JPH0256935A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0256935A
JPH0256935A JP20772188A JP20772188A JPH0256935A JP H0256935 A JPH0256935 A JP H0256935A JP 20772188 A JP20772188 A JP 20772188A JP 20772188 A JP20772188 A JP 20772188A JP H0256935 A JPH0256935 A JP H0256935A
Authority
JP
Japan
Prior art keywords
type
concentration
isolation
low
breakdown strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20772188A
Other languages
Japanese (ja)
Inventor
Takeshi Oda
剛 黄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20772188A priority Critical patent/JPH0256935A/en
Publication of JPH0256935A publication Critical patent/JPH0256935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To maintain the characteristic of elements of a high breakdown strength power and improve the characteristics of a low breakdown strength controlling circuit part in a chip by forming P-type low-concentration isolation layers just on P-type high-concentration isolation layers formed in the N-type substrate of the low breakdown strength controlling circuit part so as to surround said high-concentration isolation layers. CONSTITUTION:Isolation areas 2 for isolation from a P-type high-concentration substrate are formed at the specified positions of an N-type low-resistivity substrate 1 by diffusing boron. P-type low-concentration isolation areas 3 are formed on and around the surfaces of the areas 2 by oxidation and removal of oxide films in a wet atmosphere by using the segregation of boron to the oxide films. N-type high- concentration buried layers 4 are formed by diffusing antimony, an epitaxial layer 5 is formed thereon, isolation areas 6 are formed by diffusing boron to isolate elements in one end the same chip, and collector walls 7 are formed by diffusing phosphorus to reduce the series resistance of the elements. This maintains the characteristic of high breakdown strength power elements and provides the characteristics of the saturation voltage and the parasitic current of a low breakdown strength part equal to that of the controlling circuit part of a normal semiconductor integrated circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はパワー素子を1素子内蔵した半導体集積回路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit incorporating one power element.

〔従来の技術〕[Conventional technology]

第3図(al−Inを用いて従来のパワー素子を1素子
内した半導体集積回路について説明する。まず、第3図
(alに示すごと<、N形像比抵抗基板(11の所定の
位置にボロンを拡散することによって基板との高ン;度
分離領域(2)を、形成し第3図+blに示すごとくア
ンチモンを拡散することによって高濃度のN形埋め込み
層(4)を形成する。
Fig. 3 (A semiconductor integrated circuit in which a conventional power element is included in one element using Al-In will be explained.) First, as shown in Fig. 3 (al), an N-type image resistivity substrate (11 predetermined positions A high-concentration isolation region (2) with the substrate is formed by diffusing boron, and a high-concentration N-type buried layer (4) is formed by diffusing antimony as shown in FIG.

そうしておいて、第3図telに示すごとく、そのヒに
エピタキシャル層(5)を形成する。ついで、第3図(
dlに示すごとく、同−千ノプ内の素子を分離rるため
にボロンを拡散して分離領域(6)を形成し、素子の直
列抵抗を下げるためにリンの拡散により一ルクタウォー
ル(7)を形成する。
Then, as shown in FIG. 3, an epitaxial layer (5) is formed thereon. Next, Figure 3 (
As shown in dl, boron is diffused to form isolation regions (6) in order to separate the elements within the same space, and phosphorus is diffused to form isolation regions (7) in order to reduce the series resistance of the elements. form.

ついで、第3図telに示すごとく、ボロンを注入する
ごとによりN P N、 )ランジスタのヘース領域(
8)、横形PNP トランジスタのエミッタ領域(8,
1)、コレクタ領域(8,2)を形成し、リンを拡散す
ることによりNPN )ランジスタのエミッタ領域(9
)横形PNP トランジスタのベースコンタクト(9,
1)を形成する。
Then, as shown in FIG. 3, each time boron is implanted, the heath region of the transistor (
8), Emitter region of lateral PNP transistor (8,
1), by forming the collector region (8,2) and diffusing phosphorus to form the emitter region (9,
) Horizontal PNP transistor base contact (9,
1) Form.

そして第3図(f)に示すごとく、酸化膜θφに電極取
出し用の穴を開けた後にアルミニウムの配線0υを行い
完成づる。
Then, as shown in FIG. 3(f), a hole is made in the oxide film θφ for taking out the electrode, and then aluminum wiring 0υ is formed to complete the process.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

かかる従来のパワー素子を1素子内蔵した半導体集積回
路においては、N形基板に制御回路部では、N形エピタ
キシャル層とN形基板との低電圧でのパンチスルーを防
ぐため高濃度のP形層を形成しているので、高濃度のN
形埋め込み層を形成した後のエピタキシャル層成長時に
高濃度のP形層のオートドーピングが著しく高濃度のN
形埋め込み層を追い越し、高濃度のN形埋め込み層を取
り囲んでしまい、制御回路部のトランジスタの飽和電圧
を著しく悪化させてしまうという欠点があった。又、コ
レクタ電流が高濃度のP形骨離層に流れ、寄生電流が非
常に多くなり、従ってパワー素子を1素子内蔵した半導
体集積回路の制御回路部の特性が悪化してしまうという
欠点があった。
In such a conventional semiconductor integrated circuit incorporating one power element, a highly doped P-type layer is formed on the N-type substrate in the control circuit section to prevent punch-through at low voltage between the N-type epitaxial layer and the N-type substrate. Because it forms a high concentration of N
During the epitaxial layer growth after forming the buried layer, autodoping of the high concentration P layer is significantly caused by the high concentration N.
This has the disadvantage that it overtakes the N-type buried layer and surrounds the highly doped N-type buried layer, significantly worsening the saturation voltage of the transistor in the control circuit section. Another disadvantage is that the collector current flows through the highly concentrated P-shaped osteotomy, resulting in an extremely large amount of parasitic current, which deteriorates the characteristics of the control circuit section of a semiconductor integrated circuit incorporating one power element. Ta.

この発明の目的は、上記の様な問題点を解消するために
なされたもので高耐圧パワー素子の特性の維持はもちろ
ん、チップ内の低耐圧制御回路部の特性の向上を目的と
している。
The purpose of the present invention was to solve the above-mentioned problems, and aims not only to maintain the characteristics of a high-voltage power element but also to improve the characteristics of a low-voltage control circuit section within a chip.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかる半導体集積回路装置は低耐圧制御回路
部においてN形基板に形成するP形高?農度分!Jff
lの直上に取り囲む様にしてP形低濃度分諦層を形成し
たものである。
The semiconductor integrated circuit device according to the present invention has a P-type high voltage formed on an N-type substrate in the low voltage control circuit section. Agricultural degree! Jff
A P-type low-concentration dispersion layer is formed directly above and surrounding the P-type dispersion layer.

〔作用〕[Effect]

パワー素子を1素子内蔵した半導体集積回路の制御回路
部では、N形エビクキシャル層とN形基板との低電圧で
のパンチスルーを防ぐためにP形高濃度分離層は絶対に
必要であるが、高濃度のN形埋め込み層を形成した後の
エピタキシャル層成長時に高濃度のP形層のオートドー
ピングにより高濃度のN形埋め込み層を追い越し、高濃
度のN形埋め込み層を取り囲んでしまっていた。
In the control circuit section of a semiconductor integrated circuit that incorporates one power device, a P-type high-concentration isolation layer is absolutely necessary to prevent punch-through at low voltage between the N-type eviaxial layer and the N-type substrate. During epitaxial layer growth after forming a high concentration N type buried layer, the high concentration P type layer overtakes the high concentration N type buried layer due to autodoping and surrounds the high concentration N type buried layer.

オートドーピングを防ぐためには、単にP形骨l11層
の濃度を全体的に低くすればよいのだが、この方法では
N形エピタキシャル層との低電圧でのパンチスルーを防
ぐことはできない。そこで、表面近傍のP形骨離層は濃
度を抑えかつ低電圧のアバランシェ降伏が起らない程度
の濃度を持つ低濃度の層で、内部の層は低電圧でのパン
チスルーを防ぐ程度の高濃度と拡散深さを持つ層である
。これらの二重のP形骨離層を持っているので高濃度の
N形埋め込み層を取り囲んでしまい制御回路部のトラン
ジスタの飽和電圧を悪化させることも、エピタキシャル
層とN形基板との低電圧でのパンチスルーもなく通常の
半導体集積回路の制御回路部と同等の特性を得ることが
できる。
In order to prevent autodoping, it is sufficient to simply lower the overall concentration of the P-type bone l11 layer, but this method cannot prevent punch-through with the N-type epitaxial layer at low voltage. Therefore, the P-shaped osteotomy layer near the surface is a low-concentration layer that suppresses the concentration and does not cause avalanche breakdown at low voltages, and the inner layer is a layer with a high concentration that prevents punch-through at low voltages. It is a layer with concentration and diffusion depth. These double P-type osteotomies surround the high-concentration N-type buried layer, worsening the saturation voltage of the transistor in the control circuit, and lowering the voltage between the epitaxial layer and the N-type substrate. There is no punch-through and characteristics equivalent to those of the control circuit section of a normal semiconductor integrated circuit can be obtained.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例について、図に従って説明する。第1
図は此の発明の一実施例による半導体集積回路装置の断
面構造を示し、第2図(al −fg)にその製造フロ
ーに従った断面構造を示す。
An embodiment of the present invention will be described with reference to the drawings. 1st
The figure shows a cross-sectional structure of a semiconductor integrated circuit device according to an embodiment of the present invention, and FIG. 2 (al-fg) shows a cross-sectional structure according to its manufacturing flow.

まず、第2図fa)に示すごと(、N形像比抵抗基板f
ilの所定の位置にボロンを拡散することによっエツト
雰囲気中での酸化と酸化膜除去により表面近傍に低濃度
のP形の恭板との分離領域(3)を形成する。また、第
2図(a)に示すごとく、アンチモンを拡散するごとに
より、高濃度のN形埋め込み層(3)を形成する。
First, as shown in Figure 2 fa) (, N-type image resistivity substrate f
By diffusing boron into a predetermined position of the il, a low concentration P-type isolation region (3) from the plate is formed near the surface by oxidation in an etch atmosphere and removal of the oxide film. Furthermore, as shown in FIG. 2(a), a highly concentrated N-type buried layer (3) is formed by diffusing antimony.

そうし°ζおい°ζ、第2図+dlに示すごとく、その
上にエピク;1゛シャル層(4)を形成する。ついで、
第2図(atに示すごとく、同一チップ内の素子を分離
するためにボロンを拡散し”ζ分離領域(5)を形成し
、素子の直列11(抗を下げるためにリンの拡散により
コレクタウオール(6)を形成する。
Then, as shown in FIG. 2+dl, an epic primary layer (4) is formed thereon. Then,
As shown in Figure 2 (at), in order to separate the elements within the same chip, boron is diffused to form a ζ isolation region (5), and the elements are connected in series 11 (to reduce resistance, phosphorus is diffused to form a collector wall). (6) is formed.

ついで、第2図R1に示すごとく、ボロンを注入するこ
とによりN I) N )ランジスタのベース領域(8
)、横形PNr’ )ランジスタのエミッタ領域(8,
1)、コレクタ領域(8,2)を形成し、リンを拡11
にすることによりN I) N l−ランジスタのエミ
ッタ61域(9)横形PNP l−ランジスタのベース
コンタクト(9,1)を形成する。
Then, as shown in FIG. 2 R1, by implanting boron, the base region (8) of the N I) N
), horizontal PNr') emitter region of the transistor (8,
1) Form the collector region (8, 2) and expand the phosphorus 11
By doing this, form the emitter 61 region (9) of the N I-transistor and the base contact (9,1) of the lateral PNP I-transistor.

そして、第2図fg+に示すごとく、酸化膜00)に電
極取り出し用の穴を開けた後にアルミニウムの配線ao
を行い完成する。以上、実施例においては高耐圧部には
バイポーラトランジスタを用いた例についてのべたが、
当然、高耐圧部に他の高耐圧素子、例えば0MO5FE
Tなど、低耐圧部にCMO5FETなどの素子が含まれ
ても同等の効果が得られる。
Then, as shown in Fig. 2fg+, after making a hole for taking out the electrode in the oxide film
and complete it. In the above example, we have described an example in which a bipolar transistor is used in the high voltage part.
Naturally, other high voltage elements, such as 0MO5FE, are used in the high voltage part.
Even if an element such as a CMO5FET is included in the low breakdown voltage section, the same effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以北、説明したようにこの発明によれば、パワー素子を
1素子内蔵した路において、高耐圧パワー素子の特性の
維持は勿論低耐圧部の飽和電圧や寄生電流について、通
常の半導体集積回路の制御回路部と同等の特性を持つこ
とができるので、千ノブ全体としての電気的特性を悪化
させることのないチップを得ることができる。
As explained above, according to the present invention, in a circuit incorporating one power element, not only the characteristics of the high voltage power element are maintained, but also the saturation voltage and parasitic current of the low voltage part are reduced compared to ordinary semiconductor integrated circuits. Since it can have the same characteristics as the control circuit section, it is possible to obtain a chip that does not deteriorate the electrical characteristics of the Sennobu as a whole.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例による半導体集積回路の
断面図を示し、第2図+a+ −(91はその製造フロ
ーに従った断面構造である。 第3図(a+−(f)は従来の技術による半導体集積回
路の製造フローに従った断面構造である。 図中、(1)はN形像比抵抗半導体基板、(2)はP形
高濃度分離領域、(3)はP形像濃度分離領域、(4)
はN形高濃度埋め込み層領域、(5)はエピタキシャル
層領域、(6)は上部分離領域、(7)はコレクタウオ
ール領域、(8)はNPNトランジスタのベース領域、
(8,1)  は横形PNP トランジスタのエミッタ
領域、(8,2)  は横形PNPトランジスタのコレ
クタ領域、(9)はNPN トランジスタのエミッタ領
域、(9,1)は横形PNP )ランジスタのベースコ
ンタクト領域、(+01は酸化膜、Qllはアルミニウ
ム配線を示す。 尚、図中、同一番号及び同一符号は同一箇所を示す。 代理人    大  岩  増  雄 第1図 第2図 第2図 (e) 第3 図 (、l) 第3 図 ? 手 続 補 正 書(自発)
FIG. 1 shows a cross-sectional view of a semiconductor integrated circuit according to an embodiment of the present invention, and FIG. 2 +a+-(91 is a cross-sectional structure according to its manufacturing flow. This is a cross-sectional structure according to the manufacturing flow of a semiconductor integrated circuit using conventional technology. In the figure, (1) is an N-type image resistivity semiconductor substrate, (2) is a P-type high concentration isolation region, and (3) is a P-type resistivity semiconductor substrate. Image density separation area, (4)
is an N-type heavily doped buried layer region, (5) is an epitaxial layer region, (6) is an upper isolation region, (7) is a collector all region, (8) is a base region of an NPN transistor,
(8,1) is the emitter region of the lateral PNP transistor, (8,2) is the collector region of the lateral PNP transistor, (9) is the emitter region of the NPN transistor, (9,1) is the base contact region of the lateral PNP transistor , (+01 indicates an oxide film, and Qll indicates an aluminum wiring. In addition, the same numbers and symbols indicate the same parts in the figures. Agent Masuo Oiwa Figure 1 Figure 2 Figure 2 (e) Figure 3 Figure (, l) Figure 3? Procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】[Claims] 第一導電形を有する半導体基板、前記半導体基板の所定
部分に形成された高不純物濃度の第二導電形を有する第
一の半導体領域、前記第一の半導体領域を理め込むごと
くに形成された低不純物濃度の第二導電形を有する第二
の半導体領域、前記第二の半導体領域の所定の部分に形
成された高不純物濃度の第一導電形を有する第三の半導
体領域前記半導体基板、第一の半導体領域、第二の半導
体領域、第三のの半導体領域を埋め込むごとくに、形成
された第一導電形を有する第四の半導体領域、前記、半
導体基板、第一の半導体領域、第二の半導体領域、第三
の半導体領域、第四の半導体領域を有することを特徴と
する半導体集積回路装置。
a semiconductor substrate having a first conductivity type; a first semiconductor region having a second conductivity type with a high impurity concentration formed in a predetermined portion of the semiconductor substrate; a second semiconductor region having a second conductivity type with a low impurity concentration; a third semiconductor region having a first conductivity type with a high impurity concentration formed in a predetermined portion of the second semiconductor region; the semiconductor substrate; a fourth semiconductor region having a first conductivity type formed so as to embed the first semiconductor region, the second semiconductor region, and the third semiconductor region; 1. A semiconductor integrated circuit device comprising: a semiconductor region, a third semiconductor region, and a fourth semiconductor region.
JP20772188A 1988-08-22 1988-08-22 Semiconductor integrated circuit device Pending JPH0256935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20772188A JPH0256935A (en) 1988-08-22 1988-08-22 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20772188A JPH0256935A (en) 1988-08-22 1988-08-22 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0256935A true JPH0256935A (en) 1990-02-26

Family

ID=16544449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20772188A Pending JPH0256935A (en) 1988-08-22 1988-08-22 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0256935A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469365B1 (en) * 1998-02-12 2002-10-22 Infineon Technologies Ag Semiconductor component with a structure for avoiding parallel-path currents and method for fabricating a semiconductor component
DE102008008498A1 (en) * 2008-02-11 2009-10-01 Austriamicrosystems Ag Punch-through-trend reducing method for semiconductor device, involves forming doped region adjacent to another doped region with dopant e.g. antimony, where doped regions are electrically isolated against each other

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469365B1 (en) * 1998-02-12 2002-10-22 Infineon Technologies Ag Semiconductor component with a structure for avoiding parallel-path currents and method for fabricating a semiconductor component
DE102008008498A1 (en) * 2008-02-11 2009-10-01 Austriamicrosystems Ag Punch-through-trend reducing method for semiconductor device, involves forming doped region adjacent to another doped region with dopant e.g. antimony, where doped regions are electrically isolated against each other
DE102008008498B4 (en) * 2008-02-11 2016-10-13 Austriamicrosystems Ag A method for reducing punch-through tilt between doped semiconductor regions and semiconductor device

Similar Documents

Publication Publication Date Title
KR100683100B1 (en) Semiconductor integrated circuit device and method for manufacturing the same
KR100683099B1 (en) Semiconductor integrated circuit device and method for manufacturing the same
JPH07326773A (en) Diode and its preparation
JP3898024B2 (en) Integrated circuit and manufacturing method thereof
JP2004031576A (en) Semiconductor integrated circuit device
US6469366B1 (en) Bipolar transistor with collector diffusion layer formed deep in the substrate
JPH0256935A (en) Semiconductor integrated circuit device
JP2008218982A (en) Semiconductor device and manufacturing method therefor
KR0163924B1 (en) A lateral transistor and method of fabricating thereof
JP3089755B2 (en) Semiconductor integrated circuit device
JP2000294563A (en) Lateral bipolar transistor
JP4681090B2 (en) Manufacturing method of semiconductor device
JPH04364736A (en) Semiconductor integrated circuit device
JP2002198542A (en) Semiconductor integrated-circuit device and its manufacturing method
JPH05109748A (en) Semiconductor device and manufacture of the same
JPH05109744A (en) Semiconductor device
JPH0263155A (en) Semiconductor integrated circuit device
JPH05109745A (en) Semiconductor device
JPH02144924A (en) Vertical-type bipolar transistor
JPS61207067A (en) Manufacture of semiconductor integrated circuit device
JPH08153800A (en) Semiconductor integrated circuit device
JPS58212171A (en) Semiconductor device
JPH05166820A (en) Semiconductor device and manufacture thereof
JPH0263156A (en) Semiconductor integrated circuit device
JPH0722433A (en) Semiconductor device and its manufacture