JP2983647B2 - Method for producing non-sintered positive electrode for alkaline storage battery - Google Patents

Method for producing non-sintered positive electrode for alkaline storage battery

Info

Publication number
JP2983647B2
JP2983647B2 JP2408206A JP40820690A JP2983647B2 JP 2983647 B2 JP2983647 B2 JP 2983647B2 JP 2408206 A JP2408206 A JP 2408206A JP 40820690 A JP40820690 A JP 40820690A JP 2983647 B2 JP2983647 B2 JP 2983647B2
Authority
JP
Japan
Prior art keywords
nickel
hydroxide
positive electrode
slurry
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2408206A
Other languages
Japanese (ja)
Other versions
JPH04229953A (en
Inventor
誠 神林
雅行 寺坂
卓也 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2408206A priority Critical patent/JP2983647B2/en
Publication of JPH04229953A publication Critical patent/JPH04229953A/en
Application granted granted Critical
Publication of JP2983647B2 publication Critical patent/JP2983647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池用非焼
結式正極の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-sintered positive electrode for an alkaline storage battery.

【0002】[0002]

【従来の技術】従来、アルカリ蓄電池用の正極として
は、水酸化ニッケルを活物質とするニッケル極がよく用
いられている。そして、このニッケル極としては、一般
にニッケル粉末を焼結して得た多孔性ニッケル焼結基板
に、硝酸ニッケル水溶液などの活物質の塩溶液を含浸
し、次いで、アルカリ水溶液に浸漬するなどして、前記
基板中に水酸化ニッケル活物質を生成させて製造する焼
結式正極が用いられていた。
2. Description of the Related Art Conventionally, a nickel electrode using nickel hydroxide as an active material has been often used as a positive electrode for an alkaline storage battery. As the nickel electrode, generally, a porous nickel sintered substrate obtained by sintering nickel powder is impregnated with a salt solution of an active material such as a nickel nitrate aqueous solution, and then immersed in an alkaline aqueous solution. A sintered positive electrode manufactured by producing a nickel hydroxide active material in the substrate has been used.

【0003】ところが、最近、製造工程が簡単であり、
且つ高エネルギー密度化及び軽量化が容易であるという
理由から、活物質を溶解することなく、粉末状態で直接
基板に保持させてなる非焼結式正極に対する関心が高ま
っており、特に、スポンジ状ニッケルやフェルト状ニッ
ケルなどの三次元多孔基板を、活物質を保持する基板に
利用した非焼結式正極が注目されている。
However, recently, the manufacturing process is simple,
In addition, interest in non-sintered positive electrodes, in which the active material is held directly on the substrate in a powder state without dissolving the active material, is increasing because of the fact that the energy density and the weight can be easily reduced. A non-sintered positive electrode using a three-dimensional porous substrate such as nickel or felt-like nickel as a substrate for holding an active material has attracted attention.

【0004】この種非焼結式正極においては、特開昭6
0−131765号公報及び特開昭60−131766
号公報で、球状の水酸化ニッケルを活物質に用いること
が提案されている。これによって、基板に活物質を均一
に、高密度に充填することが可能となり、これらは高エ
ネルギー密度化に有効な方法といえる。
[0004] This type of non-sintered positive electrode is disclosed in
0-131765 and JP-A-60-131766
In Japanese Patent Laid-Open Publication No. H11-163, it is proposed to use spherical nickel hydroxide as an active material. This makes it possible to uniformly and densely fill the substrate with the active material, which can be said to be an effective method for increasing the energy density.

【0005】また、特開昭61−124061号公報で
は、水酸化コバルトを、特開昭62−64062号公報
では、ヘキサゴナルの結晶構造を有する水酸化コバルト
を添加することにより、活物質の利用率を向上させるこ
とが提案されている。
In Japanese Patent Application Laid-Open No. Sho 61-124006, cobalt hydroxide is added, and in Japanese Patent Application Laid-Open No. Sho 62-64062, cobalt hydroxide having a hexagonal crystal structure is added, so that the utilization rate of the active material is increased. It has been proposed to improve.

【0006】ところが、球状の水酸化ニッケルを活物質
として用いた場合には、上記のように水酸化コバルトを
活物質中に添加しても、正極の利用率を向上させる効果
は十分発揮できず、また、利用率の変動幅が大きくなる
といった問題がある。
However, when spherical nickel hydroxide is used as an active material, even if cobalt hydroxide is added to the active material as described above, the effect of improving the utilization factor of the positive electrode cannot be sufficiently exhibited. In addition, there is a problem that the fluctuation range of the utilization rate becomes large.

【0007】[0007]

【発明が解決しようとする課題】本発明は上述の如き問
題点を解決し、高利用率でその利用率の変動幅が少なく
安定した性能を有する正極の製造方法を提供しようとす
るものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a positive electrode having a high utilization rate, a small fluctuation range of the utilization rate and a stable performance. .

【0008】[0008]

【課題を解決するための手段】本発明の製造方法では、
活物質として少なくとも水酸化ニッケルと水酸化コバル
トを用いてスラリーを作製した後、三次元多孔基板に該
スラリーを充填する非焼結式正極の製造方法において、
前記水酸化ニッケルが球状であり、前記水酸化コバルト
の平均粒子径が前記水酸化ニッケルの平均粒子径に対し
て、十分の一以下であることを特徴とするものである。
According to the manufacturing method of the present invention,
After preparing a slurry using at least nickel hydroxide and cobalt hydroxide as an active material, in a method of manufacturing a non-sintered positive electrode to fill the slurry into a three-dimensional porous substrate,
The nickel hydroxide is spherical, and the average particle diameter of the cobalt hydroxide is one tenth or less of the average particle diameter of the nickel hydroxide.

【0009】また、前記スラリーの粘度が2000cp
以上のものを用いることでより一層の効果を奏するもの
である。
The slurry has a viscosity of 2000 cp.
By using the above-mentioned ones, further effects can be obtained.

【0010】[0010]

【作用】導電性に乏しい水酸化ニッケルの利用率を高め
るには、その粒子表面に導電性の高いコバルト被膜を形
成してやることが有効な手段となることは、特開昭62
−64062号公報で指摘されているが、高い利用率が
安定して得られていない。この原因を調査した結果、活
物質に球状ニッケルを用いる場合には、利用率の変動が
大きくなり、利用率が低いのは主に水酸化コバルトが極
板内に均一に分散していないからであるということが判
った。
In order to increase the utilization of nickel hydroxide having poor conductivity, it is effective to form a cobalt film having high conductivity on the surface of the particles.
Although it is pointed out in JP-A-64062, a high utilization rate has not been stably obtained. As a result of investigating the cause, when spherical nickel is used as the active material, the fluctuation of the utilization rate is large, and the utilization rate is low mainly because cobalt hydroxide is not uniformly dispersed in the electrode plate. It turned out that there was.

【0011】そこで、水酸化コバルトの分散性を良好に
する条件としては、水酸化ニッケル粒子の周囲を被うこ
とができる程度に、水酸化コバルトの粒子径が水酸化ニ
ッケルの粒子径に対して十分に小さいこと及び活物質ス
ラリー内で二次凝集した水酸化コバルトを一次粒子に分
離させることが重要であることを見出した。
The condition for improving the dispersibility of the cobalt hydroxide is such that the particle size of the cobalt hydroxide is smaller than the particle size of the nickel hydroxide so as to cover the periphery of the nickel hydroxide particles. It has been found that it is important to be sufficiently small and to separate the secondary aggregated cobalt hydroxide in the active material slurry into primary particles.

【0012】そして、前者に関しては水酸化コバルトの
平均粒子径を水酸化ニッケルの平均粒子径の十分の一以
下にすることであり、後者は、活物質スラリーの粘度を
一定水準以上、すなわち2000cp以上に保持するこ
とである。この活物質スラリーの粘度を一定水準以上に
するということは、水酸化ニッケルと水酸化コバルトの
かさ密度がそれぞれ1.5と0.7とその差が大きいう
え、水酸化ニッケルが球状であることに起因し、粒子ど
うしの絡み合いが小さいため、スラリー製造時に十分混
合して均一化しても、また、撹拌操作を継続しても水酸
化ニッケルと水酸化コバルトは分離しがちであるが、ス
ラリーの粘度を上記水準以上に保つことで常時均一なス
ラリーの状態のまま充填作業が行える。
The former is to reduce the average particle diameter of cobalt hydroxide to one-tenth or less of the average particle diameter of nickel hydroxide, and the latter is to increase the viscosity of the active material slurry to a certain level or more, that is, 2000 cp or more. Is to keep it. Making the viscosity of the active material slurry equal to or higher than a certain level means that the bulk density of nickel hydroxide and cobalt hydroxide is 1.5 and 0.7, respectively, which is a large difference, and that the nickel hydroxide is spherical. Due to the small entanglement of the particles, even if they are sufficiently mixed and homogenized during slurry production, and nickel hydroxide and cobalt hydroxide tend to separate even if the stirring operation is continued, By maintaining the viscosity at or above the above level, the filling operation can be performed with a uniform slurry at all times.

【0013】[0013]

【実施例】(実験1)平均粒子径が各々6、8及び10
ミクロンの球状水酸化ニッケル95重量部及び水酸化コ
バルト5重量部からなる活物質に1%のカルボキシメチ
ルセルロース水溶液を45重量部添加して混練し、スラ
リーを作製した。ここで、水酸化コバルトは平均粒子径
が0.3、0.5、0.8、1.0、及び1.3ミクロ
ンの5種類を用いた。尚、スラリーの粘度は全て300
0〜4000cpであった。 このスラリーを平均孔径2
50ミクロンのスポンジ状ニッケルに充填し乾燥後、1
トン/cm2で加圧して完成極板A〜Kとした。
EXAMPLES (Experiment 1) Average particle size is 6, 8 and 10 respectively.
An active material consisting of 95 parts by weight of micron spherical nickel hydroxide and 5 parts by weight of cobalt hydroxide was mixed with 45 parts by weight of a 1% carboxymethylcellulose aqueous solution and kneaded to prepare a slurry. Here, five types of cobalt hydroxide having an average particle diameter of 0.3, 0.5, 0.8, 1.0, and 1.3 microns were used. The viscosity of the slurry was 300
It was 0 to 4000 cp. This slurry was prepared with an average pore size of 2
After filling into 50 micron sponge-like nickel and drying, 1
Pressed at ton / cm 2 to obtain finished electrode plates A to K.

【0014】この完成極板と公知のカドミウム負極板と
セパレータとを組み合わせて、開放形ニッケル−カドミ
ウム電池を作製して極板の利用率を測定した。その結果
を表1に示す。
An open nickel-cadmium battery was fabricated by combining this completed electrode plate, a known cadmium negative electrode plate and a separator, and the utilization rate of the electrode plate was measured. Table 1 shows the results.

【0015】尚、粒子径はいずれもフィッシャーサブシ
ーブサイザーによる測定値である。また変動幅は極板の
利用率を各々10個づつ測定して、その最大値と最小値
との幅を示したものである。
The particle size is a value measured by a Fisher subsieve sizer. Further, the fluctuation range indicates the range between the maximum value and the minimum value by measuring the utilization rate of each electrode plate by 10 pieces.

【0016】[0016]

【表1】 [Table 1]

【0017】表1の極板A〜極板Eは水酸化ニッケルの
平均粒子径が8ミクロン、極板F〜極板Hは水酸化ニッ
ケルの平均粒子径が6ミクロン、極板I〜極板Kは水酸
化ニッケルの平均粒子径が10ミクロンである。この表
1から水酸化ニッケル及び水酸化コバルトは共に平均粒
子径が小さいほうが利用率が高いことが判る。さらに、
水酸化ニッケルと水酸化コバルトの平均粒子径を比較す
ると、水酸化コバルトの平均粒子径が水酸化ニッケルの
平均粒子径の1/10以下になると利用率はほぼ安定し
た水準に達し、利用率の変動幅も小さくなることが判
る。
Electrodes A to E in Table 1 have an average particle size of nickel hydroxide of 8 μm, and plates F to H have an average particle size of nickel hydroxide of 6 μm and plates I to P K is an average particle size of nickel hydroxide of 10 microns. From Table 1, it can be seen that the smaller the average particle diameter of both nickel hydroxide and cobalt hydroxide, the higher the utilization. further,
Comparing the average particle diameters of nickel hydroxide and cobalt hydroxide, when the average particle diameter of cobalt hydroxide becomes 1/10 or less of the average particle diameter of nickel hydroxide, the utilization reaches a substantially stable level, It can be seen that the fluctuation width also becomes smaller.

【0018】(実験2)平均粒子径8ミクロンの球状水
酸化ニッケル95重量部及び平均粒子径0.5ミクロン
の水酸化コバルト5重量部からなる活物質に含水率が重
量比で35、40、45、50、55及び60%になる
ように1%のカルボキシメチルセルロース水溶液を加え
混合してスラリーを調製した。このスラリーを平均孔径
250ミクロンのスポンジ状ニッケルに充填する前にB
型粘度計で粘度を測定すると共に、10分間静置し組成
の分離の程度を観察した。そして、前記スラリーを用い
て実験1と同様にして極板L〜極板Qを作製し、この極
板と公知のカドミウム負極板とセパレータとを組み合わ
せて、開放形ニッケル−カドミウム電池を作製して利用
率を測定した。その結果を表2に示す。
(Experiment 2) An active material comprising 95 parts by weight of spherical nickel hydroxide having an average particle diameter of 8 μm and 5 parts by weight of cobalt hydroxide having an average particle diameter of 0.5 μm has a water content of 35, 40 by weight. A 1% aqueous solution of carboxymethylcellulose was added to and mixed with 45, 50, 55 and 60% to prepare a slurry. Before filling this slurry into sponge-like nickel having an average pore size of 250 microns, B
The viscosity was measured with a mold viscometer, and the mixture was allowed to stand for 10 minutes to observe the degree of composition separation. Then, an electrode plate L to an electrode plate Q were prepared in the same manner as in Experiment 1 using the slurry, and this electrode plate was combined with a known cadmium negative electrode plate and a separator to prepare an open nickel-cadmium battery. The utilization was measured. Table 2 shows the results.

【0019】[0019]

【表2】 [Table 2]

【0020】表2より、スラリーは粘度の上昇と共に組
成の分離が起こりにくくなり、本発明の2000cp以上
の粘度である極板L〜極板Qでは粒子どうしが分離せず
均一な状態が持続し、粘度が高まりスラリーの均一性が
良好になり、利用率は高い水準で安定することが判る。
From Table 2, it can be seen that the composition of the slurry is less likely to be separated as the viscosity increases, and the electrodes L to Q of the present invention having a viscosity of 2000 cp or more do not separate particles from each other and maintain a uniform state. It can be seen that the viscosity is increased, the uniformity of the slurry is improved, and the utilization is stabilized at a high level.

【0021】尚、実験では、活物質として水酸化ニッケ
ルと水酸化コバルトのみからなるものを、また、基板と
してはスポンジ状ニッケルを示したが、ここにあげた以
外のものを添加した活物質、または他の基体材料を用い
ても本発明と同様の効果を発揮する。
In the experiment, an active material consisting of only nickel hydroxide and cobalt hydroxide was shown as an active material, and a sponge-like nickel was shown as a substrate. Alternatively, the same effects as those of the present invention can be obtained by using other base materials.

【0022】[0022]

【発明の効果】本発明の製造方法によれば、水酸化コバ
ルトの粒子径を水酸化ニッケルの粒子径の十分の一以下
にすることにより、水酸化コバルトが水酸化ニッケル粒
子の周囲を被うことができるようになり、また、スラリ
ー粘度を2000cp以上にすることによって、活物質ス
ラリー内で二次凝集した水酸化コバルトを一次粒子に分
離させ、均一なスラリーの状態で充填作業が行えるよう
になって、水酸化コバルトが極板内に均一に分散するこ
とができ、利用率の変動幅を小さくすることができる。
According to the production method of the present invention, the cobalt hydroxide covers the periphery of the nickel hydroxide particles by setting the particle size of the cobalt hydroxide to one-tenth or less of the particle size of the nickel hydroxide. By increasing the slurry viscosity to 2000 cp or more, secondary aggregation of cobalt hydroxide in the active material slurry is separated into primary particles so that the filling operation can be performed in a uniform slurry state. As a result, the cobalt hydroxide can be uniformly dispersed in the electrode plate, and the fluctuation range of the utilization factor can be reduced.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−256366(JP,A) 特開 昭60−131766(JP,A) 特開 昭62−113360(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/32,4/26 ────────────────────────────────────────────────── (5) References JP-A-62-256366 (JP, A) JP-A-60-131766 (JP, A) JP-A-62-113360 (JP, A) (58) Field (Int.Cl. 6 , DB name) H01M 4 / 32,4 / 26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活物質として少なくとも水酸化ニッケル
と水酸化コバルトを用いてスラリーを作製した後、三次
元多孔基板に該スラリーを充填する非焼結式正極の製造
方法において、前記水酸化ニッケルが球状であり、前記
水酸化コバルトの平均粒子径が前記水酸化ニッケルの平
均粒子径に対して、十分の一以下であることを特徴とす
るアルカリ蓄電池用非焼結式正極の製造方法。
1. A method for producing a non-sintered positive electrode comprising: preparing a slurry using at least nickel hydroxide and cobalt hydroxide as an active material; and filling the slurry in a three-dimensional porous substrate. A method for producing a non-sintered positive electrode for an alkaline storage battery, wherein the positive electrode is spherical and the average particle diameter of the cobalt hydroxide is one-tenth or less of the average particle diameter of the nickel hydroxide.
【請求項2】 前記スラリーの粘度が2000cp以上
である請求項1記載のアルカリ蓄電池用非焼結式正極の
製造方法。
2. The method according to claim 1, wherein the viscosity of the slurry is 2000 cp or more.
JP2408206A 1990-12-27 1990-12-27 Method for producing non-sintered positive electrode for alkaline storage battery Expired - Fee Related JP2983647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2408206A JP2983647B2 (en) 1990-12-27 1990-12-27 Method for producing non-sintered positive electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2408206A JP2983647B2 (en) 1990-12-27 1990-12-27 Method for producing non-sintered positive electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH04229953A JPH04229953A (en) 1992-08-19
JP2983647B2 true JP2983647B2 (en) 1999-11-29

Family

ID=18517694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2408206A Expired - Fee Related JP2983647B2 (en) 1990-12-27 1990-12-27 Method for producing non-sintered positive electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2983647B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967263B2 (en) * 2005-06-29 2012-07-04 パナソニック株式会社 Method for producing electrode mixture paste for alkaline storage battery

Also Published As

Publication number Publication date
JPH04229953A (en) 1992-08-19

Similar Documents

Publication Publication Date Title
JP2947284B2 (en) Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2983647B2 (en) Method for producing non-sintered positive electrode for alkaline storage battery
JP2007518244A (en) Positive electrode active material for nickel electrodes
JPS62256366A (en) Nickel electrode for alkaline battery
JP3077473B2 (en) Alkaline storage battery
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH02262245A (en) Manufacture of nickel hydroxide electrode
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH0794182A (en) Paste type cathode plate for alkaline storage battery
JP2581362B2 (en) Electrodes for alkaline storage batteries
JPH09320583A (en) Nickel electrode
JP2942637B2 (en) Method for producing paste-type nickel electrode
JPH113703A (en) Manufacture of alkaline storage battery positive electrode
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JPH05121074A (en) Nickel electrode for alkaline storage battery
JP3114160B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPS5935360A (en) Zinc electrode
JP3276730B2 (en) Manufacturing method of alkaline storage battery
JP3851180B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery provided with the nickel electrode
JPS63124373A (en) Electrode for battery
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery
JPH11354115A (en) Alkaline storage battery
JPH0521061A (en) Non-sintering nickel positive plate for alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees