JPS59161837A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59161837A
JPS59161837A JP3696083A JP3696083A JPS59161837A JP S59161837 A JPS59161837 A JP S59161837A JP 3696083 A JP3696083 A JP 3696083A JP 3696083 A JP3696083 A JP 3696083A JP S59161837 A JPS59161837 A JP S59161837A
Authority
JP
Japan
Prior art keywords
film
oxide film
layer
substrate
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3696083A
Other languages
Japanese (ja)
Inventor
Hideto Goto
秀人 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3696083A priority Critical patent/JPS59161837A/en
Publication of JPS59161837A publication Critical patent/JPS59161837A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
    • H01L21/76216Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers

Abstract

PURPOSE:To suppress the generation of bird's beaks and to reduce an element isolating area as well as to lessen crystal defects to generate on a substrate by a method wherein when an oxide film to be used as the element isolating area is formed, a thick polycrystalline Si layer with the surface and side surfaces, which have been covered with a thin Si3N4 film, is used as the mask to be used at the time of performing a thermal oxidation on the Si substrate. CONSTITUTION:A thin SiO2 film 2 is coated on the surface of a P type Si substrate 1 and a thick polycrystalline Si layer 10 in a prescribed form is provided on the central part of the surface of the film 2. A thermal treatment is performed in the NH3 atmosphere for growing a thin Si3N4 film 11 on the whole surface. The film 11 is made to remain only on the surface and side surfaces of the layer 10 and the rest of it is removed by performing an etching. Then, P type impurity ions are implanted for forming P type channel stopper regions 4 and thick insulating isolation films 5 underlaid with the regions 4 are grown by performing a thermal treatment. After that, the film 11, the layer 10 and the film 2 are removed in sequence order, a gate oxide film 13 is formed on an element forming region 12, a polycrystalline Si gate electrode 14 is provided on the above and N type source-drain regions 15 and 16 are formed in the substrate 1 on both sides of the electrode 14 by using the electrode 14 as the mask.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り、特に高密度LS
Iにおける素子分離領域を小さくすると共に品質の向上
した半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device.
The present invention relates to a method for manufacturing a semiconductor device in which the element isolation region in I is reduced and the quality is improved.

近年、半導体集積回路の高密度化が進むにしたがって素
子間の分離領域を小さくする必要が生じてきている。
In recent years, as the density of semiconductor integrated circuits has increased, it has become necessary to reduce the isolation regions between elements.

シリコン基板上に半導体素子を形成する場合、一般に選
°択酸化法によって形成される酸化膜が素子分離に用い
られる。
When semiconductor elements are formed on a silicon substrate, an oxide film formed by selective oxidation is generally used for element isolation.

まず、従来の半導体集積回路の素子分離の工程を第1図
に従って説明する。
First, the process of separating elements of a conventional semiconductor integrated circuit will be explained with reference to FIG.

第1図(5)に示すP型のシリコン基板1に熱酸化によ
りうすい酸化膜2を形成する。次に、例えばCVD法に
より窒化膜3を1ooo〜1200人の厚さに形成した
のち選択的にエツチングし窒化膜パターンとする〔第1
図(B)〕。次に、例えばボロン(B)をイオン注入し
て注入領域(チャンネルストッパ領域)4を形成する〔
第1図(C1]、次に、窒化膜3をマスクとしてシリコ
ン基板1が゛熱酸化し、例えば1μm厚の絶縁分離酸化
膜5を形成する〔第1図(D)〕。
A thin oxide film 2 is formed by thermal oxidation on a P-type silicon substrate 1 shown in FIG. 1(5). Next, a nitride film 3 is formed to a thickness of 100 to 1200 mm by, for example, the CVD method, and then selectively etched to form a nitride film pattern [first
Figure (B)]. Next, for example, boron (B) is ion-implanted to form an implanted region (channel stopper region) 4.
FIG. 1 (C1) Next, the silicon substrate 1 is thermally oxidized using the nitride film 3 as a mask to form an insulating isolation oxide film 5 having a thickness of, for example, 1 μm [FIG. 1 (D)].

この絶縁分離酸化膜5が素子分離領域6を形成し、窒化
膜3の下部が素子形成領域7となる。
This insulating isolation oxide film 5 forms an element isolation region 6, and the lower part of the nitride film 3 becomes an element formation region 7.

この様にして系子形成領域7が分離されるが、シリコン
基板を加熱酸化した時、窒化膜3の両端に接する部分が
細長く酸化されいわゆるノく−ズビーク8が形成される
ためそれだけ素子形成領域7が狭められると共に、バー
ズビーク8下部のシリコン基板中に結晶欠陥が生じ素子
のリーク電流を増加させる欠点がある。
In this way, the system formation region 7 is separated, but when the silicon substrate is heated and oxidized, the portions in contact with both ends of the nitride film 3 are oxidized into elongated strips, forming so-called "knob's beaks 8". 7 is narrowed, and crystal defects are generated in the silicon substrate below the bird's beak 8, resulting in an increase in leakage current of the device.

バーズビークの発生は主にマスクとしての徳化++j4
3が薄い場合とその下の酸化1摸2が厚い場合に生ずる
。一方、結晶欠陥は窒化膜3とシリコン基板1の熱膨張
の差によって生ずるストレスに起因する。従って、バー
ズビークの形成を抑制するためには窒化膜3を厚くし、
酸化膜2を薄くする必要があるが、こうすると逆に結晶
欠陥が増加することになる。
Bird's beak outbreak is mainly due to virtue as a mask++j4
This occurs when 3 is thin and oxide 1 and 2 below it are thick. On the other hand, crystal defects are caused by stress caused by a difference in thermal expansion between the nitride film 3 and the silicon substrate 1. Therefore, in order to suppress the formation of bird's beak, the nitride film 3 should be made thicker.
Although it is necessary to make the oxide film 2 thinner, this will conversely increase crystal defects.

本発明の目的は、上記欠点を除去し、バーズビークの形
成を抑制して素子分離領域を小ざくすると共に、シリコ
ン基板に発生する結晶欠陥を少くする半導体装置の製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that eliminates the above-mentioned drawbacks, suppresses the formation of bird's beaks, reduces the size of element isolation regions, and reduces crystal defects occurring in a silicon substrate.

本発明の他の目的は、ゲート電極をセルファライン方式
で形成することによシ集槓度の向上した半導体装置の製
造方法を提供することにおる。
Another object of the present invention is to provide a method for manufacturing a semiconductor device with improved convergence by forming gate electrodes using a self-line method.

不発明の特徴は、半導体基板上に酸化膜な設は回路素子
を形成する領域上の該酸化膜上に多結晶シリコン層を選
択的に形成する工程と、前記多結晶シリコ/層の側面及
び上表面を耐酸化性の膜で覆う工程と、前記耐酸化性の
膜で覆われた多結晶シリコン層をマスクとして選択酸化
を行う工程とを含む半導体装置の製造方法にある。
A feature of the invention is that when an oxide film is formed on a semiconductor substrate, a step of selectively forming a polycrystalline silicon layer on the oxide film in a region where a circuit element is to be formed; The method of manufacturing a semiconductor device includes the steps of: covering the upper surface with an oxidation-resistant film; and performing selective oxidation using the polycrystalline silicon layer covered with the oxidation-resistant film as a mask.

本発明の他の特徴は、半導体基板上に酸化膜を設け、回
路素子を形成する領域上の該酸化膜上に多結晶シリコン
層を選択的に形成する工程と、前記多結晶シリコン層の
側面及び上表面を耐酸化性の膜で覆う工程と、前記耐酸
化性の膜で檜われた多結晶シリコン層をマスクとして選
択酸化を行う工程と、前記多結晶シリコン層を所定の形
状にエツチングしでゲート電極を形成する工程とを含む
半導体装置の製造方法にある。
Other features of the present invention include a step of providing an oxide film on a semiconductor substrate and selectively forming a polycrystalline silicon layer on the oxide film in a region where a circuit element is to be formed; and a step of covering the upper surface with an oxidation-resistant film, a step of performing selective oxidation using the polycrystalline silicon layer covered with the oxidation-resistant film as a mask, and etching the polycrystalline silicon layer into a predetermined shape. A method of manufacturing a semiconductor device includes a step of forming a gate electrode.

不発【!11によれば、素子分離領域としての酸化膜を
形成するために、シリコン基板を熱酸化する時に用いる
マスクとして薄いシリコン窒化膜で側面及び上表面を覆
った厚い多結晶シリコン(以下ポリシリコンと記す)層
を用いる、ポリシリコン層は厚く形成されているために
、ツクーズピークの成長は抑制され、また、ポリシリコ
ン層とシリコン基板の熱膨張率はほとんど等しい几めに
シリコン基板にはポリシリコン層に起因する結晶欠陥の
発生は起らない。更に、このポリシリコン層をエツチン
グしてゲート電極を形成する場合は、新たにゲート電極
を形成するためのマスク合せマージンが不委となるので
集積度の向上した半導体装置を製造することができる。
unexploded【! According to No. 11, thick polycrystalline silicon (hereinafter referred to as polysilicon) whose side surfaces and top surface are covered with a thin silicon nitride film is used as a mask when thermally oxidizing a silicon substrate to form an oxide film as an element isolation region. ) layer, the polysilicon layer is formed thickly, so the growth of Tsukuzu peak is suppressed, and the thermal expansion coefficients of the polysilicon layer and silicon substrate are almost equal. No crystal defects occur due to this. Furthermore, when the gate electrode is formed by etching this polysilicon layer, the mask alignment margin for forming a new gate electrode is left unreliable, so that a semiconductor device with an improved degree of integration can be manufactured.

次に本発明についで実施例を用いて詳細に説明する。Next, the present invention will be explained in detail using examples.

第2図(8)〜(0は、各々本発明の第1の実施例を説
明するための製造工程断面図である。
FIGS. 2(8) to 2(0) are manufacturing process cross-sectional views for explaining the first embodiment of the present invention.

第2図(5)において、P型シリコン基板10表面に熱
酸化によりうすい酸化膜2を形成する。次でポリシリコ
ン層10を、例えばCVD法により成長させたのち、所
定の形状に選択エツチングする。
In FIG. 2(5), a thin oxide film 2 is formed on the surface of the P-type silicon substrate 10 by thermal oxidation. Next, polysilicon layer 10 is grown by, for example, the CVD method, and then selectively etched into a predetermined shape.

なお、ポリシリコン層10を第2の実施例の様にゲート
電極として用いる場合は、エツチング前にリン(P)を
拡散してポリシリコン層抵抗を下げておく。
Note that when the polysilicon layer 10 is used as a gate electrode as in the second embodiment, phosphorus (P) is diffused before etching to lower the resistance of the polysilicon layer.

次に、例えば、1200℃のアンモニア雰囲気中で約1
0OAのシリコン窒化膜11を成長させてポリシリコン
層10の側面及び上表面を覆ったのちポリシリコン層1
0周囲以外のシリコン窒イヒ膜11をエツチングして除
去する。次で、全面にボロン(B)をイオン注入し注入
領域(チャンネルストッパ領域)4を形成する〔第2図
(B)〕。
Next, for example, about 1
After growing a silicon nitride film 11 of 0 OA to cover the side surfaces and top surface of the polysilicon layer 10, the polysilicon layer 1 is grown.
The silicon nitride film 11 other than the area around 0 is removed by etching. Next, boron (B) ions are implanted into the entire surface to form an implanted region (channel stopper region) 4 [FIG. 2(B)].

次に、シリコン基板1を熱酸化し、絶縁分離酸化膜5を
成長させる〔第2図(C))。
Next, the silicon substrate 1 is thermally oxidized to grow an insulating isolation oxide film 5 [FIG. 2(C)].

次に、シリコン窒化膜11、ポリシリコン層10及び酸
化膜2を順次除去したのち、素子形成領域12上にゲー
ト酸化膜13を形成する〔第2図(至)〕。
Next, after sequentially removing the silicon nitride film 11, the polysilicon layer 10, and the oxide film 2, a gate oxide film 13 is formed on the element formation region 12 [FIG. 2 (to)].

次に、シリコン基板1表面にポリシリコン層を成長させ
たのち、所定のパターンにエツチングしてゲート電極1
4を形成する。次で、例えばヒ素(As)をイオン注入
し、ソース領域15及びドレイン領域16を形成する〔
第2図(E)〕。
Next, after growing a polysilicon layer on the surface of the silicon substrate 1, it is etched into a predetermined pattern to form a gate electrode 1.
form 4. Next, for example, arsenic (As) is ion-implanted to form a source region 15 and a drain region 16.
Figure 2 (E)].

次に、CVD法により絶縁酸化膜17を形成したのちソ
ース領域14及びドレイン領域16上に開孔部を設ける
、次で、アルミニウム(A/)を蒸着したのちエツチン
グし、Al電極配線18を形成しMO8半導体装置を完
成させる〔第2図(F))。
Next, an insulating oxide film 17 is formed by the CVD method, and then openings are formed on the source region 14 and drain region 16. Next, aluminum (A/) is deposited and etched to form an Al electrode wiring 18. Then, the MO8 semiconductor device was completed (Fig. 2(F)).

この様に、薄いシリコン窒化膜11で覆わnた厚いポリ
シリコン層10をマスクとして形成した絶縁分離酸化膜
5には、第1図(D)に示されるようなバーズビークは
形成されない。従って、絶縁分離酸化膜5が形成する素
子分離領域は小さくなp必要最小限のものとすることが
でき、半導体装置の集積度は極めて高いものとなる。更
に、従来素子形成領域に発生していた結晶欠陥も抑制さ
れ、リーク電流が少い品質の向上した半導体装置が得ら
れる。
In this way, a bird's beak as shown in FIG. 1(D) is not formed in the isolation oxide film 5 formed using the thick polysilicon layer 10 covered with the thin silicon nitride film 11 as a mask. Therefore, the element isolation region formed by the insulating isolation oxide film 5 can be made small and have the minimum required p, and the degree of integration of the semiconductor device can be extremely high. Furthermore, crystal defects that conventionally occur in the element formation region are also suppressed, and a semiconductor device with improved quality and less leakage current can be obtained.

第3図(5)〜(至)は、本発明の第2の実施例として
の70一テイングゲート型EPf’LOMの製造工程断
面図である。
FIGS. 3(5) to (5) are sectional views showing the manufacturing process of a 70-teing gate type EPf'LOM as a second embodiment of the present invention.

第3図(5)は第2図(Qとほぼ同じものである。すな
わち、第2図(5)、(B)と同様の処理によシ、P型
シリコン基板10表面に、酸化膜2を介して、Pを拡散
しシリコン窒化膜で覆われた第1のポリシリコン層20
を形成し、Bをイオン注入して注入領域4を形成したの
ち、熱酸化により絶縁分離酸化膜5を形成したものであ
る。この場合、薄い酸化膜2はゲート酸化膜となる。
FIG. 3(5) is almost the same as FIG. 2(Q). In other words, by the same process as FIG. A first polysilicon layer 20 covered with a silicon nitride film with P diffused through the
After forming an implanted region 4 by ion-implanting B, an insulating isolation oxide film 5 is formed by thermal oxidation. In this case, the thin oxide film 2 becomes a gate oxide film.

次に、シリコン基板1の底面に第2のポリシリコン層と
ホトレジスト層を形成したのち、ホトレジスト層を所定
のパターン21にエツチングし、このホトレジストのパ
ターン21をマスクとじて第2のポリシリコン層をエツ
チングして、第2のゲート電極22を形成する〔第3図
(B)〕。
Next, after forming a second polysilicon layer and a photoresist layer on the bottom surface of the silicon substrate 1, the photoresist layer is etched into a predetermined pattern 21, and this photoresist pattern 21 is used as a mask to form a second polysilicon layer. Etching is performed to form the second gate electrode 22 [FIG. 3(B)].

次に、第2のゲート電極22及びホトレジスト層のパタ
ーン21をマスクとしてシリコン窒化膜11及び第1の
ポリシリコン層20を順次エツチングし、セルファライ
ン方式で第1のゲート(フローティングゲート)電極2
0′を形成する。次で、Asをイオン注入し、ソース領
域15及びドレイン領域16を形成する〔第3図(C1
)。
Next, using the second gate electrode 22 and the pattern 21 of the photoresist layer as a mask, the silicon nitride film 11 and the first polysilicon layer 20 are sequentially etched, and the first gate (floating gate) electrode 2 is etched using a self-line method.
0' is formed. Next, As is ion-implanted to form a source region 15 and a drain region 16 [FIG. 3 (C1
).

なお、この工程で一部シリコン窒化膜を除去し新たに酸
化膜等を形成し、第1及び第2のゲート電極間の絶縁膜
とすることもできる。
Note that in this step, a portion of the silicon nitride film may be removed and a new oxide film or the like may be formed to serve as an insulating film between the first and second gate electrodes.

次に、ホトレジストパターン21を除去したのち、絶縁
酸化膜17を全面に形成し、ソース領域15及びドレイ
ン領域16上に開孔部を設ける。
Next, after removing the photoresist pattern 21, an insulating oxide film 17 is formed over the entire surface, and openings are provided above the source region 15 and drain region 16.

次で、全面にAIを蒸着したのち選択エツチングし、A
A電極配線18を形成してフローティングゲート型BF
ROMを完成させる〔第3図(IN)。
Next, after depositing AI on the entire surface, selective etching is performed, and A
A floating gate type BF is formed by forming the A electrode wiring 18.
Complete the ROM [Figure 3 (IN).

この様にして形成されたフローティングゲート型EP几
OMは、第1の実施例の場合と同様に、バーズビークが
形成されないために素子分離領域が小さくなり、それだ
け集積度が向上し、素子形成領域中の結晶欠陥の発生も
抑制されたものとなる。更に第1のゲート電極がセルフ
ァライン方式で形成されるため集積度をより一層向上さ
せることができる。次にその構造を説明する。
In the floating gate type EP OM formed in this way, as in the case of the first embodiment, the element isolation region becomes smaller because no bird's beak is formed, and the degree of integration is improved accordingly. The occurrence of crystal defects is also suppressed. Furthermore, since the first gate electrode is formed by a self-line method, the degree of integration can be further improved. Next, its structure will be explained.

第4図は、第3図(Qにおける一部切欠き上面図、第5
図は、従来の70一テイングゲートmEP几OMにおけ
る第4図と同じ部分の上面図である。
Figure 4 is a partial cutaway top view of Figure 3 (Q) and Figure 5.
The figure is a top view of the same part as FIG. 4 in a conventional 70-gate mEP OM.

第4図及び第5図において、従来のフローティングゲー
ト型EPROM では、素子形成領域12の上部に第1
のゲート酸化膜を介して形成される第1のゲート電極3
0(斜線部)は、マスク合せ精度を考慮してΔWだけ素
子形成領域12からはみ出して形成される。すなわち、
エツチングマージンa(L=tΔW’=i3μm)を考
慮すると、素子形成領域間隔は約9μmとなっている。
4 and 5, in the conventional floating gate type EPROM, a first
The first gate electrode 3 formed through the gate oxide film of
0 (shaded area) is formed to protrude from the element formation region 12 by ΔW in consideration of mask alignment accuracy. That is,
Considering the etching margin a (L=tΔW'=i3 μm), the interval between the element formation regions is about 9 μm.

一方、本発明の方法によシ製造されるフローティングゲ
ート型BFROM の第1のゲート電極20’ はセル
ファライン方式で形成されるため、素子形成領域間隔は
エツチングマージンaの3μmだけでよく、素子形成領
域間隔は1/3 となりそれだけ集積度が向上する。
On the other hand, since the first gate electrode 20' of the floating gate type BFROM manufactured by the method of the present invention is formed by the self-line method, the element formation region spacing is only 3 μm of the etching margin a, and the element formation The region spacing is reduced to 1/3, and the degree of integration is improved accordingly.

上記第2の実施例では、フローティングゲート型EPR
OM を用いて説明したが、これに限定されるものでは
なく、絶縁分離酸化膜を形成する時にマスクとして用い
るポリシリコン層を、通常のrVi08半導体のゲート
電極として利用するごとも可能であり、その場合も上記
と同様の効果を有する。
In the second embodiment, the floating gate type EPR
Although the explanation was made using OM, the invention is not limited to this, and it is also possible to use the polysilicon layer used as a mask when forming an insulating isolation oxide film as the gate electrode of a normal rVi08 semiconductor. In this case, the same effect as above is obtained.

以上詳細に説明した様に、本発明によれば、バーズビー
クの成長が抑制されると共に、素子形成領域に発生する
結晶欠陥も抑制されるため、集積度の向上した品質の高
い半導体装置の製造方法が得られるのでその効果は犬で
ある。
As described in detail above, according to the present invention, the growth of bird's beaks is suppressed, and crystal defects occurring in the element formation region are also suppressed, so a method for manufacturing a high-quality semiconductor device with an improved degree of integration is achieved. The effect is dog because it gives.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(5)〜(均は従来の半導体装置の製造方法を説
明する製造工程断面図、第2図(A)〜(F′)は本発
明の第1の実施例を説明するための製造工程断面図、第
3図(8)〜(麹は本発明の第2の実施例を説明するた
めの製造工程断面図、第4図は第3図(C)における一
部切欠き上面図、第5図は従来の70一テイングゲート
型EP几OMの一部切欠き上面図である。 1・・・・・・P型のシリコン基板、2・・・・・・酸
化膜、3・・・・・・窒化膜、4・・・・・・注入領域
、5・・・・・・絶縁分離酸化膜、6・・・・・・素子
分離領域、7・・・・・・素子形成領域、8・・・・・
・バーズビーク、10・・・・・・ポリシリコン層、1
1・・・・・・シリコン窒化膜、12・・・・・・素子
形成領域、13・・・・・・ゲート酸化膜、14・・・
・・・ゲート電極、15・・・・・・ソース領域、16
・・・・・・ドレイン領域、17・・・・・・絶縁酸化
膜、18・・・・・・A!!電極配線、20・・・・・
・ポリシリコン層、20′・・・・・・第1のゲート電
極、21・・・・・・ホトレジスト層のパターン、22
・・・・・・第2のゲート電極、30・・・・・・第1
のゲート電極。 察1固 茅2田 際30 tk    、6 !−手図 20’ 療5回
FIGS. 1(5) to (5) are manufacturing process cross-sectional views for explaining a conventional method of manufacturing a semiconductor device, and FIGS. 2(A) to (F') are cross-sectional views for explaining a first embodiment of the present invention. Manufacturing process sectional view, Figure 3 (8) - (Koji is a manufacturing process sectional view for explaining the second embodiment of the present invention, Figure 4 is a partially cutaway top view of Figure 3 (C) , FIG. 5 is a partially cutaway top view of a conventional 70-type EP OM. 1... P-type silicon substrate, 2... oxide film, 3... ... Nitride film, 4 ... Injection region, 5 ... Insulating isolation oxide film, 6 ... Element isolation region, 7 ... Element formation Area, 8...
・Bird's beak, 10...Polysilicon layer, 1
1...Silicon nitride film, 12...Element formation region, 13...Gate oxide film, 14...
... Gate electrode, 15 ... Source region, 16
...Drain region, 17...Insulating oxide film, 18...A! ! Electrode wiring, 20...
-Polysilicon layer, 20'...First gate electrode, 21...Photoresist layer pattern, 22
...Second gate electrode, 30...First
gate electrode. Sensei 1 Gokaya 2 Tagawa 30 tk, 6! - Hand figure 20' treatment 5 times

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に酸化膜を設け、回路素子を形成す
る領域上の該酸化膜上に多結晶シリコン層を選択的に形
成する工程と、前記多結晶シリコン層の側面及び上表面
を耐酸化性の膜で覆う工程と、前記耐酸化性の膜で覆わ
れた多結晶シリコン層をマスクとして選択酸化を行う工
程とを含むことを特徴とする半導体装置の製造方法。
(1) A step of providing an oxide film on a semiconductor substrate, selectively forming a polycrystalline silicon layer on the oxide film in a region where a circuit element is to be formed, and making the side and top surface of the polycrystalline silicon layer acid-resistant. 1. A method of manufacturing a semiconductor device, comprising the steps of: covering with an oxidation-resistant film; and performing selective oxidation using the polycrystalline silicon layer covered with the oxidation-resistant film as a mask.
(2)半導体基板上に酸化膜を設け、回路素子を形成す
る領域上の該酸化膜上に多結晶シリコン層を選択的に形
成する工程と、前記多結晶シリコン層の側面及び上表面
を耐酸化性の膜で覆う工程と、前記耐酸化性の膜で覆わ
れた多結晶シリコン層をマスクとして選択酸化を行う工
程と、前記多結晶シリコン層を所定の形状にエツチング
してゲート電極を形成する工程とを含むことを特徴とす
る半導体装置の製造方法。
(2) A step of providing an oxide film on a semiconductor substrate, selectively forming a polycrystalline silicon layer on the oxide film in a region where a circuit element is to be formed, and making the side and top surface of the polycrystalline silicon layer resistant to acid. a step of selectively oxidizing the polycrystalline silicon layer using the polycrystalline silicon layer covered with the oxidation-resistant film as a mask, and etching the polycrystalline silicon layer into a predetermined shape to form a gate electrode. A method for manufacturing a semiconductor device, comprising the steps of:
JP3696083A 1983-03-07 1983-03-07 Manufacture of semiconductor device Pending JPS59161837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3696083A JPS59161837A (en) 1983-03-07 1983-03-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3696083A JPS59161837A (en) 1983-03-07 1983-03-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59161837A true JPS59161837A (en) 1984-09-12

Family

ID=12484306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3696083A Pending JPS59161837A (en) 1983-03-07 1983-03-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59161837A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260229A (en) * 1991-08-30 1993-11-09 Sgs-Thomson Microelectronics, Inc. Method of forming isolated regions of oxide
DE4336869A1 (en) * 1993-10-28 1995-05-04 Gold Star Electronics Method for producing an MOS transistor
US5834360A (en) * 1996-07-31 1998-11-10 Stmicroelectronics, Inc. Method of forming an improved planar isolation structure in an integrated circuit
US5843812A (en) * 1993-10-28 1998-12-01 Goldstar Electron Co., Ltd. Method of making a PMOSFET in a semiconductor device
US5972776A (en) * 1995-12-22 1999-10-26 Stmicroelectronics, Inc. Method of forming a planar isolation structure in an integrated circuit
US5977607A (en) * 1994-09-12 1999-11-02 Stmicroelectronics, Inc. Method of forming isolated regions of oxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260229A (en) * 1991-08-30 1993-11-09 Sgs-Thomson Microelectronics, Inc. Method of forming isolated regions of oxide
DE4336869A1 (en) * 1993-10-28 1995-05-04 Gold Star Electronics Method for producing an MOS transistor
US5843812A (en) * 1993-10-28 1998-12-01 Goldstar Electron Co., Ltd. Method of making a PMOSFET in a semiconductor device
DE4336869C2 (en) * 1993-10-28 2003-05-28 Gold Star Electronics Method of manufacturing a MOS transistor
US5977607A (en) * 1994-09-12 1999-11-02 Stmicroelectronics, Inc. Method of forming isolated regions of oxide
US5972776A (en) * 1995-12-22 1999-10-26 Stmicroelectronics, Inc. Method of forming a planar isolation structure in an integrated circuit
US5834360A (en) * 1996-07-31 1998-11-10 Stmicroelectronics, Inc. Method of forming an improved planar isolation structure in an integrated circuit
US6046483A (en) * 1996-07-31 2000-04-04 Stmicroelectronics, Inc. Planar isolation structure in an integrated circuit

Similar Documents

Publication Publication Date Title
US4498227A (en) Wafer fabrication by implanting through protective layer
JPH06163532A (en) Method for isolation of semiconductor element
JPS59161837A (en) Manufacture of semiconductor device
JPS5840852A (en) Complementary metal oxide semiconductor device and its manufacture
EP0447522B1 (en) A semiconductor device fabrication process
JPH065588A (en) Manufacture of semiconductor device
JPS59121850A (en) Manufacture of semiconductor device
JPH05335407A (en) Manufacture of semiconductor device
JPH1154499A (en) Fabrication of semiconductor device
JPS6171646A (en) Manufacture of semiconductor device
JPS6266619A (en) Manufacture of semiconductor device
JPH06163681A (en) Semiconductor device and manufacture thereof
JPS6331124A (en) Manufacture of semiconductor device
JPS59186343A (en) Manufacture of semiconductor device
JPS6358921A (en) Manufacture of semiconductor device
JPS6281040A (en) Formation of element isolation region
JPS61241941A (en) Manufacture of semiconductor device
JPS58169935A (en) Manufacture of semiconductor device
JPH05211230A (en) Manufacture of semiconductor device
JPS60752A (en) Manufacture of semiconductor device
JPS6049647A (en) Manufacture of semiconductor device
JPH06163531A (en) Formation of element isolation region in semiconductor
JPH0117256B2 (en)
JPS62248236A (en) Manufacture of semiconductor device
JPS5852340B2 (en) Manufacturing method of semiconductor device