JPS59178770A - Semiconductor device of high withstand voltage - Google Patents

Semiconductor device of high withstand voltage

Info

Publication number
JPS59178770A
JPS59178770A JP5241583A JP5241583A JPS59178770A JP S59178770 A JPS59178770 A JP S59178770A JP 5241583 A JP5241583 A JP 5241583A JP 5241583 A JP5241583 A JP 5241583A JP S59178770 A JPS59178770 A JP S59178770A
Authority
JP
Japan
Prior art keywords
region
type
emitter
layer
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5241583A
Other languages
Japanese (ja)
Inventor
Masatoshi Kimura
正利 木村
Takeaki Okabe
岡部 健明
Mitsuzo Sakamoto
光造 坂本
Koichiro Satonaka
里中 孝一郎
Toyomasa Koda
幸田 豊正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5241583A priority Critical patent/JPS59178770A/en
Publication of JPS59178770A publication Critical patent/JPS59178770A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Abstract

PURPOSE:To obtain the titled device of excellent high frequency characteristic by a method wherein the periphery of an emitter region is surrounded by a high impurity concentration region of the same conductivity type as that of a semiconductor of one conductivity type, and a low impurity concentration region of the reverse conductivity type is provided on the surface of a collector region, when the emitter and collector regions of the reverse conductivity type are provided in the surface layer part of said semiconductor substrate, thus being formed into a lateral transistor. CONSTITUTION:An N<+> type buried layer 2 is diffusion-formed in the surface layer part of the P type Si substrate 1, and an N type layer 4 serving as the base is epitaxially grown over the entire surface including said layer and then formed in an island form by P type isolating diffused regions 3. Then, a P type emitter region 5a positioned at the center by sandwiching the base region composed of the layer 4 and a P type collector region 5b which surrounds said emitter are provided. At this time, the periphery of the P type emitter region 5a is kept surrounded by a P<+> type well region 9, and a thin P<-> type layer 501 having a stretch-out part 502 is provided on the surface of the region 5b. An electrode 8a mounted on the region 5a is extended on an insulation film 7 so as to cover the region 9.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体集積回路(以下ICと略す)内に組み
込捷れるpnp型トランジスタに係わり、特にラテラル
pnpトランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a pnp transistor that is incorporated into a semiconductor integrated circuit (hereinafter abbreviated as IC), and particularly to a lateral pnp transistor.

〔背景技術〕[Background technology]

高耐圧のバイポーラICでは、npnトランジスタの耐
圧を上げるために、コレクタ層となるエビタギンヤル層
の抵抗率を高くしなければならない。そのため同一チッ
プ上に形成されるラテラル1)nl) )ランジスタは
ベース中に空乏層が延び易くなり、パンチスルーによる
耐圧低下を招いた。
In a high-voltage bipolar IC, in order to increase the breakdown voltage of an npn transistor, the resistivity of an evitaginal layer serving as a collector layer must be increased. Therefore, in lateral transistors formed on the same chip, a depletion layer tends to extend into the base, resulting in a decrease in breakdown voltage due to punch-through.

ラテラルpnp)ランジスタのパンチスルーを防いで耐
圧を高くするためには、パターン対策のみでは、ペース
幅(第1図で示すWB )を犬きくせざるを得す直流電
流増幅率brg  の低下、周波数特性の劣化を来たし
た。
In order to prevent punch-through of the (lateral pnp) transistor and increase its withstand voltage, pattern countermeasures alone will have to increase the pace width (WB shown in Figure 1), decrease the DC current amplification factor brg, and increase the frequency. The characteristics deteriorated.

従来の改良例は、第2図の断面構造で示すように、エミ
ッタ拡散の周囲に高濃度のn型拡散層9(以下、nウェ
ル領域と略す)を形成してパンチスルーによる耐圧低下
を防いだ。
In the conventional improved example, as shown in the cross-sectional structure of Fig. 2, a highly concentrated n-type diffusion layer 9 (hereinafter referred to as n-well region) is formed around the emitter diffusion to prevent a drop in breakdown voltage due to punch-through. is.

しかし、この構造でも以下の欠点があった。However, this structure also had the following drawbacks.

(1)第1図、第2図のエミッタ電極8aは、チャージ
こぼれに起因する耐圧低下を防ぐために、コレクタ拡散
領域5bの上部まで張り出したオーバーメタル構造とし
て、信頼性の向上を図っている。nウェル9によりパン
チスルーを抑えることができても、このオーバーメタル
構造のだめエミッタ電極8a直下のコレクタ拡散5b近
傍で電界集中が起こり、ブレークダウンしてしまい、耐
圧をそれ程高くできなかった。
(1) The emitter electrode 8a shown in FIGS. 1 and 2 has an overmetal structure extending to the top of the collector diffusion region 5b to improve reliability in order to prevent a drop in breakdown voltage due to charge spillage. Even if punch-through could be suppressed by the n-well 9, electric field concentration occurred in the vicinity of the collector diffusion 5b directly under the emitter electrode 8a due to this over-metal structure, resulting in breakdown, and the withstand voltage could not be made that high.

(2)パンチスルーを抑えるために導入したnウェル9
により、エミッタの注入効率が下がり、hFEの(f下
を招いた。特に、第1図の平面図で示したような、エミ
ッタ領域(5a)がコレクタ拡散領域5bにより、はぼ
同心円状に囲まれた構造では、パンチスルーを防ぐため
に、高濃度のnウェルを必要とし、増々hrw の低下
をきたした。
(2) N-well 9 introduced to suppress punch-through
As a result, the injection efficiency of the emitter was lowered, leading to the (f) lowering of the hFE.In particular, as shown in the plan view of FIG. In this structure, a highly concentrated n-well was required to prevent punch-through, resulting in a further decrease in hrw.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記欠点を改善し、周波数特性の良い
高耐圧ラテラルpnp)ランジスタの共存する半導体集
積回路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks and to provide a semiconductor integrated circuit in which a high-voltage lateral PNP transistor with good frequency characteristics coexists.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明の高耐圧半導体装置
においては、−導電型の半導体基体の主表面領域に、互
いに離れて設けられた上記基体と反対導電型のエミッタ
領域とコレクタ領域を有し、上記基体をベース領域とす
るラテラルトランジスタにおいて、上記エミッタ領域の
周囲に、ベース領域と同一導電型の高不純物濃度領域を
有し、コレクタ領域の表面周囲に上記基体と反対導電型
の低不純物濃度領域を有してなることを特徴とする。
In order to achieve the above object, the high voltage semiconductor device of the present invention has an emitter region and a collector region of a conductivity type opposite to that of the base body, which are provided apart from each other in the main surface region of a semiconductor base body of a − conductivity type. In a lateral transistor having the above substrate as a base region, a high impurity concentration region of the same conductivity type as the base region is provided around the emitter region, and a low impurity concentration region of the opposite conductivity type to the base region is provided around the surface of the collector region. It is characterized by having a concentration region.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図により説明する。第3
図は、断面構造を示したもので、エミッタ電極8aは、
コレクタ拡散層5bの表面周囲にイオン打込みで形成さ
れた低不純物のp型層501上まで張り出している。第
2図の例と異なシ、エミッタ電極8a直下のp型層50
1は、ピンチオンして電界集中を緩和しており、ブレー
クダウンが抑えられている。このp型層501はコレク
タとしても働くので、ラテラルpnpのベース幅と・ 
しては第3図で示したWBであシ、広い方のWpではな
い。従って、hFg の低下を防げる。エミッタ電極8
aはコレクタまで張り出したオーバーメタル構造となっ
ているので、信頼性上も問題が無くなる。本構造を採用
することによ−リ、nウェル9でパンチスルーを抑え、
かつ、コレクタ5b上でのブレークダウンを防止するこ
とができ、耐圧向上が可能となった。またベース幅も短
くでき、高周波特性も改善できる。
An embodiment of the present invention will be described below with reference to FIG. Third
The figure shows a cross-sectional structure, and the emitter electrode 8a is
It extends over the low impurity p-type layer 501 formed by ion implantation around the surface of the collector diffusion layer 5b. A p-type layer 50 directly below the emitter electrode 8a, which is different from the example in FIG.
In No. 1, the electric field concentration is alleviated by pinch-on, and breakdown is suppressed. Since this p-type layer 501 also works as a collector, the base width of the lateral pnp
However, it is the WB shown in FIG. 3, not the wider Wp. Therefore, a decrease in hFg can be prevented. Emitter electrode 8
Since a has an overmetal structure that extends to the collector, there is no problem in terms of reliability. By adopting this structure, punch-through is suppressed in the n-well 9,
In addition, breakdown on the collector 5b can be prevented, making it possible to improve the breakdown voltage. Furthermore, the base width can be shortened, and high frequency characteristics can also be improved.

ここで、第3図のp型層502は、コレクタ拡散層5b
の表面でのブレークダウンを防ぐだめに、501と同じ
p型層を、コレクタ層5bよシも張り出したものである
Here, the p-type layer 502 in FIG. 3 is the collector diffusion layer 5b.
In order to prevent breakdown on the surface of the collector layer 5b, the same p-type layer as in 501 is extended beyond the collector layer 5b.

第4図は、他の実施例で、第3図p型層50−2の代り
に、コレクタ層5bの上にフィールドプレート802を
形成し、コレクタ層5bの表面近傍でのブレークダウン
を防いだものである。
FIG. 4 shows another embodiment in which a field plate 802 is formed on the collector layer 5b instead of the p-type layer 50-2 in FIG. 3 to prevent breakdown near the surface of the collector layer 5b. It is something.

第5図は、他の実施例で、平面図aおよびその断面構造
すを示したものである。エミッタ5aの形状が細長いこ
とを特徴としている。エミッタ5aの形状を細長くする
ことで、パンチスルーを抑えるためのnウェル9の不純
物濃度を、第1図のような同心円状にエミッタ5aがコ
レクタ5bにより囲まれた構造に比べて、1/2以下に
できるのでエミッタの注入効率の低下を防ぐことができ
る。同時に、エミッタの周辺長も同一トランジスタサイ
ズに対して同心円状のものに比べ長くできるので、コレ
クタ電流増力口も図ることができる。
FIG. 5 shows a plan view a and its cross-sectional structure in another embodiment. The emitter 5a is characterized by an elongated shape. By elongating the shape of the emitter 5a, the impurity concentration of the n-well 9 to suppress punch-through can be reduced to 1/2 compared to the structure in which the emitter 5a is surrounded by the collector 5b concentrically as shown in FIG. Since it is possible to do the following, it is possible to prevent the emitter injection efficiency from decreasing. At the same time, since the peripheral length of the emitter can be made longer than that of a concentric emitter for the same transistor size, a collector current amplification port can also be designed.

以下第6図を用いて、詳細に説明する。This will be explained in detail below using FIG. 6.

第6図(a)は、同心円状のラテラルpnpの平面図で
コレクタ・エミッタ間を示したものである。
FIG. 6(a) is a plan view of a concentric lateral PNP showing the area between the collector and emitter.

B−B’の間でGHIJで示した扇形のpnp )ラン
ジスタの一次元モデルを考える。ここでNAはコレクタ
の不純物濃度、NDlはエピタキシャル層の不純物濃度
、NDl はNウェル中の不純物濃度である。コレクタ
とベース間に、電圧Vを印加したときに空乏層がnウェ
ルまで延びたとして、その間の電荷のつり合いの条件か
ら以下に示した式が成立つ。
Consider a one-dimensional model of a sector-shaped pnp (pnp) transistor shown by GHIJ between BB'. Here, NA is the impurity concentration of the collector, NDl is the impurity concentration of the epitaxial layer, and NDl is the impurity concentration in the N well. Assuming that when a voltage V is applied between the collector and the base, the depletion layer extends to the n-well, the following formula holds true from the condition of charge balance between the collector and base.

N nz > N Dl t2   rl 、l−、r2 tt−ro  QNA= t2−δ・qND2tl−r
o−qNAχt1・δ・qND2’1 =   ND2 2 ここで、エピタキシャル層の不純物濃度NDIはnウェ
ルの不純物濃度ND2よシー桁以上小さいられ、同じ印
加電圧Vで必要な不純物濃度は同図ことか分る。同図(
C)の条件を実際のパターンで実現するには、エミッタ
を細長いパターンにすれば良い。ただし細長いエミッタ
の両端では同図(b)のような関係になるので、耐圧を
維持するためにベース幅を広げなければならない。第5
図の平面図でWで示1−だ個所がそれに相当する。
N nz > N Dl t2 rl , l-, r2 tt-ro QNA= t2-δ・qND2tl-r
o-qNAχt1・δ・qND2'1 = ND2 2 Here, the impurity concentration NDI of the epitaxial layer is smaller than the impurity concentration ND2 of the n-well by more than C orders, and it can be seen that the required impurity concentration at the same applied voltage V is from the same figure. Ru. Same figure (
In order to realize the condition C) with an actual pattern, the emitter can be made into an elongated pattern. However, since the relationship at both ends of the elongated emitter is as shown in FIG. 6(b), the base width must be increased in order to maintain the withstand voltage. Fifth
This corresponds to the portion indicated by W in the plan view of the figure.

ラテラルpnpのコレクタ電流は、エミッタの周辺長L
Eに比例するので、大電流を得るにはLEを長くすれば
良い。第7図は、ラテラルpnpのコレクタとエミッタ
部のパターンを示したもので、第7図(a)は、エミッ
タ個数3個の同心円状のパターン、’(b)は細長いエ
ミッタとした場合の図である。
The collector current of the lateral pnp is the emitter peripheral length L
Since it is proportional to E, in order to obtain a large current, it is sufficient to lengthen LE. Figure 7 shows the patterns of the collector and emitter parts of the lateral PNP. Figure 7 (a) is a concentric pattern with three emitters, and Figure 7 (b) is a diagram with elongated emitters. It is.

同じトランジスタサイズで比較するとエミッタ周辺長は
、第7図(a)のエミッタ個数が3個以上の場合には、
第7図(b)の方が長くなる。例えば、第7図で示した
値を用いると(b)の場合が長いことが分ル。計算で細
長いエミッタの方が同心円状の構造のエミッタよシ周辺
長が長くなる条件は、より求まる。但しW=Wp +X
Kとしだ。各記号は第7図で示した長さでちる。
Comparing the same transistor size, the emitter peripheral length is as shown in Fig. 7(a) when the number of emitters is 3 or more.
The one in FIG. 7(b) is longer. For example, if we use the values shown in Figure 7, we can see that case (b) is long. The conditions under which an elongated emitter has a longer peripheral length than an emitter with a concentric structure can be determined by calculation. However, W=Wp +X
K and Toshida. Each symbol is divided by the length shown in Figure 7.

C+ =10 ttmz XE ==20 μmとした
場合、Wpが15μm以上あればnz3となる。
When C+ =10 ttmz XE ==20 μm, if Wp is 15 μm or more, it becomes nz3.

つまり、実用的にはラテラルpnpのWpは15μm以
上であるので円形のエミッタ個数が3細板上横に並べる
場合には、細長いエミッタの方が周辺長を長くできる。
That is, in practical terms, the Wp of the lateral pnp is 15 μm or more, so when three circular emitters are arranged horizontally on a thin plate, the elongated emitters can have a longer peripheral length.

以上、第6図と第7図で説明したように、円形状のエミ
ッタにするよりも、細長いエミッタにする方が、nウェ
ル9の不純物濃度を少なくでき、従ってエミッタ注入効
率を上げられる。また、エミッタ周辺長も長くなるので
、電流も多くすることができる。ベース幅を広げずにn
ウェルで耐圧が上げられるので、周波数特性の劣化も少
ない。
As described above with reference to FIGS. 6 and 7, the impurity concentration in the n-well 9 can be lowered by using an elongated emitter rather than a circular emitter, and the emitter injection efficiency can therefore be increased. Furthermore, since the emitter peripheral length also becomes longer, the current can also be increased. n without increasing the base width
Since the withstand voltage is increased in the well, there is less deterioration in frequency characteristics.

第8図は、他の実施例で、エピタキシャル層の厚さの異
なるIC構造に適用した場合である。素子分離はエピタ
キシャル層の薄い部分で行なっている。150■以上の
高耐圧を得る場合に有利な構造である。
FIG. 8 shows another example in which the present invention is applied to IC structures having different epitaxial layer thicknesses. Element isolation is performed at a thin portion of the epitaxial layer. This is an advantageous structure when obtaining a high withstand voltage of 150μ or more.

第9図は、第8図の例で、p型低不純物濃度層502を
除いている。エミッタ5aのオーバーメタルを2層目の
At12で行なうことで、コレクタ層5bの端での電界
集中を防いでおり、他の実施例と同様に本発明の改善効
果が得られている。
FIG. 9 is an example of FIG. 8, with the p-type low impurity concentration layer 502 removed. By overmetalizing the emitter 5a with the second layer of At12, electric field concentration at the edge of the collector layer 5b is prevented, and the improvement effect of the present invention is obtained as in the other embodiments.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ラテラルpnpの周波数特性を低下さ
せずに、耐圧向上を図ることができる。
According to the present invention, it is possible to improve the breakdown voltage without reducing the frequency characteristics of the lateral PNP.

例えば、250v耐圧のICi実現する場合、npn 
)ランジスタの耐圧を確保するために、エピタキシャル
層は30Ωα以上となるので、ラテラルpnpのベース
幅は、従来構造ではマスク上で50μm以上となる。そ
めため、ラテラルpnpの利得帯域幅積fTはI M 
Hz以下となり、周波数特性が悪い。しかし、本発明音
用いることで、耐圧250vを維持した1ま、ベース幅
を20μmと短かくできるので、1丁は4〜5 M H
zと数倍も性能を上げられる効果がある。更に本発明に
よればこぼれ電荷による信頼度耐圧劣化などの問題も生
じない構造を提供することができる。
For example, when realizing a 250V ICi, npn
) In order to ensure the breakdown voltage of the transistor, the epitaxial layer has a resistance of 30 Ωα or more, so the base width of the lateral PNP is 50 μm or more on the mask in the conventional structure. Therefore, the gain-bandwidth product fT of the lateral pnp is I M
Hz or less, resulting in poor frequency characteristics. However, by using the sound of the present invention, the base width can be shortened to 20 μm while maintaining the withstand voltage of 250 V, so one gun can have a power rating of 4 to 5 MH.
It has the effect of increasing performance several times as much as Z. Further, according to the present invention, it is possible to provide a structure that does not cause problems such as reliability and breakdown voltage deterioration due to spilled charge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は従来のラテラルpnpの平面
図と断面図、第2図は従来の改良例を示す断面構造図、
第3図〜第4図は本発明の実施例を示す断面構造図、第
5図は本発明の実施例を示す平面図および断面構造図、
第6図、第7図は本発明の詳細な説明するだめの図、第
8図、第9図は本発明の他の実施例を示す断面構造図で
ある。 1・・・p型基板、2・・・n型高不純物濃度埋込層、
3・・・p型分離拡散層、4・・・n型エピタキシャル
層、5 a、 5 b・−n型拡散層、501,502
−’p型イオン打込層、6・・・n型拡散層、7・・・
酸化膜、8a、8b、 8c・・・アルミ電極、9・・
・nウェル拡散層、10・・・n型拡散層、11・・・
層間絶縁膜、12・・・2層目のアルミ電極、41・・
・厚いnfiエビ第 1 区 (幻             (殿 A′ Y 2区 蒐 3 区 1− 藁4− ロ 閉   乙   し≧] 第7 (2) H−一一一2バ1NP−fγXef(刀す+)C1−一
一〇) 41 ト(−2(シシ’tCI)+ノE−−113 目 茅 9 旧
Figures 1 (a) and (b) are a plan view and a cross-sectional view of a conventional lateral PNP, and Figure 2 is a cross-sectional structural diagram showing an improved example of the conventional structure.
3 to 4 are cross-sectional structural diagrams showing an embodiment of the present invention, FIG. 5 is a plan view and a cross-sectional structural diagram showing an embodiment of the present invention,
6 and 7 are diagrams for explaining the present invention in detail, and FIGS. 8 and 9 are cross-sectional structural diagrams showing other embodiments of the present invention. 1...p-type substrate, 2...n-type high impurity concentration buried layer,
3...p-type isolation diffusion layer, 4...n-type epitaxial layer, 5a, 5b・-n-type diffusion layer, 501, 502
-'p-type ion implantation layer, 6...n-type diffusion layer, 7...
Oxide film, 8a, 8b, 8c...aluminum electrode, 9...
・N-well diffusion layer, 10...n-type diffusion layer, 11...
Interlayer insulating film, 12... Second layer aluminum electrode, 41...
・Thick nfi shrimp 1st ward (phantom (Tono A' Y 2nd ward 3 ward 1- straw 4- RO closed otsu shi≧) 7th (2) H-1112ba1NP-fγXef (sword +) C1-110) 41 ト(-2(しし'tCI)+ノE--113 目茅 9 Old

Claims (1)

【特許請求の範囲】 1、−導“α型の半導体基体の主表面領域に、互いに離
れて設けられた上記基体と反対導電型のエミッタ領域と
コレクタ領域を有し、上記基体をペース領域とするラテ
ラルトランジスタにおいて、上記エミッタ領域の周囲に
、ベース領域と同一導電型の高不純物濃度領域を有し、
コレクタ領域の表面周囲に上記基体と反対導電型の低不
純物濃度領域を有してなることを特徴とする高耐圧半導
体装置。 2、特許請求の範囲第1項記載の半導体装置において、
エミッタ電極がコレクタ周囲の上記基体と反対導電型の
低不純物濃度領域上まで絶縁物を介して延在してなるこ
とを特徴とする半導体装置。 3、特許請求の範囲第1項まだは第2項記載の半導体装
置において、エミッタ領域の幅が、対向するコレクタ領
域の主として動作する領域幅とほぼ等しくしたことを特
徴とする半導体装置。
[Claims] 1. An emitter region and a collector region of the opposite conductivity type to the base body are provided in the main surface region of an α-type conductive semiconductor base body, and the base body is used as a pace region. A lateral transistor having a high impurity concentration region having the same conductivity type as the base region around the emitter region,
A high breakdown voltage semiconductor device comprising a low impurity concentration region of a conductivity type opposite to that of the base body around the surface of a collector region. 2. In the semiconductor device according to claim 1,
1. A semiconductor device characterized in that an emitter electrode extends through an insulator onto a low impurity concentration region of a conductivity type opposite to that of the base body surrounding the collector. 3. A semiconductor device according to claim 1 or claim 2, wherein the width of the emitter region is approximately equal to the width of the main operating region of the opposing collector region.
JP5241583A 1983-03-30 1983-03-30 Semiconductor device of high withstand voltage Pending JPS59178770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5241583A JPS59178770A (en) 1983-03-30 1983-03-30 Semiconductor device of high withstand voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5241583A JPS59178770A (en) 1983-03-30 1983-03-30 Semiconductor device of high withstand voltage

Publications (1)

Publication Number Publication Date
JPS59178770A true JPS59178770A (en) 1984-10-11

Family

ID=12914152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5241583A Pending JPS59178770A (en) 1983-03-30 1983-03-30 Semiconductor device of high withstand voltage

Country Status (1)

Country Link
JP (1) JPS59178770A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153550U (en) * 1984-03-24 1985-10-12 三洋電機株式会社 Lateral transistor
JPS61216469A (en) * 1985-03-22 1986-09-26 Nec Corp Lateral transistor
JPS62226666A (en) * 1986-03-28 1987-10-05 Toshiba Corp Manufacture of semiconductor device
JPH0271529A (en) * 1988-09-06 1990-03-12 Fuji Electric Co Ltd Horizontal type bipolar transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153550U (en) * 1984-03-24 1985-10-12 三洋電機株式会社 Lateral transistor
JPS61216469A (en) * 1985-03-22 1986-09-26 Nec Corp Lateral transistor
JPS62226666A (en) * 1986-03-28 1987-10-05 Toshiba Corp Manufacture of semiconductor device
JPH0271529A (en) * 1988-09-06 1990-03-12 Fuji Electric Co Ltd Horizontal type bipolar transistor

Similar Documents

Publication Publication Date Title
US4047220A (en) Bipolar transistor structure having low saturation resistance
JPS5914897B2 (en) semiconductor equipment
JPS59178770A (en) Semiconductor device of high withstand voltage
US3755722A (en) Resistor isolation for double mesa transistors
US6198154B1 (en) PNP lateral bipolar electronic device
JPH0555594A (en) Vertical field-effect transistor
JPH0231426A (en) Bipolar transistor
JP2518929B2 (en) Bipolar semiconductor integrated circuit
JPH0328836B2 (en)
JP2760401B2 (en) Dielectric separation substrate and semiconductor device
JPH0870121A (en) Insulated gate semiconductor device
JP2518413B2 (en) Semiconductor integrated circuit
JPH10335346A (en) Lateral pnp bipolar electronic device and manufacturing method thereof
JPS60233856A (en) Semiconductor device
JPH0766392A (en) Field effect transistor
JPH0256935A (en) Semiconductor integrated circuit device
JPH0574790A (en) Semiconductor device and manufacture thereof
JPH05166820A (en) Semiconductor device and manufacture thereof
JPH11121459A (en) Semiconductor device and reduction of collector resistance thereof
JPH0520909B2 (en)
JPS61225866A (en) Semiconductor device
JPS59214250A (en) Semiconductor device
JPH10289911A (en) Semiconductor device
JPS63219168A (en) Bipolar integrated circuit
JPH05129317A (en) V-pnp transistor