JPS59155164A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59155164A
JPS59155164A JP58029724A JP2972483A JPS59155164A JP S59155164 A JPS59155164 A JP S59155164A JP 58029724 A JP58029724 A JP 58029724A JP 2972483 A JP2972483 A JP 2972483A JP S59155164 A JPS59155164 A JP S59155164A
Authority
JP
Japan
Prior art keywords
layer
resist
semiconductor
pattern
resist pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58029724A
Other languages
Japanese (ja)
Inventor
Kenji Maeguchi
前口 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58029724A priority Critical patent/JPS59155164A/en
Priority to US06/575,921 priority patent/US4564583A/en
Publication of JPS59155164A publication Critical patent/JPS59155164A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • H01L21/2652Through-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
    • H01L21/76216Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers
    • H01L21/76218Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers introducing both types of electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers, e.g. for isolation of complementary doped regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent an overlap of well regions by previously forming positive and negative type two layer resist layers, forming a pattern to the first resist layer and implanting first ions and forming a pattern to the second resist layer and implanting second ions. CONSTITUTION:Positive and negative type two layer resist layers 25, 24 are formed onto a semiconductor substrate 22 through an insulating film 23. The two layer resist layers are exposed. The resist layer 25 as an upper layer is developed and a first resist pattern 26 is formed. The ions of a first conductive impurity are implanted while using the pattern 26 as a mask. The pattern 26 is exfoliated. The resist layer 24 as a lower layer is developed, and a second resist pattern 28 is formed. The ions of a second conductive impurity are implanted. The overlap of two well regions 30, 31 can be prevented because the two patterns do not overlap.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に関し、特に半導体基
板もしくは絶縁性基板上の半導体層の表面に異種の半導
体領域を並設した相補型MO8半導体装置(0MO8)
の製造方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a complementary MO8 semiconductor in which different types of semiconductor regions are arranged side by side on the surface of a semiconductor layer on a semiconductor substrate or an insulating substrate. Equipment (0MO8)
Relating to a manufacturing method.

〔発明つ枝椅吻噴呆〕[Invention and branch chair snout]

従来、0MO8の製造においては、以下に説明する第1
図(、)〜(d)の如く絶縁性基板上の半導体層表面に
2つの異なる導電型の半導体領域(ウェル領域)を互に
並設することが行なわれている。
Conventionally, in the production of 0MO8, the first
As shown in Figures (a) to (d), semiconductor regions (well regions) of two different conductivity types are arranged side by side on the surface of a semiconductor layer on an insulating substrate.

まず、絶縁性基板1上に半導体層2を成長させた後、こ
の半導体層2上にバッファ用の熱酸化M3を形成する。
First, a semiconductor layer 2 is grown on an insulating substrate 1, and then a thermally oxidized buffer M3 is formed on this semiconductor layer 2.

つづいて、この熱酸化膜3上にレジスト層4を形成する
(第1図(、)図示)。
Subsequently, a resist layer 4 is formed on this thermal oxide film 3 (as shown in FIG. 1(,)).

次いで、写真蝕刻法(Photo Engraving
Process )によシル−ウェル領域形成予定部に
対応するレジスト層4を選択的に剥離し、レジス) A
?ターン5を形成する。次に、このパターン5をマスク
として前記半導体層2表面にp型不純物をイオン注入し
、p型の不純物層6を形成する(第1図(b)図示)。
Next, Photo Engraving
Process) A.
? Form turn 5. Next, using this pattern 5 as a mask, p-type impurity ions are implanted into the surface of the semiconductor layer 2 to form a p-type impurity layer 6 (as shown in FIG. 1(b)).

ひきつづき、前記レジストパターン5を剥離し、前述と
同様にしてn−ウェル領域形成予定部に対応する部分が
開孔したレジスト層4ターン7を形成した後、同1?タ
ーン7をマスクとして前記半導体層2表面にn型不純物
をイオン注入してn型の不純物層8を形成する(第1図
(C)図示)。更に、前記・母ターン7を剥離後、熱処
理を施して、p−ウェル領域9、n−ウェル領域10を
形成する(第1図(d)図示)。
Subsequently, the resist pattern 5 was peeled off, and a resist layer 4 turn 7 having holes corresponding to the portions where the n-well region was to be formed was formed in the same manner as described above. Using the turn 7 as a mask, n-type impurity ions are implanted into the surface of the semiconductor layer 2 to form an n-type impurity layer 8 (as shown in FIG. 1C). Furthermore, after peeling off the mother turn 7, a heat treatment is performed to form a p-well region 9 and an n-well region 10 (as shown in FIG. 1(d)).

〔背景技術の問題点〕[Problems with background technology]

しかしながら、前述した製造方法によれば、p−ウェル
領域9とn−ウェル領域10とを夫夫別々のPEP工程
によるレジストパターン5゜7をマスクとして形成する
ため、これらの前記ウェル領域9,10を互に自己整合
的に形成することが困難である。このようなことから、
PEP工程時の合わせズレ′によって第1図(d)に示
す如くウェル領域9,10が部分的に重なった領域1ノ
が生じ、この領域1ノでは2度目のn型不純物のイオン
注入に起因して表面が損傷し素子特性が劣化する。した
がって、前記レジメトツヤターン5,7を形成する際の
夫々のPEP工程の合わせズレを考慮したパターン設計
をしなければならず、0MO8素子の微細化が困難であ
る。
However, according to the above-described manufacturing method, since the p-well region 9 and the n-well region 10 are formed using the resist pattern 5.7 as a mask by separate PEP processes, these well regions 9, 10 are It is difficult to form these in a mutually self-consistent manner. From such a thing,
Due to misalignment during the PEP process, a region 1 is created where the well regions 9 and 10 partially overlap, as shown in FIG. This damages the surface and deteriorates the device characteristics. Therefore, it is necessary to design a pattern in consideration of the misalignment of the respective PEP processes when forming the regimen gloss turns 5 and 7, making it difficult to miniaturize the 0MO8 element.

また、前述の如(PEP工程を2回行なうため、歩留シ
が低下し製品のコスト高を招く。
Further, as mentioned above, since the PEP process is performed twice, the yield rate decreases and the cost of the product increases.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、素子特性の
劣化を回避して素子の微細化を図るとともに、PEP工
程を減少して製品コストの低減を図った0MO8等の半
導体装置の製造方法を提供することを目的とするもので
ある。
The present invention has been made in view of the above circumstances, and is a method of manufacturing a semiconductor device such as 0MO8, which avoids deterioration of device characteristics, miniaturizes the device, and reduces the number of PEP steps to reduce product cost. The purpose is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板もしくは絶縁性基板上の半導体層
上に直接あるいは絶縁膜を介して少なくともポジ型及び
ネガ型からなる2層のレジスト層を形成した後、これら
2層のレジスト層の所定領域に露光し、上層のレジスト
層を現像処理して第1のレジスト層やターンを形成した
後該しジストノやターンをマスクとして前記半導体基板
もしくは半4木層に第1の導電性不純物をイオン注入し
、更に前記レジストパターンを剥離し他方のレジスト層
を現像処理して第2のレジストパターンを形成した後、
該レジメトツヤターンをマスクとして前記半導体基板も
しくは半導体層に第2の導電性不純物をイオン注入する
ことによって、0MO8素子の微細化並びに製品コスト
の低減を達成できるものである。
In the present invention, after forming at least two resist layers of a positive type and a negative type on a semiconductor layer on a semiconductor substrate or an insulating substrate directly or via an insulating film, predetermined areas of these two resist layers are formed. After exposing the upper resist layer to light and developing the upper resist layer to form a first resist layer or turns, a first conductive impurity is ion-implanted into the semiconductor substrate or semi-quadrature layer using the resist layers or turns as a mask. Then, after peeling off the resist pattern and developing the other resist layer to form a second resist pattern,
By ion-implanting a second conductive impurity into the semiconductor substrate or semiconductor layer using the regimen gloss turn as a mask, miniaturization of the 0MO8 element and reduction in product cost can be achieved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をSOS基板を用いた0MO8の製造に適
用した例について第2図(a)〜(h)を参照して説明
する。
Hereinafter, an example in which the present invention is applied to the manufacture of 0MO8 using an SOS substrate will be described with reference to FIGS. 2(a) to 2(h).

〔1〕  まず、絶縁性基板としてのサファイア基板2
ノ上にシリコンをエピタキシャル成長させて半導体層2
2を形成した後、この半導体層。
[1] First, a sapphire substrate 2 as an insulating substrate
A semiconductor layer 2 is formed by epitaxially growing silicon on top of the semiconductor layer 2.
After forming 2, this semiconductor layer.

22上にバッファ用の薄い熱酸化膜23を形成した。つ
づいて、この熱酸化膜23上に厚さが夫々4000Xの
ネガレジスト(東京応化工業特製商品名: OMR−8
3) 、ポジレジスト(東京応化工業■裏向品名; 0
FPR−78)を塗布してネガレジスト層24、ポジレ
ジスト層25を順次形成  −した。次いで、P−ウェ
ル領域形成予定部に対応すポジレジスト層25、ネガレ
・シスト層24部分に選択的に紫外線を照射して露光し
た(第2図(、)図示)。この結果、露光されたポジレ
ジストM25では崩壊反応が起とシ、露光されたネガレ
ジスト層24では架橋反応が起こった。
A thin thermal oxide film 23 for buffering was formed on 22. Next, a negative resist with a thickness of 4000X (Tokyo Ohka Kogyo special product name: OMR-8) is applied on the thermal oxide film 23.
3), Positive resist (Tokyo Ohka Kogyo ■Reverse product name; 0
FPR-78) was applied to form a negative resist layer 24 and a positive resist layer 25 in this order. Next, the portions of the positive resist layer 25 and the negative cyst layer 24 corresponding to the portion where the P-well region was to be formed were selectively irradiated with ultraviolet rays and exposed (as shown in FIG. 2(a)). As a result, a collapse reaction occurred in the exposed positive resist layer M25, and a crosslinking reaction occurred in the exposed negative resist layer 24.

更に、ポジレジスト用の現像液を用いて露光されたポジ
レジスト層25を溶解除去し、第1のレジストパターン
としてのp−ウェル領域形成予定部に対応する部分が開
孔された?ジレジストノ母ターフ26を形成した。この
後、このノぐターン26をマスクとして前記半導体層2
2表面にp型不純物例えばポロンをイオン注入し、p型
不純物層27を形成した(第2図(b)図示)。
Furthermore, the exposed positive resist layer 25 was dissolved and removed using a positive resist developer, and a hole was opened in a portion corresponding to a portion where a p-well region was to be formed as a first resist pattern. A diresist mother turf 26 was formed. After that, using this notch turn 26 as a mask, the semiconductor layer 2 is
A p-type impurity layer 27 was formed by ion-implanting a p-type impurity such as poron into the surface of the substrate 2 (as shown in FIG. 2(b)).

〔1!〕  次に、ポジレジストパターン26を剥離後
、ネガレジスト用の現像液を用いて露光されないネガレ
ジスト層26を溶解除去し、ポジレジストパターン26
とは逆パターンのネガレジストツヤターン(第2のレジ
ストノやターン)28を形成した。つづいて、このネガ
レジストパターン28をマスクとして前記半導体層22
表面にn型不純物例えばリンをイオン注入してn型不純
物層29を形成した(第2図(C)図示)。次いで、ネ
ガレジストツヤターン28を剥離した後、窒素雰囲気で
1000℃、1時間熱処理を施して前記不純物27.2
9を活性化し、p−ウェル領域30.n−ウェル領域3
ノを夫々形成した(第2図(d)図示)。更に、前記熱
酸化膜23を除去し、全面に厚い酸化膜(図示せず)を
形成した後、写真蝕刻法によシ前記半導体領域30゜3
ノの素子領域形成予定部に対応する酸化膜を選択的に除
去し、フィールド領域32を形成した(第2図(、)図
示)。この後、熱処理を施して露出するウェル領域30
.31表面に薄い酸化膜33を形成し、更に全面に多結
晶シリコン層34を形成した(第2図(f)図示)。
[1! ] Next, after peeling off the positive resist pattern 26, the negative resist layer 26 that is not exposed to light is dissolved and removed using a negative resist developer, and the positive resist pattern 26 is removed.
A negative resist glossy turn (second resist pattern) 28 having a reverse pattern was formed. Next, using this negative resist pattern 28 as a mask, the semiconductor layer 22 is
An n-type impurity layer 29 was formed by ion-implanting an n-type impurity such as phosphorus into the surface (as shown in FIG. 2C). Next, after peeling off the negative resist gloss turn 28, heat treatment was performed at 1000° C. for 1 hour in a nitrogen atmosphere to remove the impurity 27.2.
9 and p-well region 30. n-well region 3
(Illustrated in FIG. 2(d)). Furthermore, after removing the thermal oxide film 23 and forming a thick oxide film (not shown) on the entire surface, the semiconductor region 30° 3 is etched by photolithography.
The oxide film corresponding to the portion where the element region is to be formed was selectively removed to form a field region 32 (as shown in FIG. 2(a)). After this, the well region 30 is subjected to heat treatment and exposed.
.. A thin oxide film 33 was formed on the surface of 31, and a polycrystalline silicon layer 34 was further formed on the entire surface (as shown in FIG. 2(f)).

[:iii:l  次に、この多結晶シリコン層34を
パターニングし前記p−ウェル領域30、n−ウェル領
域3)上に酸化膜33を介してダート電極351.35
.を形成した後、これらダート電極351.352をマ
スクとして前記酸化膜33を選択的にエツチング除去し
ダート絶縁膜361゜362を形成した。つづいて、写
真蝕刻法によシn−ウェル領域3ノ側を覆うレジストパ
ターン(図示せず)を形成した後、同・やターン、ダー
ト電極351t35*及びフィールド領域32をマスク
としてp−ウェル領域30表面に例えばリンをイオン注
入した。次いで、前記レジストパターンを剥離後、写真
蝕刻法によシ全面にp−ウェル領域30側を覆うレジス
ト・母ターン(図示せず)を形成した後、同ノ’?ター
ン、ダート電極351.35.及びフィールド領域32
をマスクとしてn−ウェル領域31表面に例えばポロン
をイオン注入した。更に、前記レジメ) ノ4ターンを
剥離後、熱処理を施して、p−ウェル領域30に訂型の
ソース、ドレイン領域371*381を形成すると共に
、n−ウニルミA域J7Kp+型のソース、ドレイン領
域372゜382を夫々形成した。この後、全面に層間
絶縁膜39を形成した(第2図(g)図示)。更に、前
記各ソース、ドレイン領域371 .372  。
[:iii:l Next, this polycrystalline silicon layer 34 is patterned to form dirt electrodes 351.35 on the p-well region 30 and n-well region 3) via the oxide film 33.
.. After forming these dirt electrodes 351 and 352 as a mask, the oxide film 33 was selectively etched away to form dirt insulating films 361 and 362. Subsequently, after forming a resist pattern (not shown) covering the side of the thin N-well region 3 by photolithography, the p-well region is For example, phosphorus was ion-implanted onto the surface of No. 30. Next, after peeling off the resist pattern, a resist/mother turn (not shown) covering the p-well region 30 side is formed on the entire surface by photolithography, and then the same pattern is removed. Turn, dart electrode 351.35. and field area 32
For example, poron ions were implanted into the surface of the n-well region 31 using as a mask. Furthermore, after peeling off the 4 turns of the above regimen, heat treatment is performed to form revised source and drain regions 371 * 381 in the p-well region 30, and to form source and drain regions of the n-uniluminum A region J7Kp+ type. 372° and 382 were formed, respectively. Thereafter, an interlayer insulating film 39 was formed on the entire surface (as shown in FIG. 2(g)). Further, each of the source and drain regions 371 . 372.

3811382の一部に対応する層間絶縁膜39をエツ
チング除去しコンタクトホール40・・・を形成した後
、これらコンタクトホール40・・・にAl配線4ノ・
・・を形成して0MO8を製造した(第2図(h)図示
)。
After etching and removing the interlayer insulating film 39 corresponding to a part of 3811382 and forming contact holes 40..., Al wiring 4 holes are formed in these contact holes 40...
... was formed to produce 0MO8 (as shown in FIG. 2(h)).

しかして、本発明によれば、サファイア基板2ノ上の半
導体層22上に熱酸化膜23を介して順次積層したネガ
レジスト層24、ポジレジスト層25を1回の露光と2
回の現像処理で互に反転したp型不純物層27形成用の
ポジレジストパターン26とn型不純物層29形成用の
ネガレジストパターン28とを形成できる。つまシ、p
−ウェル領域30となるn型不純物層27とn−ウェル
領域3Jとなるn型不純物層29とを互いに自己整合的
に形成すること力ヨできる。したがって、従来の如く、
n−ウェル領域とp−ウェル領域との重なりに起因して
素子特性が劣化することを回避できるとともに、2回の
PEP工程に起因する合わせずれを考慮することなく微
細なCMO8素子を形成できる。
According to the present invention, the negative resist layer 24 and the positive resist layer 25, which are sequentially laminated on the semiconductor layer 22 on the sapphire substrate 2 via the thermal oxide film 23, are exposed once and then exposed twice.
A positive resist pattern 26 for forming the p-type impurity layer 27 and a negative resist pattern 28 for forming the n-type impurity layer 29, which are reversed from each other, can be formed in one development process. Tsumashi, p
- The n-type impurity layer 27 that will become the well region 30 and the n-type impurity layer 29 that will become the n-well region 3J can be formed in a mutually self-aligned manner. Therefore, as before,
Deterioration of device characteristics due to overlap between the n-well region and the p-well region can be avoided, and a fine CMO8 device can be formed without considering misalignment caused by two PEP steps.

また、前述の如く、p型不純物領域22形成用のポジレ
ジス)/fターン26とn型不純物領域29形成用のネ
ガレジストハターン28が1回の露光と2回の現像処理
で済むため、歩止シを向上させて製品コストの低減を図
ることができる。
In addition, as described above, since the positive resist (f-turn 26 for forming the p-type impurity region 22) and the negative resist (f-turn) 28 for forming the n-type impurity region 29 only require one exposure and two development processes, the yield can be reduced. It is possible to improve performance and reduce product costs.

なお、上記実施例ではネガレジスト層と号?ジレジスト
層を順次積層したが、これに限らず、例えばこれらレジ
スト層間にス/’Pツタ5IO2膜等の光を透過する物
質を介在させ、ポジレジスト層のエツチング時にネガレ
ジスト層がエツチングされないようにしてもよい。
In addition, in the above embodiment, what is called a negative resist layer? Although the di-resist layers are sequentially laminated, the present invention is not limited to this. For example, a material that transmits light, such as a 5IO2 film, may be interposed between these resist layers to prevent the negative resist layer from being etched when the positive resist layer is etched. It's okay.

上記実施例では、サファイア基板上の半導体層上に熱酸
化膜を介してネガレジスト層、ポジレジスト層を順次形
成したが、熱酸化膜はレジスト層からの汚染を防ぐため
に形成したものであシ、これに限らず、半導体層上に直
接レジスト層を形成しそもよい。
In the above example, a negative resist layer and a positive resist layer were sequentially formed on a semiconductor layer on a sapphire substrate via a thermal oxide film, but the thermal oxide film was formed to prevent contamination from the resist layer. However, the present invention is not limited to this, and it is also possible to form a resist layer directly on the semiconductor layer.

上記実施例では、SO8基板を用いて0MO8を形成す
る場合について述べたが、これに限らず、例えばp型の
St基板にp−ウェル領域、n−ウェル領域を形成した
0MO8を形成してもよい。即ち、第3図(、)に示す
如くp型のSi基板51上に熱酸化膜52を介してネガ
レジスト層53、ポジレジスト層54を順次形成した後
、上記実施例と同様な方法によシ第3図(b)に示す如
く、前記基板51表面にp−ウェル領域55、n−ウェ
ル領域56を形成する。
In the above embodiment, a case was described in which an 0MO8 is formed using an SO8 substrate, but the invention is not limited to this. For example, an 0MO8 in which a p-well region and an n-well region are formed on a p-type St substrate may also be formed. good. That is, after forming a negative resist layer 53 and a positive resist layer 54 in sequence on a p-type Si substrate 51 via a thermal oxide film 52 as shown in FIG. As shown in FIG. 3(b), a p-well region 55 and an n-well region 56 are formed on the surface of the substrate 51.

上記実施例では、パターンをポジレジスト層、ネガレジ
スト層に露光する方法として紫外線照射を行なったが、
これに限らず、短波長紫外線、X線、電子線、イオンビ
ーム等を用いることができる。なお、ポジレジスト層、
ネガレジスト層はそれらの露光源あるいは照射源に合わ
せて適宜選択できる。
In the above example, ultraviolet irradiation was used as a method of exposing the pattern to the positive resist layer and the negative resist layer.
The present invention is not limited to this, and short wavelength ultraviolet rays, X-rays, electron beams, ion beams, etc. can be used. In addition, the positive resist layer,
The negative resist layer can be appropriately selected depending on the exposure source or irradiation source.

上記実施例では、p−ウェル領域とn−ウェル領域とを
互に自己整合的に形成する場合について述べたが、これ
に限らず、互に同一導電型であってしかも不純物濃度が
異なる2つのウェル領域を形成する場合についても同様
に適用できる。
In the above embodiment, the case where the p-well region and the n-well region are formed in a self-aligned manner with each other has been described, but the invention is not limited to this. The same applies to the case of forming a well region.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、素子の微細化並びに
製品コストの低減を達成できる0MO8等の半導体装置
の製造方法を提供できるものである。
As detailed above, according to the present invention, it is possible to provide a method of manufacturing a semiconductor device such as 0MO8, which can achieve miniaturization of elements and reduction of product cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(a)〜(d)は従来の0MO8の製造工程の
一部を示す断面図、第2図は(、)〜(h)は本発明の
一実施例を示す0MO8の製造方法を工程順に示す断面
図、第3図(a)、(b)は本発明の他の実施例を示す
0MO8の製造工程の一部を示す断面図である。 2ノ・・・サファイア基板(絶縁性基板)、22・・・
半導体層、23,52・・・熱酸化膜、24゜53・・
・ネガレジスト層、25,54・・・ポジレジスト層、
26・・・ポジレジストパターン(第1のレジストパタ
ーン)、27・・・p型不純物層、28・・・ネガレジ
ストハターン(第2のレジストパターン)、29・・・
n型不純物層、30.55・・・p−ウェル領域、31
.56・・・n−ウェル領域、32・・・フィールド領
域、33・・・薄い酸化膜、34・・・多結晶シリコン
層、351 .35.・・・ダート電極、36x  、
 36. ・’l’lトート膜、3−71゜371・・
・ソース領域、3B、、38.・・・ドレイン領域、3
9・・・層間絶縁膜、40・・・コンタクトホール、4
ノ・・・AI配線、51・・・p型の81基板。
Fig. 1 (a) to (d) are cross-sectional views showing a part of the conventional manufacturing process of 0MO8, and Fig. 2 (,) to (h) are sectional views showing an example of the manufacturing method of 0MO8 of the present invention. FIGS. 3(a) and 3(b) are sectional views showing a part of the manufacturing process of 0MO8 showing another embodiment of the present invention. 2... Sapphire substrate (insulating substrate), 22...
Semiconductor layer, 23, 52... thermal oxide film, 24°53...
- Negative resist layer, 25, 54... positive resist layer,
26... Positive resist pattern (first resist pattern), 27... P-type impurity layer, 28... Negative resist pattern (second resist pattern), 29...
n-type impurity layer, 30.55...p-well region, 31
.. 56... N-well region, 32... Field region, 33... Thin oxide film, 34... Polycrystalline silicon layer, 351. 35. ...Dart electrode, 36x,
36.・'l'l tote membrane, 3-71°371...
- Source area, 3B, 38. ...Drain region, 3
9... Interlayer insulating film, 40... Contact hole, 4
No...AI wiring, 51...p-type 81 board.

Claims (3)

【特許請求の範囲】[Claims] (1)  半導体基板もしくは絶縁性基板上の半導体層
上に直接あるいは絶縁膜を介して少なくともポジ型及び
ネガ型からなる2層のレジスト層を形成する工程と、こ
れら2層のレジスト層の所定領域を露光する工程と、上
層のレジスト層を現像処理して第1のレジス)パターン
を形成した後、該レジストパターンをマスクとして前記
半導体基板もしくは半導体層に第1の導電性不純物をイ
オン注入する工程と、前記レジストパターンを剥離し下
層のレジスト層を現像処理して第2のレジストパターン
を形成した後、該レジストパターンをマスクとして前記
半導体基板もしくは半導体層に第2の導電性不純物をイ
オン注入する工程とを具備することを特徴とする半導体
装置の製造方法。
(1) A step of forming at least two resist layers of a positive type and a negative type on a semiconductor layer on a semiconductor substrate or an insulating substrate directly or via an insulating film, and predetermined areas of these two resist layers. and after developing the upper resist layer to form a first resist pattern, ion-implanting a first conductive impurity into the semiconductor substrate or semiconductor layer using the resist pattern as a mask. After peeling off the resist pattern and developing the underlying resist layer to form a second resist pattern, a second conductive impurity is ion-implanted into the semiconductor substrate or semiconductor layer using the resist pattern as a mask. A method for manufacturing a semiconductor device, comprising the steps of:
(2)半導体基板もしくは絶縁性基板上の半導体層上に
絶縁膜を介してポジ型レジスト層を設けた後、更に51
02膜を介してネガ型レジスト層を設けたことを特徴と
する特許請求”の範囲第1項記載の半導体装置の製造方
法。
(2) After providing a positive resist layer on the semiconductor layer on the semiconductor substrate or the insulating substrate via the insulating film, further 51
A method for manufacturing a semiconductor device according to claim 1, characterized in that a negative resist layer is provided through a 02 film.
(3)上層のレジスト層を現像処理して第1の半導体領
域形成予定部に対応する部分が開孔された第1のレジス
トパターンを形成する工程と、このレジストパターンを
マスクとして半導体基板もしくは半導体層に第1導電型
の不純物をイオン注入して不純物層を形成する工程と、
前記レジストパターンを除去し下層のレジスト層を現像
処理して第2のレジス) t+ターンを形成した後、該
レジストパターンをマスクとして前記半導体基板もしく
は半導体層に第2導電型の不純物をイオン注入し不純物
層を形成する工程とを具備することを特徴とする特許請
求の範囲第1項記載の半導体装置の製造方法。
(3) A step of developing the upper resist layer to form a first resist pattern in which a hole is formed in a portion corresponding to a portion where the first semiconductor region is to be formed, and using this resist pattern as a mask to form a semiconductor substrate or a semiconductor. forming an impurity layer by ion-implanting a first conductivity type impurity into the layer;
After removing the resist pattern and developing the underlying resist layer to form a T+ turn, ions of a second conductivity type impurity are implanted into the semiconductor substrate or semiconductor layer using the resist pattern as a mask. 2. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of forming an impurity layer.
JP58029724A 1983-02-07 1983-02-24 Manufacture of semiconductor device Pending JPS59155164A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58029724A JPS59155164A (en) 1983-02-24 1983-02-24 Manufacture of semiconductor device
US06/575,921 US4564583A (en) 1983-02-07 1984-02-01 Method for manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029724A JPS59155164A (en) 1983-02-24 1983-02-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59155164A true JPS59155164A (en) 1984-09-04

Family

ID=12284053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029724A Pending JPS59155164A (en) 1983-02-07 1983-02-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59155164A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263467A (en) * 1991-02-19 1992-09-18 Fujitsu Ltd Semiconductor device
KR19980030837A (en) * 1996-10-30 1998-07-25 김영환 CMOS transistor and its manufacturing method
WO2014147185A1 (en) * 2013-03-20 2014-09-25 Mpo Energy Method for doping silicon sheets

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263467A (en) * 1991-02-19 1992-09-18 Fujitsu Ltd Semiconductor device
KR19980030837A (en) * 1996-10-30 1998-07-25 김영환 CMOS transistor and its manufacturing method
WO2014147185A1 (en) * 2013-03-20 2014-09-25 Mpo Energy Method for doping silicon sheets
FR3003687A1 (en) * 2013-03-20 2014-09-26 Mpo Energy METHOD FOR DOPING SILICON PLATES
EP2976782A1 (en) * 2013-03-20 2016-01-27 Ion Beam Services Method for doping silicon sheets
CN105580110A (en) * 2013-03-20 2016-05-11 离子射线服务公司 Method for doping silicon sheets

Similar Documents

Publication Publication Date Title
JP2519819B2 (en) Contact hole forming method
JPH05160355A (en) Manufacture of cmos with twin well
JPH03129818A (en) Manufacture of semiconductor device
JPS59155164A (en) Manufacture of semiconductor device
JPS6015155B2 (en) Manufacturing method of semiconductor device
JPH11204506A (en) Wafer formed with circuit pattern and manufacture thereof
JPH07321015A (en) Manufacture of semiconductor device
KR0140658B1 (en) Manufacture of element isolation for semiconductor integrated circuit device
JPS59150475A (en) Manufacture of semiconductor device
JPH0316150A (en) Manufacture of semiconductor element
JPH0113230B2 (en)
JPH1050857A (en) Method for manufacturing semiconductor device
JP3042804B2 (en) Element isolation method and semiconductor device
JP3109001B2 (en) Method for manufacturing semiconductor device
JP3688860B2 (en) Manufacturing method of semiconductor integrated circuit
JPS6169176A (en) Manufacture of semiconductor device
KR100382551B1 (en) Method for Forming Dual Deep Trench of a Semiconductor Device
JPH0117256B2 (en)
JPH05175441A (en) Semiconductor device and manufacture thereof
JPS61287161A (en) Manufacture of complementary type mos semiconductor device
JPS6050064B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPH05335407A (en) Manufacture of semiconductor device
JPH01204414A (en) Manufacture of semiconductor device
JP2003209121A (en) Method of manufacturing semiconductor device
JPH07245339A (en) Semiconductor device and its manufacture