JPS5915498B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5915498B2
JPS5915498B2 JP50096859A JP9685975A JPS5915498B2 JP S5915498 B2 JPS5915498 B2 JP S5915498B2 JP 50096859 A JP50096859 A JP 50096859A JP 9685975 A JP9685975 A JP 9685975A JP S5915498 B2 JPS5915498 B2 JP S5915498B2
Authority
JP
Japan
Prior art keywords
silicon
film
oxide film
silicon oxide
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50096859A
Other languages
Japanese (ja)
Other versions
JPS5220771A (en
Inventor
隆志 大曾根
司朗 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP50096859A priority Critical patent/JPS5915498B2/en
Publication of JPS5220771A publication Critical patent/JPS5220771A/en
Publication of JPS5915498B2 publication Critical patent/JPS5915498B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 15本発明は半導体装置の製造方法に関し、詳しくは半
導体集積回路における信頼性の向上ならびに高密度化を
はかるものである。
DETAILED DESCRIPTION OF THE INVENTION 15 The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to improving reliability and increasing density in a semiconductor integrated circuit.

まず第1図に従来のCCDにおける電極形成法を示す。First, FIG. 1 shows a method of forming electrodes in a conventional CCD.

シリコン半導体基体11の上面にシリコ20 ン酸化膜
12を形成し、更にその上にシリコン膜13を形成する
a、シリコン膜13とシリコン酸化膜12を選択的に除
去して島状領域を形成するboしかるのちシリコン半導
体11及びシリコン膜13を高温酸化雰囲気に晒してシ
リコン酸化膜ク514を形成するCo次に全面にアルミ
、ニウム膜又は第2のシリコン膜15を選択的に形成す
るd。この電極形成法によつて電荷結合素子すなわちC
hargeCoupledDeviceのゲートを構成
できる。このようにして、第1図のdに示す如く90φ
4、φ2、φ3、φ4と配線すれば4相、駆動CCDが
できる。ところがこの第1図の方法ではシリコン膜13
と導電体膜15とをフォト・エッチ法で形成するため相
互のマスク合せ余裕L、が必要なため島状領域形成後の
シリコン膜13の最小巾■5L4はL4=L2+ 2L
、 但し、L2:導電体膜15の間隙を形成するための最小
巾従つて、CCDの4相駆動を考えた場合の1ビツト当
りの電極巾LはL=2(L3+L4) 但し、L3:シリコン膜13の間隙を形成するための最
小巾、現状ではL2=L3=3μ,L1=2μであるの
でL−20μが最小である。
A silicon oxide film 12 is formed on the upper surface of the silicon semiconductor substrate 11, and a silicon film 13 is further formed thereon.A, the silicon film 13 and the silicon oxide film 12 are selectively removed to form an island region. Thereafter, the silicon semiconductor 11 and the silicon film 13 are exposed to a high-temperature oxidizing atmosphere to form a silicon oxide film 514. Next, an aluminum, nium film, or a second silicon film 15 is selectively formed on the entire surface. By this electrode formation method, a charge-coupled device, i.e., C
A gate for a hargeCoupledDevice can be configured. In this way, the 90φ
By wiring 4, φ2, φ3, and φ4, a 4-phase driving CCD can be created. However, in the method shown in FIG.
Since the conductor film 15 and the conductor film 15 are formed by photo-etching, a mutual mask alignment margin L is required, so the minimum width of the silicon film 13 after forming the island region 5L4 is L4=L2+2L.
, However, L2: Minimum width for forming the gap between the conductor films 15 Therefore, when considering four-phase drive of CCD, the electrode width L per 1 bit is L=2 (L3 + L4) However, L3: Silicon The minimum width for forming the gap between the membranes 13 is currently L2=L3=3μ and L1=2μ, so the minimum width is L-20μ.

他方、CCDの電極巾νと最大転送ロツク周波数fφと
はfφ〜打−2なる関係がある。
On the other hand, the relationship between the electrode width ν of the CCD and the maximum transfer lock frequency fφ is fφ˜k−2.

この様に、CCDの高密度化及び高速動作を考えると電
極巾の微小化が要求されれる。そこで、本発明の目的は
、CCDの電極巾を短かくし高密度化及び高速動作化、
信頼性の高い電極構造を容易に得ることにある。
As described above, considering the high density and high speed operation of CCDs, miniaturization of the electrode width is required. Therefore, an object of the present invention is to shorten the electrode width of a CCD to increase density and high-speed operation.
The objective is to easily obtain a highly reliable electrode structure.

又、本発明の別の目的はMOSトランジスタのゲート電
極、ソース、ドレイン電極及び配線の高密度化、信頼性
の高い電極構造を容易に得ることにある。以下本発明の
実施例を図面とともに詳細に説明する。第2図及び第3
図は本発明の実施例にかかるCCDの電極形成法及びN
OSトランジスタの配線の形成法を示すものである。第
2図において、シリコン半導体基体21の上面に約50
0λのシリコン酸化膜22と約1000Aのシリコン窒
化膜23の2層膜を形成するAO更にその上にSiH4
の熱分解法や蒸着法を用いて約4000λの低抵抗率の
第1のシリコン膜24を形成し、約1μのシリコン酸化
膜25をシリコン膜24の上に形成する。
Another object of the present invention is to easily obtain a high-density, highly reliable electrode structure of the gate electrode, source, drain electrode, and wiring of a MOS transistor. Embodiments of the present invention will be described in detail below with reference to the drawings. Figures 2 and 3
The figure shows a CCD electrode formation method according to an embodiment of the present invention and N
This figure shows a method of forming wiring for an OS transistor. In FIG. 2, approximately 500
AO forms a two-layer film of a silicon oxide film 22 with a thickness of 0λ and a silicon nitride film 23 with a thickness of approximately 1000A.
A first silicon film 24 with a low resistivity of about 4000λ is formed using a thermal decomposition method or a vapor deposition method, and a silicon oxide film 25 of about 1 μm is formed on the silicon film 24.

この場合、シリコン酸化膜25はHF液に対するエツチ
ング速度を速めるためにリンガラス(PhOphOsi
licateglass)膜が好ましいBO次に、シリ
コン膜24とシリコン酸化膜25の2層膜を選択的にエ
ツチングして島状領域26を形成するC。こうしたのち
、第1のシリコン膜24の露出した側面に、高温酸化雰
囲気中に晒して約3000人の低抵抗率のシリコン酸化
膜27を形成する。
In this case, the silicon oxide film 25 is etched with phosphorus glass (PhOphOsi) to increase the etching rate with respect to the HF solution.
Next, the two-layer film of the silicon film 24 and the silicon oxide film 25 is selectively etched to form an island region 26. Thereafter, a silicon oxide film 27 having a low resistivity of about 3,000 layers is formed on the exposed side surface of the first silicon film 24 by exposing it to a high temperature oxidizing atmosphere.

この場合、シリコン半導体基体21の表面はシリコン窒
化膜23で覆われているため酸化されないD。ついで全
面に約4000人の第2のシリコン膜28を蒸着法によ
つて形成する。この場合、シリコン酸化膜25の側面に
第2のシリコン膜28が付着形成されないようにする。
従つて、SiH4の熱分解法によるシリコン膜28の形
成は不適当であるEOつぎに、シリコン酸化膜25のエ
ツチング液(例えばHF液)に浸して、シリコン酸化膜
25の除去及びその上に形成された一部の第2のシリコ
ン膜28の除去を同時に行なう。
In this case, the surface of the silicon semiconductor substrate 21 is covered with the silicon nitride film 23, so it is not oxidizedD. Next, a second silicon film 28 of approximately 4,000 layers is formed over the entire surface by vapor deposition. In this case, the second silicon film 28 is prevented from being deposited on the side surface of the silicon oxide film 25.
Therefore, forming the silicon film 28 by the thermal decomposition method of SiH4 is inappropriate. At the same time, the removed portion of the second silicon film 28 is removed.

このとき前述のように1μ厚のリンガラス膜をシリコン
酸化膜25に用いると、HF液でエツチングすれば約1
分で除去される。なおシリコン窒化膜23はHF液に対
してエツチング速度は十分に遅いため、シリコン酸化膜
27が除去されても、窒化膜23は除去されないFOこ
うしたのち、高温酸化雰囲気中に晒して残された第1及
び第2のシリコン膜24,28をシリコン酸化膜29で
覆う。シリコン酸化膜29に選択的にコンタクト窓あけ
を行ない、g図に示す如くφ1〜φ4の配線を行なえば
4相駆動CCDが得られる。以上の方法によれば第1の
シリコン膜24の巾及び間隙を夫々3μに形成できるの
で、L5=L6−3μとなり1ビツト当り12μで形成
され、従来に比べ巾は約妻、転送速度は約4倍に速くな
る。なお、第2図a−gの製造工程に於いて、b工程で
第1のシリコン膜24とシリコン酸化膜25の間にシリ
コン窒化膜23′を挟めば、最終工程ではhに示す如く
、第1のシリコン膜24の上面はシリコン窒化膜23′
に、第2のシリコン膜28の上面はシリコン酸化膜29
で覆われる。
At this time, if a phosphorus glass film with a thickness of 1 μm is used as the silicon oxide film 25 as described above, if etched with HF solution, the thickness will be approximately 1 μm thick.
Removed in minutes. Note that the etching rate of the silicon nitride film 23 is sufficiently slow compared to the HF solution, so even if the silicon oxide film 27 is removed, the nitride film 23 is not removed. The first and second silicon films 24 and 28 are covered with a silicon oxide film 29. A four-phase drive CCD can be obtained by selectively forming contact windows in the silicon oxide film 29 and wiring φ1 to φ4 as shown in FIG. According to the above method, the width and gap of the first silicon film 24 can be formed to 3μ, respectively, so L5=L6-3μ, and 12μ per bit is formed, and compared to the conventional method, the width is about the same and the transfer speed is about 4 times faster. In the manufacturing steps shown in FIGS. 2a to 2g, if the silicon nitride film 23' is sandwiched between the first silicon film 24 and the silicon oxide film 25 in step b, the final step will be as shown in h. The upper surface of the silicon film 24 of No. 1 is a silicon nitride film 23'.
The upper surface of the second silicon film 28 is covered with a silicon oxide film 29.
covered with

この場合には、第1及び第2のシリコン膜24,28へ
のコンタクト窓あけ工程でシリコン酸化膜29とシリコ
ン窒化膜23′の選択的エツチングが可能なためフオト
・エツチング工程でのマスク合せ余裕を大きくすること
ができる。第3図は本発明を用いた他の実施例であるM
OSトランジスタの製造方法である。
In this case, the silicon oxide film 29 and the silicon nitride film 23' can be selectively etched in the process of forming contact windows in the first and second silicon films 24 and 28, so there is no mask alignment margin in the photo-etching process. can be made larger. FIG. 3 shows another embodiment of the present invention.
This is a method for manufacturing an OS transistor.

第3図において、シリコン半導体基体31の上面に選択
的に約1000人のシリコン窒化膜32を形成するAO
このシリコン窒化膜32を酸化に対する保護膜として用
いて露出したシリコン半導体基体31を選択的に酸化し
約1μのシリコン酸化膜33を形成し、シリコン窒化膜
32を熱リン酸液で除去するB。つぎに露出したシリコ
ン半導体基体31に約500へのシリコン酸化膜34を
形成し、更にその上に約1000人のシリコン窒化膜3
5を形成するCO更にその上に約4000人の低抗率の
第1のシリコン膜36をSiH4の熱分解法又は蒸着法
によつて形成し、その上に約1μのシリコン酸化膜37
を形成するD。
In FIG. 3, AO selectively forms about 1000 silicon nitride films 32 on the upper surface of a silicon semiconductor substrate 31.
Using this silicon nitride film 32 as a protective film against oxidation, the exposed silicon semiconductor substrate 31 is selectively oxidized to form a silicon oxide film 33 with a thickness of about 1 μm, and the silicon nitride film 32 is removed with hot phosphoric acid solution B. Next, a silicon oxide film 34 of approximately 500 mL is formed on the exposed silicon semiconductor substrate 31, and a silicon nitride film 34 of approximately 1000 mL is further formed thereon.
Furthermore, a first silicon film 36 with a low resistivity of about 4,000 layers is formed thereon by a thermal decomposition method or vapor deposition method of SiH4, and a silicon oxide film 37 with a thickness of about 1 μm is formed thereon.
D to form.

しかるのち、シリコン酸化膜37及び第1のシリコン膜
36の2層膜を選択的にエツチングして島状領域38を
形成するEO第1のシリコン膜36の露出した側面を高
温酸化雰囲気に晒して約5000λのシリコン酸化膜3
9を形成するFOこうした後、シリコン酸化膜37と第
1のシリコン膜36の2層膜をエツチング保護膜として
シリコン窒化膜35、シリコン酸化膜34の2層膜を自
己整合的にエツチング除去するGOそして不純物原子を
含んた約4000人の低抵抗率の第2のシリコン膜40
を蒸着法で形成するH。
Thereafter, the two-layer film of the silicon oxide film 37 and the first silicon film 36 is selectively etched to form the island region 38, and the exposed side surface of the EO first silicon film 36 is exposed to a high temperature oxidizing atmosphere. Silicon oxide film 3 of about 5000λ
After this, the two-layer film of the silicon nitride film 35 and the silicon oxide film 34 is etched away in a self-aligned manner using the two-layer film of the silicon oxide film 37 and the first silicon film 36 as an etching protection film. Then, a second silicon film 40 of approximately 4,000 layers containing impurity atoms and having a low resistivity is formed.
H formed by vapor deposition.

HF液でシリコン酸化膜37とその上の第2のシリコン
膜40を除去すると、第1と第2のシリコン膜36と4
0がシリコン酸化膜38の厚さで隔てられて形成される
。この状態で高温に保持すれば第2のシリコン膜40と
シリコン半導体基体31と接し2部分に不純物原子が拡
散されソース、ドレインとなる拡散領域41,42が形
成されるF。しかるのち、高温酸化雰囲気中に晒せば第
1と第2のシリコン膜36,40はシリコン酸化膜43
で覆われるJOその後、第1と第2のシリコン膜36,
40に選択的にコンタクト領域を形成し配線を施せばM
OS型集積回路が形成される。即ち第3図は拡散領域4
1,42およびその上の第2のシリコン膜40をソース
、ドレイン、シリコン酸化膜34とシリコン窒化膜35
をゲート絶縁膜、このゲート絶縁膜上の第1のシリコン
膜36をゲート導電体、シリコン酸化膜33の上面に形
成された第1と第2のシリコン膜36,40を配線とし
たMOS集積回路である。なお、第3図dで第1のシリ
コン膜36とシリコン酸化膜37の間にシリコン窒化膜
を挟めぱ第2図のhで説明した如くコンタクト窓あけの
選択エツチングが可能で、更に高密度化が可能である。
When the silicon oxide film 37 and the second silicon film 40 thereon are removed with HF solution, the first and second silicon films 36 and 4 are removed.
0 are formed separated by the thickness of the silicon oxide film 38. If the high temperature is maintained in this state, impurity atoms are diffused into the two portions where the second silicon film 40 and the silicon semiconductor substrate 31 are in contact, forming diffusion regions 41 and 42 that will become the source and drain F. Thereafter, by exposing the first and second silicon films 36 and 40 to a high temperature oxidizing atmosphere, the first and second silicon films 36 and 40 become silicon oxide films 43.
The JO is then covered with the first and second silicon films 36,
If a contact region is selectively formed in 40 and wiring is applied, M
An OS type integrated circuit is formed. That is, FIG. 3 shows the diffusion region 4.
1, 42 and the second silicon film 40 thereon as a source, a drain, a silicon oxide film 34 and a silicon nitride film 35.
is a gate insulating film, the first silicon film 36 on this gate insulating film is a gate conductor, and the first and second silicon films 36 and 40 formed on the upper surface of the silicon oxide film 33 are wirings. It is. If a silicon nitride film is sandwiched between the first silicon film 36 and silicon oxide film 37 in FIG. 3d, selective etching of contact windows can be performed as explained in FIG. is possible.

第3図の方法にて作成されたMOSトランジスタは、ゲ
ート、ソース、ドレイン電極となるシリコン膜の巾のみ
でほぼ寸法が決定され、かつソース、ドレイン電極は自
己整合的に形成可能でマスク合せ寸法が全く必要でなく
、また、ソース、ドレイン領域自体もソース、ドレイン
電極とほぼ同一の大きさとなり、従来のMOSトランジ
スタに比べ大巾に面積を小さくすることができ、当然電
気的な性能も向上する。そして、ゲート、ソース、ドレ
イン電極も平坦な構造となり、高密度化、多層配線構造
に好適である。以上のように本発明を用いればCCDの
ゲート電極巾が従来の約2倍短かくできるため高密度化
と高速動作が可能になつた。
The dimensions of the MOS transistor fabricated using the method shown in Figure 3 are determined almost solely by the widths of the silicon films that serve as the gate, source, and drain electrodes, and the source and drain electrodes can be formed in a self-aligned manner, allowing for mask alignment dimensions. In addition, the source and drain regions themselves are approximately the same size as the source and drain electrodes, making it possible to significantly reduce the area compared to conventional MOS transistors, and of course improve electrical performance. do. The gate, source, and drain electrodes also have a flat structure, which is suitable for high-density and multilayer wiring structures. As described above, by using the present invention, the width of the gate electrode of a CCD can be made approximately twice as short as that of the conventional one, thereby making it possible to achieve higher density and higher speed operation.

又、本発明はMOS型集積回路に於いても高密度化が可
能で、かつ第3図jで分るように第2層目の配線を施こ
すに際し、表面が平坦に形成されるため第2層配線の高
密度化と断線防止が可能となつた。さらに、本発明では
、電極として平坦な信頼性の高いシリコン膜を形成して
おり、かつ、電極間に酸化により絶縁膜を容易に形成で
きるため、微小な電極間の絶縁を一層確実なものとする
ことができる。
Furthermore, the present invention enables high density even in MOS type integrated circuits, and as shown in FIG. It has become possible to increase the density of two-layer wiring and prevent disconnections. Furthermore, in the present invention, a flat and highly reliable silicon film is formed as an electrode, and an insulating film can be easily formed between the electrodes by oxidation, making the insulation between minute electrodes even more reliable. can do.

このように、本発明は半導体集積回路の高密度化、信頼
性の向上、製造の容易さに大きく寄与するものである。
As described above, the present invention greatly contributes to higher density, improved reliability, and ease of manufacturing of semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a−dは従来のCCDにおける電極形成工程図、
第2図a−hは本発明の一実施例にかかるCCDの電極
形成工程図、第3図a−jは本発明の他の実施例にかか
るMOS型集積回路の製造工程断面図である。 21,31・・・・・・シリコン半導体基体、22,2
5,27,29,33,34,39,43・・・・・・
シリコン酸化膜、26,38・・・・・・島状領域、2
4,28,36,40・・・・・・シリコン膜、23,
23′,32,35・・−・・・シリコン窒化膜、41
,42・・・・・・拡散領域。
Figures 1a-d are electrode forming process diagrams in a conventional CCD;
2A to 2H are process diagrams for forming electrodes of a CCD according to an embodiment of the present invention, and FIGS. 3A to 3J are sectional views of a manufacturing process for a MOS type integrated circuit according to another embodiment of the present invention. 21, 31... Silicon semiconductor substrate, 22, 2
5, 27, 29, 33, 34, 39, 43...
Silicon oxide film, 26, 38... island-like region, 2
4, 28, 36, 40... silicon film, 23,
23', 32, 35...Silicon nitride film, 41
, 42... Diffusion area.

Claims (1)

【特許請求の範囲】 1 シリコン半導体基体の上面にMOSトランジスタの
ゲート絶縁膜として第1のシリコン酸化膜、シリコン窒
化膜を形成する工程と、更にその上面に第1のシリコン
膜の3層膜を形成する工程と、更にその上面に第2のシ
リコン酸化膜を形成する工程と、上記第2のシリコン酸
化膜と第1のシリコン膜とを選択的に除去してゲート電
極及び配線を形成する工程と、上記第1のシリコン膜の
露出した側面を熱酸化する工程と、第2のシリコン膜を
全面に形成した後、上記第2のシリコン酸化膜をエッチ
ング除去すると同時にその上に形成された上記第2のシ
リコン膜を除去してMOSトランジスタのソース、ドレ
イン電極と配線を形成する工程と、上記ソース、ドレイ
ン電極から上記シリコン半導体基体へ不純物を拡散して
ソース、ドレイン領域を形成する工程と、残された上記
第1、第2のシリコン膜間に絶縁膜を形成する工程とを
備えたことを特徴とする半導体装置の製造方法。 2 上記特許請求の範囲第1項において、上記第1のシ
リコン膜の露出した側面を酸化した後、上記シリコン窒
化膜及び第1のシリコン酸化膜を選択的に除去する工程
を備えたことを特徴とする半導体装置の製造方法。
[Claims] 1. A step of forming a first silicon oxide film and a silicon nitride film as a gate insulating film of a MOS transistor on the upper surface of a silicon semiconductor substrate, and further forming a three-layer film of the first silicon film on the upper surface. a step of forming a second silicon oxide film on the upper surface thereof; and a step of selectively removing the second silicon oxide film and the first silicon film to form a gate electrode and wiring. and a step of thermally oxidizing the exposed side surface of the first silicon film, and after forming a second silicon film on the entire surface, etching away the second silicon oxide film and simultaneously removing the second silicon film formed thereon. a step of removing a second silicon film to form source and drain electrodes and wiring of a MOS transistor; a step of diffusing impurities from the source and drain electrodes into the silicon semiconductor substrate to form source and drain regions; A method for manufacturing a semiconductor device, comprising the step of forming an insulating film between the remaining first and second silicon films. 2. The method according to claim 1, further comprising the step of selectively removing the silicon nitride film and the first silicon oxide film after oxidizing the exposed side surface of the first silicon film. A method for manufacturing a semiconductor device.
JP50096859A 1975-08-09 1975-08-09 Manufacturing method of semiconductor device Expired JPS5915498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50096859A JPS5915498B2 (en) 1975-08-09 1975-08-09 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50096859A JPS5915498B2 (en) 1975-08-09 1975-08-09 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5220771A JPS5220771A (en) 1977-02-16
JPS5915498B2 true JPS5915498B2 (en) 1984-04-10

Family

ID=14176185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50096859A Expired JPS5915498B2 (en) 1975-08-09 1975-08-09 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5915498B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940009601B1 (en) * 1991-09-14 1994-10-15 금성일렉트론 주식회사 Manufacturing method of charge coupled device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868177A (en) * 1972-01-27 1973-09-17
JPS4914792A (en) * 1972-04-14 1974-02-08
JPS4966082A (en) * 1972-09-11 1974-06-26
JPS49114375A (en) * 1973-02-28 1974-10-31
JPS49114374A (en) * 1973-02-28 1974-10-31
JPS5146078A (en) * 1974-10-18 1976-04-20 Hitachi Ltd EMUAIESUGATAHANDOTAISHUSEKIKAIROSOCHINO SEIHO

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868177A (en) * 1972-01-27 1973-09-17
JPS4914792A (en) * 1972-04-14 1974-02-08
JPS4966082A (en) * 1972-09-11 1974-06-26
JPS49114375A (en) * 1973-02-28 1974-10-31
JPS49114374A (en) * 1973-02-28 1974-10-31
JPS5146078A (en) * 1974-10-18 1976-04-20 Hitachi Ltd EMUAIESUGATAHANDOTAISHUSEKIKAIROSOCHINO SEIHO

Also Published As

Publication number Publication date
JPS5220771A (en) 1977-02-16

Similar Documents

Publication Publication Date Title
US4716131A (en) Method of manufacturing semiconductor device having polycrystalline silicon layer with metal silicide film
JPS58139468A (en) Semiconductor device and method of producing same
JP3229665B2 (en) Method of manufacturing MOSFET
JPS5836508B2 (en) Manufacturing method of semiconductor device
JPS598065B2 (en) MOS integrated circuit manufacturing method
JPS5915498B2 (en) Manufacturing method of semiconductor device
JP2971085B2 (en) Method for manufacturing semiconductor device
US5620911A (en) Method for fabricating a metal field effect transistor having a recessed gate
JP2707536B2 (en) Method for manufacturing semiconductor device
JPH0230124A (en) Manufacture of semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH0442948A (en) Manufacture of semiconductor device
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS6148778B2 (en)
JPS6150385B2 (en)
JPH0218940A (en) Manufacture of semiconductor device
JPH1126756A (en) Manufacture of semiconductor device
JPH05183156A (en) Semiconductor device and fabrication thereof
JPH0831597B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPS5963740A (en) Semiconductor integrated circuit device
JPS59130445A (en) Manufacture of semiconductor integrated circuit device
JPS6181665A (en) Formation of semiconductor region
JPH0216019B2 (en)
JPS6159664B2 (en)
JPS5974623A (en) Manufacture of semiconductor integrated circuit