ない添加量で均
一な導電性ネットワークが形成されるものと思われる。
FIG. 3 is a schematic view showing the formation of a conductive network of CoOOH of the electrode of the present invention. The electrode of the present invention is C
Since the particle size of oO is classified into one-tenth or less of the particle size of nickel hydroxide, it is considered that the particles of CoO are uniformly dispersed in the gaps between the densely packed nickel hydroxide particles. . In addition, the specific surface area increases due to the small particle size,
It is considered that the dissolution of CoO is promoted, and a uniform conductive network is formed with a smaller addition amount than before.

【0018】図4は比較電極2のCoOOHの導電性ネ
ットワーク形成を示した模式図である。比較電極2では
CoO粒子が分級されていないため均一に分散せず、未
溶解部分が多く残り、導電性ネットワークの形成も不十
分になると考えられる。
FIG. 4 is a schematic diagram showing the formation of a conductive network of CoOOH of the comparative electrode 2. In the comparative electrode 2, since the CoO particles are not classified, they are not uniformly dispersed, many undissolved portions remain, and the formation of the conductive network is considered to be insufficient.

【0019】以上の実施例では、CoOの場合のみにつ
いて説明したが、2価のコバルト錯イオンを生成する他
のコバルト化合物、例えばβ−Co(OH)2 、α−C
o(OH)2 を用いても類似の傾向を示した。
In the above embodiment, only the case of CoO has been described, but other cobalt compounds which form divalent cobalt complex ions, for example, β-Co (OH) 2 , α-C
A similar trend was observed with o (OH) 2 .

【0020】また、実施例においては湿式の分級装置を
使用したが他の乾式の装置を用いても同様の効果が得ら
れる。
Although a wet classifier is used in the embodiment, the same effect can be obtained by using another dry classifier.

【0021】[0021]

【発明の効果】上記の様に、本発明では、添加するコバ
ルト化合物の粒径を水酸化ニッケル粒子の粒径の10分
の1以下とすることで、極板中での均一最密充填を図
り、同時に添加量を削減した、より安価で高エネルギー
密度なアルカリ蓄電池用ニッケル極とこれを用いたアル
カリ蓄電池を提供することができるので、その工業的価
値は極めて大である。
As described above, in the present invention, uniform close-packing in the electrode plate is achieved by setting the particle size of the cobalt compound to be added to 1/10 or less of the particle size of the nickel hydroxide particles. At the same time, it is possible to provide an inexpensive and high-energy-density nickel electrode for an alkaline storage battery and an alkaline storage battery using the same, the amount of which is reduced, and the industrial value thereof is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電極のX線回折図である。FIG. 1 is an X-ray diffraction diagram of the electrode of the present invention.

【図2】比較電極2のX線回折図である。FIG. 2 is an X-ray diffraction diagram of a comparative electrode 2.

【図3】本発明電極のCoOOHの導電性ネットワーク
形成を示した模式図である。
FIG. 3 is a schematic view showing formation of a conductive network of CoOOH of the electrode of the present invention.

【図4】比較電極2のCoOOHの導電性ネットワーク
形成を示した模式図である。
FIG. 4 is a schematic diagram showing the formation of a conductive network of CoOOH of a comparative electrode 2.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケル粉末に、アルカリ電解液
に溶解して2価のコバルト錯イオンを生成するコバルト
化合物粉末を添加した活物質を耐アルカリ性金属多孔体
に充填してなるニッケル電極において、該コバルト化合
物粉末の粒径を水酸化ニッケル粉末の粒径の10分の1
以下としたことを特徴とするニッケル電極。
1. A nickel electrode obtained by filling an alkali-resistant metal porous body with an active material obtained by adding a cobalt compound powder which dissolves in an alkaline electrolyte to form a divalent cobalt complex ion to nickel hydroxide powder, The particle size of the cobalt compound powder is set to 1/10 of the particle size of the nickel hydroxide powder.
A nickel electrode characterized by the following.
【請求項2】 前記コバルト化合物が、水酸化ニッケル
に対し、金属Co換算で2〜6wt%の範囲で添加され
ている請求項1記載のニッケル電極。
2. The nickel electrode according to claim 1, wherein said cobalt compound is added to nickel hydroxide in a range of 2 to 6 wt% in terms of metal Co.
【請求項3】 水酸化ニッケル粉末に、アルカリ電解液
に溶解して2価のコバルト錯イオンを生成するコバルト
化合物粉末を添加した活物質を用いるニッケル電極の製
造方法において、該コバルト化合物粉末の粒径を水酸化
ニッケル粉末の粒径の10分の1以下に分級する工程1
と、このコバルト化合物に水酸化ニッケル粉末を加えて
電池活物質ペーストとする工程2と、このペーストを耐
アルカリ性金属多孔体に充填する工程3からなることを
特徴とするニッケル電極の製造方法。
3. A method for producing a nickel electrode using an active material obtained by adding a cobalt compound powder which dissolves in an alkaline electrolyte to form a divalent cobalt complex ion to nickel hydroxide powder, the method comprising: Step 1 of classifying the diameter to one-tenth or less of the particle diameter of the nickel hydroxide powder
And a step 2 of adding a nickel hydroxide powder to the cobalt compound to form a battery active material paste, and a step 3 of filling the paste into an alkali-resistant metal porous body.
JP9000996A 1997-01-08 1997-01-08 Nickel electrode and manufacture thereof Pending JPH10199519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9000996A JPH10199519A (en) 1997-01-08 1997-01-08 Nickel electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9000996A JPH10199519A (en) 1997-01-08 1997-01-08 Nickel electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10199519A true JPH10199519A (en) 1998-07-31

Family

ID=11489215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9000996A Pending JPH10199519A (en) 1997-01-08 1997-01-08 Nickel electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10199519A (en)

Similar Documents

Publication Publication Date Title
US5489314A (en) Manufacturing method of nickel plate and manufacturing method of alkaline battery
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
EP0544011A1 (en) Nickel electrode for alkali storage batteries
JP2002110154A (en) Manufacturing method of positive pole active material for alkaline battery
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP2001266867A (en) Alkaline battery and positive electrode for use in alkaline battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH09115543A (en) Alkaline storage battery
JPH10199519A (en) Nickel electrode and manufacture thereof
JP3506365B2 (en) Nickel positive electrode active material
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JP3292204B2 (en) Nickel sintered electrode for alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery
JP4531874B2 (en) Nickel metal hydride battery
JP2735887B2 (en) Zinc active material for alkaline storage battery and method for producing the same
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JP3384109B2 (en) Nickel plate
JP3369783B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and alkaline storage battery
JPH11238507A (en) Alkaline storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050920