JPS6171646A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6171646A
JPS6171646A JP19259684A JP19259684A JPS6171646A JP S6171646 A JPS6171646 A JP S6171646A JP 19259684 A JP19259684 A JP 19259684A JP 19259684 A JP19259684 A JP 19259684A JP S6171646 A JPS6171646 A JP S6171646A
Authority
JP
Japan
Prior art keywords
film
nitride film
oxide film
nitride
pad oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19259684A
Other languages
Japanese (ja)
Inventor
Fumio Sugawara
菅原 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP19259684A priority Critical patent/JPS6171646A/en
Publication of JPS6171646A publication Critical patent/JPS6171646A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To contrive to block the growth of bird beaks to element regions under a patterned nitride film by a method wherein the end of a pad oxide film after patterning and an Si substrate thereunder are made resistant to oxidation by nitriding and then subjected to field oxidation. CONSTITUTION:When nitriding treatment is carried out after a pad oxide film 12, a nitride film 13, and an SiO2 film 14 are laminated on a P type Si substrate 11 and patterned by selective etching, the exposed surface of the substrate 11 and its periphery, the end of the pad oxide film 12, and the SiO2 film 14 change into nitride films 15, 16, and 17, respectively. Next, the nitride film on the exposed surface of the substrate 11 is removed by RIE, whereas the nitride film 16 at the end of the nitride film 12 is left, and an SiO2 film 18 is grown by high temperature oxidation; then, channel stop ions are implanted to the surface part of the substrate 11 thereunder. Thereafter, a field oxide film 19 is grown by high temperature oxidation, and the nitride films 17, 13, and 16 and the nitride film 12 are removed.

Description

【発明の詳細な説明】 (厘東上の利用分野) こりり6明は半導体素子の製造方法に関し、詳しくは半
導体素子の素子分離領域の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application) The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming an isolation region of a semiconductor device.

(促米の技術) 従来、十専体基体上に多数の素子を形成して集積回路を
形成する場合、谷素子を絶縁分離する手段の一つとして
培択敗化法か広く用いられている。
(Promoted technology) Conventionally, when forming an integrated circuit by forming a large number of elements on a 10-density substrate, the culture selection method has been widely used as a means of insulating and separating the valley elements. .

第2図(a) 、 (b)は従来の選択酸化法の工程を
示す断面図である。
FIGS. 2(a) and 2(b) are cross-sectional views showing the steps of the conventional selective oxidation method.

まず、第2図(a)に示すようK、シリコン基体1上に
パッド酸化膜2を5oon、窒化膜3を2000人順次
成長させ、これらを通常の選択エツチング法でパターニ
ングする。
First, as shown in FIG. 2(a), a 5-ounce pad oxide film 2 and a 2,000-meter nitride film 3 are sequentially grown on a silicon substrate 1, and these are patterned using a conventional selective etching method.

次に、パターニングされた窒化膜3をマスクとして高温
酸化雰囲気中で酸化を行うことによシ、シリコン基体1
の露出表面部に第2図(b)に示すようにフィールド酸
化膜4を6000人厚に成長させる。
Next, the silicon substrate 1 is oxidized in a high temperature oxidizing atmosphere using the patterned nitride film 3 as a mask.
As shown in FIG. 2(b), a field oxide film 4 is grown on the exposed surface portion to a thickness of 6,000 wafers.

(発明が解決しようとする問題点) しかしながら、この方法では、フィールドば化中に、素
子領域となる窒化膜3下まで酸化膜が成長し、いわゆる
バーズビークが発生する。このバーズビークは素子領域
とフィールド領域(調子分離領域)の中間の遷移領域に
あたるため、集積回路の筒密度化を妨げる。
(Problems to be Solved by the Invention) However, in this method, during field oxidation, the oxide film grows to the bottom of the nitride film 3, which becomes the element region, and a so-called bird's beak occurs. Since this bird's beak corresponds to a transition region between the element region and the field region (tone separation region), it hinders the increase in the density of integrated circuits.

また、このバーズビークを減少させるためにはパッド酸
化膜2を薄くする一方、窒化膜3を厚くすればよいが、
これを行うと、パターニングされた膜3,2の端部にお
ける結晶欠陥の発生を増加せしめ、その組果として素子
特性を劣化させるという欠点がある。
In addition, in order to reduce this bird's beak, the pad oxide film 2 should be made thinner, while the nitride film 3 should be made thicker.
If this is done, the occurrence of crystal defects at the ends of the patterned films 3, 2 will increase, resulting in deterioration of device characteristics.

(問題点を解火するための手段) そこで、この発明では、パッド酸化膜のパターニング後
の端部を窒化して耐は化性に改質した上でフィールド酸
化を行う。
(Means for Solving the Problem) Therefore, in the present invention, the end portion of the pad oxide film after patterning is nitrided to make it resistant to oxidation, and then field oxidation is performed.

(作用) このようにすると、パッド酸化膜端部の耐酸化性により
、フィールド酸化時に、酸化剤がパッド酸化膜中を拡散
するのが通常のパッド酸化膜中な拡散するのに比して大
きく阻害されるから、バーズビークが、パターニングさ
れた窒化膜下の素子領域へ成長していくのが妨げられる
(Function) By doing this, due to the oxidation resistance of the edge of the pad oxide film, during field oxidation, the oxidizing agent diffuses through the pad oxide film to a greater extent than through the normal pad oxide film. This prevents the bird's beak from growing into the device region under the patterned nitride film.

(実21山例) この妬明の一実施しリを第1凶(a)ないしくe)を参
照して説明する。
(21st example) The implementation of this envy will be explained with reference to the first example (a) to e).

まず、第1図の(a)に示すように、(100)面を有
するP型シリコン基捧11上に、1000℃02雰囲気
での高温酸化によシパツド酸化膜(5iO2) 12を
500λ程度成長させる。次に、そのパッド酸化膜12
上にCVD法にヨシ窒化膜(5isN< ) 13を1
sooA程度成長させる。しかる後、その窒化膜13上
に、後述するRIE法によるエツチングの際にバッファ
となるSiO2膜14膜室40λ程度成長させる。その
後、SiO2膜14膜室4膜13およびパッド酸化膜1
2を通常の選択エツチング法でパターニングする。これ
によシ、5I02膜14゜窒化膜13およびバンド酸化
膜12は、前記第1図(a) K示すように素子領域上
にのみ残シ、フィールド領域からは除去され、フィール
ド領域においてはシリコン基体11の表面が露出する。
First, as shown in FIG. 1(a), a padded oxide film (5iO2) 12 of about 500λ is grown on a P-type silicon substrate 11 having a (100) plane by high-temperature oxidation in a 1000°C 02 atmosphere. let Next, the pad oxide film 12
A reed nitride film (5isN<) 13 to 1 is applied on top by CVD method.
Grow to about sooA. Thereafter, on the nitride film 13, a SiO2 film 14 having a thickness of about 40λ is grown to serve as a buffer during etching by the RIE method described later. After that, SiO2 film 14 film chamber 4 film 13 and pad oxide film 1
2 is patterned using the usual selective etching method. As a result, the 5I02 film 14, the nitride film 13, and the band oxide film 12 are left only on the element region and removed from the field region, as shown in FIG. The surface of the base 11 is exposed.

しかる後、1000℃常圧アンモニアガス雰囲気中で1
.5時間窒化処理を行う。すると、第1図(bJに示す
ように、反応ガスに暴露するシリコン基体11の露出表
面部、バッド敗化膜12の端部および5i02膜14が
各々窒化膜15,16,17となる。なお、この窒化処
理は、上記熱室化法以外にプラズマ窒化法で行ってもよ
い。
After that, 1000℃ in a normal pressure ammonia gas atmosphere.
.. Nitriding treatment is performed for 5 hours. Then, as shown in FIG. 1 (bJ), the exposed surface portion of the silicon substrate 11 exposed to the reaction gas, the end portion of the bad decomposition film 12, and the 5i02 film 14 become nitride films 15, 16, and 17, respectively. This nitriding treatment may be performed by a plasma nitriding method other than the heat chamber method described above.

次いで、RIE法により100λ程度エツチングを行う
ことによシ、シリコン基体11の表面に生じている60
人程贋の前記窒化膜15を除去する一方、パッド酸化膜
12の端部の前記窒化膜16を残す。この時、同時に窒
化膜17がエツチングされ、膜厚の減少あるいはその下
層の留化膜13が露呈する。ここでは、膜厚が減少して
窒化膜17が依然残存することとする。
Next, by performing etching of about 100λ using RIE method, the 60 nm formed on the surface of the silicon substrate 11 is etched.
While the fake nitride film 15 is removed, the nitride film 16 at the end of the pad oxide film 12 is left. At this time, the nitride film 17 is etched at the same time, and the film thickness is reduced or the underlying distilled film 13 is exposed. Here, it is assumed that the film thickness is reduced and the nitride film 17 still remains.

次に、100℃02雰囲気で高温酸化を行うことにより
、前記窒化膜15の除去により露出したシリコン基体1
1の次面1こ渠1図(C)に示すように5i02膜18
を500λ成長させる。
Next, by performing high-temperature oxidation in a 100°C 02 atmosphere, the silicon substrate 1 exposed by removing the nitride film 15 is
As shown in Figure (C), the 5i02 film 18
is grown by 500λ.

次に、同第1図<crに示すように、SiO2膜18下
のシリコン基体11の表面部に対してチヤ不ルストッフ
イオンインプランテーション(B+30 KeV2 X
 1013i0nS/、1 )を行う。このチャネルス
トップイオンインプランテーションは、第1図(a)の
パターニング後、わるいは/A1図(b)の窒化処理後
に行ってもよい。lたは、5iOz膜18を成長させず
にイオンインプランテーションを行ってもよいが、不純
物イオンの均一性を考えれば、第1図(C)の工程にお
いて5iOz膜18の形成後に行うのが一番良い。
Next, as shown in FIG.
1013i0nS/, 1). This channel stop ion implantation may be performed after the patterning shown in FIG. 1(a), or after the nitriding process shown in FIG. 1(b). Alternatively, ion implantation may be performed without growing the 5iOz film 18, but considering the uniformity of impurity ions, it is best to perform the ion implantation after forming the 5iOz film 18 in the process shown in FIG. 1(C). Best.

しかる後、1000℃H2,02高温酸化雰囲気で3時
間酸化を行うことにより、第1図(d)に示すように、
フィールド酸化膜19を6000 X程度、窒化114
17 、13をマスクとしてシリコン基体11の表面部
に成長させる。
Thereafter, by performing oxidation for 3 hours in a 1000°C H2,02 high temperature oxidizing atmosphere, as shown in Figure 1(d),
The field oxide film 19 is nitrided at about 6000X and 114
17 and 13 are used as masks to grow on the surface of the silicon substrate 11.

次に、上記高温酸化中に窒化膜17.13上に生じた図
示しない薄い酸化膜をフッ酸系エツチング溶液によシ除
去する。続いて、熱リン酸浴欣によシ窒化膜17,13
.16を除去し、再び7ソ酸系エツチング溶液によシバ
ラド酸化1111112を除去することによシ第1図(
e)の構造を得る。
Next, a thin oxide film (not shown) formed on the nitride film 17, 13 during the high temperature oxidation is removed using a hydrofluoric acid etching solution. Subsequently, the nitride films 17 and 13 are coated in a hot phosphoric acid bath.
.. 16 was removed, and the Sibarad oxidized 1111112 was removed again using a 7-sulfuric acid-based etching solution.
Obtain the structure e).

その後は、シリコン基体11の表面が露出する素子領域
と、フィールド酸化膜19が形成さγしたフィールド領
域(菓子分離領域)の境界部や、前記素子領域などに熱
窒化による痕跡が残っていると後の工程において障害を
およほすので、犠牲酸化を行う。すなわち、シリコン基
体11の表面を数百λ程度酸化せしめ、生じた酸化膜を
エツチング除去する。
Thereafter, traces of thermal nitridation remain at the boundary between the element region where the surface of the silicon substrate 11 is exposed and the field region (confectionery separation region) where the field oxide film 19 is formed, and at the element region. Sacrificial oxidation is performed because it may cause trouble in later steps. That is, the surface of the silicon substrate 11 is oxidized by about several hundred λ, and the formed oxide film is removed by etching.

なお、以上の一実施例においては、第1図(a)の工程
において窒化膜13上に5iOzi 14が形成されて
いるが、この膜はRIE法によるエツチングの際のバッ
ファとなるものであるから、バッファとなる膜なら(”
Jでもよく、例えばポリシリコンやPSG膜などであっ
てもよい。また、窒化膜13が、直接エツチングされる
ことによる目減)分を考慮して厚く成長されているなら
ば、このバッファとなる膜は必ずしも必要ではない。要
は、フィールド酸化時に耐酸化マスクとなる窒化膜13
が例えばこの例では1000λ程度以上あればよい。
In the above embodiment, 5iOzi 14 is formed on the nitride film 13 in the step shown in FIG. 1(a), but this film serves as a buffer during etching by the RIE method. , if the membrane is a buffer (”
For example, it may be a polysilicon film or a PSG film. Furthermore, if the nitride film 13 is grown thickly in consideration of the loss of thickness due to direct etching, this buffer film is not necessarily required. In short, the nitride film 13 serves as an oxidation-resistant mask during field oxidation.
For example, in this example, it may be about 1000λ or more.

また、第1図(a)の工程でバターニングを行う時、少
なくとも窒化膜13までエツチングされていればよく、
パッド酸化膜12はすべてエツチングされようと、多少
とも残っていようともかまわない。
Further, when buttering is performed in the step of FIG. 1(a), it is sufficient that at least the nitride film 13 is etched.
It does not matter whether the pad oxide film 12 is completely etched or some amount remains.

パッド酸化膜12が残存していても、次の窒化反応で横
方向への窒化も起こるので、窒化膜13端部下のパッド
酸化膜12は窒化膜16となる。また、パッド酸化膜1
2が残存する場合は、このパッド酸化膜12を拡散して
きたガスと接触してシリコン基体11の表面が窒化膜1
5となる。この窒化膜15と、その上の残存パッド酸化
膜を窒化してなる窒化膜は、次のRIE法によるエツチ
ングで除去される。
Even if the pad oxide film 12 remains, nitridation occurs laterally in the next nitriding reaction, so the pad oxide film 12 under the end of the nitride film 13 becomes the nitride film 16. In addition, pad oxide film 1
2 remains, this pad oxide film 12 will come into contact with the diffused gas and the surface of the silicon substrate 11 will become nitride film 1.
It becomes 5. This nitride film 15 and the nitride film formed by nitriding the remaining pad oxide film thereon are removed by the subsequent RIE etching.

また、前記第1図(jL)の工程で窒化膜13上にバッ
ファ膜を形成することとして、その腺が上記一実施例の
ように5iCh膜14の場合は、そのSiO2膜14膜
薄4ことによシ第1図(b)の窒化処理において窒化膜
13との界面まで窒化されるので問題はないが、ポリシ
リコンを用いた場合は、完全に窒化されずに一部ポリシ
リコンとして残り、それがフィールド酸化で5iOzと
なり、これを除去するときフィールド酸化膜19も減少
するため、第1図−(d)の工程で数百人通常よシ厚ぐ
フィールド酸化を行う必要がある。
In addition, when forming a buffer film on the nitride film 13 in the process shown in FIG. However, in the nitriding process shown in FIG. 1(b), there is no problem because the interface with the nitride film 13 is nitrided, but when polysilicon is used, it is not completely nitrided and a portion remains as polysilicon. Field oxidation reduces the thickness to 5 iOz, and since the field oxide film 19 is also reduced when this is removed, several hundred people are required to carry out thicker field oxidation in the process shown in FIG. 1-(d).

(発明の効果) 以上一実施例で詳述したように、この発明の方法では、
パッド酸化膜のバターニング後の端Sを窒化して耐酸化
性に改質した上でフィールド酸化を行うもので、このよ
うにすれば、バッド販化膜端部の耐摩化性によシ、フィ
ールド酸化時に、酸化剤がパッド酸化膜中を拡散するの
が通常のパッド酸化膜中を拡散するのに比して大きく阻
害されルカラ、バーズビークが、バターニングされた窒
化膜下の素子領域へ成長していくを妨げることができる
。すなわち、バーズビークを減少できるもので、これに
より、バターニングと仕上りとの間の寸法の差(変換差
)を小さくして素子分離領域を形成できるとともに、素
子領域を拡大できるため高集積化が図れるという利点が
ある。また、バーズビークを減少できるため耐鈑化マス
クの窒化膜厚を薄くでき、結晶欠陥の発生を減少させる
ことができる。
(Effects of the Invention) As detailed above in one embodiment, the method of the present invention has the following effects:
The edge S of the pad oxide film after patterning is nitrided to improve its oxidation resistance, and then field oxidation is performed. During field oxidation, the diffusion of the oxidant through the pad oxide film is greatly inhibited compared to the diffusion through the normal pad oxide film, causing Lucara and bird's beaks to grow in the device region under the buttered nitride film. It can hinder your progress. In other words, it is possible to reduce bird's beaks, thereby making it possible to form element isolation regions by reducing the difference in dimensions (conversion difference) between patterning and finishing, as well as expanding the element area, which allows for higher integration. There is an advantage. Furthermore, since the bird's beak can be reduced, the thickness of the nitride film of the anti-platelet mask can be reduced, and the occurrence of crystal defects can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の半導体素子の製造方法の−実り例を
説明するための断面図、第2図は従来の瑞択醒化法を説
明するための断面図である。 11 ・1.p石シリコン某仕  12・・・ノくツ 
ド階イト臆13・・・窒化膜、16・・・窒化膜、19
・・・フィールド酸化膜。 特許出願人 沖電気工業株式会社 第2図 手続補正書
FIG. 1 is a cross-sectional view for explaining a practical example of the method for manufacturing a semiconductor device according to the present invention, and FIG. 2 is a cross-sectional view for explaining a conventional resealing method. 11 ・1. P stone silicon certain type 12... notes
13...Nitride film, 16...Nitride film, 19
...Field oxide film. Patent Applicant Oki Electric Industry Co., Ltd. Figure 2 Procedural Amendment

Claims (1)

【特許請求の範囲】[Claims]  シリコン基体上にパッド酸化膜を挾んで形成された窒
化膜をマスクとしてフィールド酸化を行うことにより素
子分離領域を形成するようにした半導体素子の製造方法
において、窒化膜下のパッド酸化膜の端部を耐酸化性に
改質し、その後にフィールド酸化を行うようにしたこと
を特徴とする半導体素子の製造方法。
In a method of manufacturing a semiconductor device in which an element isolation region is formed by field oxidation using a nitride film formed on a silicon substrate with a pad oxide film in between as a mask, the edge of the pad oxide film under the nitride film is 1. A method for manufacturing a semiconductor device, characterized in that a semiconductor device is modified to have oxidation resistance, and then field oxidation is performed.
JP19259684A 1984-09-17 1984-09-17 Manufacture of semiconductor device Pending JPS6171646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19259684A JPS6171646A (en) 1984-09-17 1984-09-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19259684A JPS6171646A (en) 1984-09-17 1984-09-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6171646A true JPS6171646A (en) 1986-04-12

Family

ID=16293893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19259684A Pending JPS6171646A (en) 1984-09-17 1984-09-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6171646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441902A (en) * 1991-07-31 1995-08-15 Texas Instruments Incorporated Method for making channel stop structure for CMOS devices
US5510290A (en) * 1994-04-01 1996-04-23 Hyundai Electronics Industries Co., Ltd. Method for forming a field oxide layer in a semiconductor device which prevents bird beak by nitradation of pad oxide
US5599731A (en) * 1994-07-06 1997-02-04 Hyundai Electronics Industries Co., Ltd. Method of forming a field oxide film in a semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441902A (en) * 1991-07-31 1995-08-15 Texas Instruments Incorporated Method for making channel stop structure for CMOS devices
US5510290A (en) * 1994-04-01 1996-04-23 Hyundai Electronics Industries Co., Ltd. Method for forming a field oxide layer in a semiconductor device which prevents bird beak by nitradation of pad oxide
US5599731A (en) * 1994-07-06 1997-02-04 Hyundai Electronics Industries Co., Ltd. Method of forming a field oxide film in a semiconductor device

Similar Documents

Publication Publication Date Title
US6027984A (en) Method for growing oxide
JP3950189B2 (en) Element isolation method
JPH06163532A (en) Method for isolation of semiconductor element
JPS63288043A (en) Method of isolating side surface isolated element
JPS6171646A (en) Manufacture of semiconductor device
JP3171810B2 (en) Method for manufacturing device isolation oxide film
JP3074156B2 (en) Method for forming field oxide film of semiconductor device
JPS61174737A (en) Manufacture of semiconductor element
JPS59161837A (en) Manufacture of semiconductor device
US5726091A (en) Method of reducing bird&#39;s beak of field oxide using reoxidized nitrided pad oxide layer
JPH065588A (en) Manufacture of semiconductor device
JPH07176742A (en) Manufacture of semiconductor device and semiconductor device
JPH11186253A (en) Manufacture of semiconductor device
JP2940433B2 (en) Method for manufacturing semiconductor device
JPH1154499A (en) Fabrication of semiconductor device
JPH06163531A (en) Formation of element isolation region in semiconductor
KR0167239B1 (en) Method of isolation film on a semiconductor device
JPS61234045A (en) Mahufacture of semiconductor element
KR960010461B1 (en) Manufacturing method of field oxide in semiconductor device
JPH08213381A (en) Forming method of element isolation region, and manufacture of semiconductor device
KR0186082B1 (en) Isolation method of semiconductor device
JPH1187336A (en) Manufacture of semiconductor device
JPH0194635A (en) Manufacture of semiconductor device
JPH0582514A (en) Manufacture of semiconductor device
JPS61241941A (en) Manufacture of semiconductor device