JPS59130445A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS59130445A
JPS59130445A JP23405483A JP23405483A JPS59130445A JP S59130445 A JPS59130445 A JP S59130445A JP 23405483 A JP23405483 A JP 23405483A JP 23405483 A JP23405483 A JP 23405483A JP S59130445 A JPS59130445 A JP S59130445A
Authority
JP
Japan
Prior art keywords
layer
oxide film
film
integrated circuit
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23405483A
Other languages
Japanese (ja)
Other versions
JPS6048904B2 (en
Inventor
Junji Sugawara
菅原 淳二
Masanori Kikuchi
菊地 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP23405483A priority Critical patent/JPS6048904B2/en
Publication of JPS59130445A publication Critical patent/JPS59130445A/en
Publication of JPS6048904B2 publication Critical patent/JPS6048904B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To form a semiconductor integrated circuit device of multilayer wiring without disconnections due to stepwise differences by shape-forming a wiring layer on an Si nitride film, and introducing an impurity to the exposed Si nitride film. CONSTITUTION:After providing an oxide film on the surface of a P type Si substrate 11, a field oxide film 12 is left by a photoetching method. Next, after forming a gate oxide film 13, an Si layer 14 is formed, which layer is so etched as to leave a gate electrode part, wiring part 14, etc. Then, the gate oxide film 13 is removed, thereafter an N type region 15 is formed in the substrate 11, the Si layer 14 is changed into an N type, and the field oxide film 2 into a phosphorus glass by diffusing phosphorus into the substrate 11 and the Si layer 14. An Si oxide film 16 is provided again, and the Si nitride film 17 is adhered thereon. An Si layer 18 is formed, and a pattern is formed by etching this layer 18. Phosphorus is diffused into the Si layer 18 and the Si nitride film 17. Then an Si oxide film 20 is provided, a hole is bored through this film, and an Al wiring 21 is provided, thereby a three layer N-channel MOS type integrated circuit device is completed.

Description

【発明の詳細な説明】 本発明は半導体集積回路装置の製造方法、特に多層配線
の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor integrated circuit device, and particularly to a method of forming multilayer wiring.

半導体集積回路装置では、集積度の向上は大きな要請で
あり、その要請を満す方法の一つとじて多層配線がある
。配線は通常多結晶シリコン層とアルミニウム層の2層
構造であるが、これら2層間にさらに1層以上の多結晶
シリコン層を形成することによって多層配線が実現でき
る。
In semiconductor integrated circuit devices, there is a great need to improve the degree of integration, and one method for meeting this demand is multilayer wiring. Although wiring usually has a two-layer structure of a polycrystalline silicon layer and an aluminum layer, multilayer wiring can be realized by forming one or more polycrystalline silicon layers between these two layers.

第1図は従来の多層配線の半導体集積回路装置の1例の
断面図である。
FIG. 1 is a cross-sectional view of an example of a conventional semiconductor integrated circuit device with multilayer wiring.

P型シリコン基板1にフィールド酸化膜2を設けた後、
開孔してゲート酸化膜3を設ける。第1の多結晶シリコ
ン膚4を前記酸化膜2,3の上に設けた後、活性領域と
なるべき領域を開口し、リン拡散してN型領域5を形成
する。拘び酸化して酸化シリコン膜6を形成し、その上
に第2の多結晶シリコン層を設け、写真食刻法で選択エ
ツチングし、第2の多結晶シリコン層7のパターンを形
成する。この選択エツチングには通常弗酸−硝酸系溶液
が用いられるので、エツチングの際同時に酸化7リコン
膜6も侵され第2の多結晶シリコン層7の端の下部の酸
化シリコン膜が除去される。
After providing a field oxide film 2 on a P-type silicon substrate 1,
A hole is opened and a gate oxide film 3 is provided. After a first polycrystalline silicon layer 4 is provided on the oxide films 2 and 3, a region to become an active region is opened and phosphorus is diffused to form an N-type region 5. A silicon oxide film 6 is formed by oxidation, a second polycrystalline silicon layer is provided thereon, and a pattern of a second polycrystalline silicon layer 7 is formed by selectively etching by photolithography. Since a hydrofluoric acid-nitric acid solution is normally used for this selective etching, the silicon oxide film 6 is also attacked at the same time, and the silicon oxide film under the edge of the second polycrystalline silicon layer 7 is removed.

この様なアンダーカットのある状態で製造を進めると段
差によりアルミニウム配線に断線を生じたり、アンダー
カットの所でシリコン基板1と多結晶シリコン7との間
の絶縁耐圧が低′下し、あるいは著るしい場合はこの箇
所で絶縁破壊を起こして短絡する欠点があった。またフ
ィールド酸化シリコン膜2も侵され、その上に配線され
たアルミニウム9に対して、本来のフィールド酸化膜2
0減小によって隣接する拡散層5,5間でリーク電流が
流れるいわゆる寄生MO8型電界効果トランジスタが発
生する欠点があった。このためにシリコン窒化膜を周辺
部に配置させる方法も考えられるがこの場合にはこのシ
リコン窒化膜の端部下に凹部が形成され、このため多層
配線では断線の恐れがある。しかもこのシリコン窒化膜
を周辺部に設けるために余分のパターニング工程を必要
とする。
If manufacturing is continued with such an undercut, the aluminum wiring may break due to the step, the dielectric strength voltage between the silicon substrate 1 and the polycrystalline silicon 7 may drop at the undercut, or the dielectric strength may drop significantly. If the temperature is too high, dielectric breakdown may occur at this point, resulting in a short circuit. In addition, the field silicon oxide film 2 is also attacked, and the original field oxide film 2 is
There is a drawback that a so-called parasitic MO8 field effect transistor is generated in which a leakage current flows between the adjacent diffusion layers 5 due to the zero reduction. For this purpose, a method of arranging a silicon nitride film at the peripheral portion may be considered, but in this case, a recess is formed under the end of the silicon nitride film, which may cause a disconnection in multilayer wiring. Moreover, an extra patterning step is required to provide this silicon nitride film in the peripheral area.

本発明の目的は上記欠点を除き、段差による断線のない
多層配線の半導体集積回路装置の製造方法を提供するも
のである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor integrated circuit device with multilayer wiring, which eliminates the above-mentioned drawbacks and is free from disconnections due to steps.

本発明の特徴は、絶縁物層を介して下層配線層とを積層
して形成する多層配線の半導体集積回路装置の製造方法
において、下層配線層上にシリコン酸化膜およびシリコ
ン窒化膜を積層し、該シリコン窒化膜上に上層配線層を
形状形成し、これにより露出した該シリコン窒化膜の部
分に不純物を導入することによって該膜を変質せしめる
半導体集積回路装置の製造方法にある。
A feature of the present invention is that in a method for manufacturing a semiconductor integrated circuit device with multilayer wiring formed by laminating a lower wiring layer via an insulating material layer, a silicon oxide film and a silicon nitride film are laminated on the lower wiring layer, A method of manufacturing a semiconductor integrated circuit device includes forming an upper wiring layer on the silicon nitride film, and introducing impurities into the exposed portion of the silicon nitride film to change the quality of the film.

このような本発明ではシリコン酸化膜等の絶縁物層の全
ての部分において不所望の凹部が形成されないから配線
のレイアウトが自由に設定できる。
In the present invention, since no undesired recesses are formed in any part of the insulating layer such as a silicon oxide film, the wiring layout can be freely set.

又、シリコン窒化膜等の選択エツチング工程が省略でき
るから製造工程が短縮できる。さらに多層配線がたがい
に立体交差する個所における各部分は一定の間隔であり
凹凸が生じないから好ましい多層構造となり、又、この
ように各部分は一定の間隔となっているから各配線間の
キャパシタは一定の値となシこれによ、9ICが所定の
値に設定しやすくなる。
Furthermore, the manufacturing process can be shortened because the selective etching process for the silicon nitride film or the like can be omitted. Furthermore, each part at the point where the multilayer wiring intersects each other is at a constant interval and no unevenness occurs, resulting in a preferable multilayer structure.Also, since each part is at a constant interval in this way, the capacitor between each wiring is a constant value. This makes it easier to set 9IC to a predetermined value.

次に、本発明を実施例により説明する。Next, the present invention will be explained by examples.

第2図乃至第6図は本発明の方法を3層Nチャンネルシ
リコンゲートMO8型集積回路装置に実施した場合の工
程断面図である。
2 to 6 are process cross-sectional views when the method of the present invention is applied to a three-layer N-channel silicon gate MO8 type integrated circuit device.

P型シリコン基板11の表面に厚さ約1μmの酸化膜を
設けた後、通常の写真食刻法によ、bトランジスタ等の
活性領域以外の領域のフィールド酸化膜12を残す(第
2図)。
After forming an oxide film with a thickness of approximately 1 μm on the surface of the P-type silicon substrate 11, a field oxide film 12 is left in areas other than the active regions of the b transistors etc. by ordinary photolithography (Fig. 2). .

続いて厚さ約1000;、のゲート酸化膜13を形成し
た後、厚さ約50001の第1の多結晶シリコン層を気
相成長等で形成し、トランジスタのゲート電極部、配線
部14等を残す様に第1の多結晶のシリコン層をエツチ
ングする(第3図)。
Subsequently, after forming a gate oxide film 13 with a thickness of approximately 1,000 mm, a first polycrystalline silicon layer with a thickness of approximately 50,000 mm is formed by vapor phase growth, etc., and the gate electrode portion, wiring portion 14, etc. of the transistor are formed. The first polycrystalline silicon layer is etched so as to remain intact (FIG. 3).

続いて、基板11の拡散層を形成する部分のゲート酸化
膜13をエツチング除去した後、基板11と第1の多結
晶シリコン層14にリンを1000℃で拡散して基板1
1にN型領域15を形成すると共に多結晶シリコン層1
4をN型に、またフィールド酸化膜12をリンガラスに
変える。再び熱酸化によシ厚さ約5000大の酸化シリ
コン膜16を設け、その上に保護として厚さ数百1の窒
化シリコン膜17を被着する(第4図)。
Subsequently, after etching away the gate oxide film 13 in the portion of the substrate 11 where the diffusion layer is to be formed, phosphorus is diffused into the substrate 11 and the first polycrystalline silicon layer 14 at 1000°C to form the substrate 1.
An N-type region 15 is formed in the polycrystalline silicon layer 1.
4 is changed to N type, and the field oxide film 12 is changed to phosphorus glass. A silicon oxide film 16 with a thickness of about 5,000 mm is formed again by thermal oxidation, and a silicon nitride film 17 with a thickness of several hundreds of mm is deposited thereon as a protection (FIG. 4).

次に厚さ約5000大の第2の多結晶シリコン層18を
形成し、この層18を写真食刻法を用い弗酸−硝酸系溶
液でエツチングしてパターンを形成する。窒化シリコン
膜17は弗酸−硝酸系エツチング液に侵されないからそ
の下の酸化シリコン膜16を保護する。従って第1図に
示したようなアンダーカットを生ずることはない。続い
て、第2の多結晶シリコン層18と窒化シリコン膜17
にリンを拡散する。リン拡散によシ窒化シリコン膜17
の露出部はリンガラス19に変質する。従って窒化シリ
コン膜17を除去する工程は不要である(第5図)。
Next, a second polycrystalline silicon layer 18 having a thickness of about 5000 nm is formed, and a pattern is formed by etching this layer 18 with a hydrofluoric acid-nitric acid solution using photolithography. Since the silicon nitride film 17 is not attacked by the hydrofluoric acid-nitric acid based etching solution, it protects the underlying silicon oxide film 16. Therefore, an undercut as shown in FIG. 1 does not occur. Subsequently, a second polycrystalline silicon layer 18 and a silicon nitride film 17 are formed.
Diffuse phosphorus into. Silicon nitride film 17 by phosphorus diffusion
The exposed portion changes into phosphorus glass 19. Therefore, the step of removing the silicon nitride film 17 is unnecessary (FIG. 5).

再び熱酸化によシ酸化シリコン膜20を設ける。A silicon oxide film 20 is provided again by thermal oxidation.

このように窒化シリコン膜を不純物の導入で変質しであ
るから、熱酸化シリコンの形成が可能となる。写真食刻
法により開孔し、アルミニウム配線21を設けることに
よ1ffi#NチャンネルMO8型集積回路装置が完成
する(第6図)。
Since the silicon nitride film is altered in quality by introducing impurities in this way, it becomes possible to form thermally oxidized silicon. A 1ffi#N channel MO8 type integrated circuit device is completed by making holes by photolithography and providing aluminum wiring 21 (FIG. 6).

上記実施例の説明は、金属配線層として多結晶シリコン
と、保護膜として窒化シリコンを用いた場合について説
明したが1本発明の方法は、シリコンと蟹化シリコンに
限らず、種々の金属に対しても適用できる。例えば金属
としてタンタルを用いた場合、保護膜として窒化シリコ
ンを用いると本発明の方法は実施できる。
In the above embodiment, polycrystalline silicon is used as the metal wiring layer and silicon nitride is used as the protective film. It can also be applied. For example, when tantalum is used as the metal, the method of the present invention can be carried out using silicon nitride as the protective film.

本発明により段差による断線及び短絡、あるいは寄生M
O8FETの発生のない多層配線の半導体乗積回路が得
られるのでその効果は大きい。
According to the present invention, disconnections and short circuits due to steps, or parasitic M
The effect is great because a semiconductor product circuit with multilayer wiring without the occurrence of O8FET can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多層配線の半導体集積回路装置の1例の
断面図、第2図乃至第6図は本発明の方法を3層Nチャ
ンネルシリコンゲー)MO8型集積回路装置に実施した
場合の工程断面図である。 1.11°°°°°°P型シリコン基板、2.12・・
・・・・フィールド酸化膜、3.13・・・・・・ゲー
ト酸化膜、4.14・°°・°・第1の多結晶シリコン
膜、5,15・・・・・・N型領域、6.16・・・・
・・酸化シリコン膜、7°°゛°°°第2の多結晶シリ
コン膜、8=°°°・・酸化シリコン膜、9.21−−
−−・・アルミニウム配線1.17・・・・・・窒化シ
リコン膜、18・・°・°°第2の多結晶シリコン膜、
19・・・・・・リンガラス、20・・・・・・酸化シ
リコン膜。 )) 暑 / 回 1/ 第3 爾 %4図
FIG. 1 is a cross-sectional view of an example of a conventional semiconductor integrated circuit device with multilayer wiring, and FIGS. 2 to 6 show examples of the case where the method of the present invention is applied to a three-layer N-channel silicon gate (MO8) type integrated circuit device. It is a process sectional view. 1.11°°°°°°P-type silicon substrate, 2.12...
...Field oxide film, 3.13...Gate oxide film, 4.14.°°.°.First polycrystalline silicon film, 5,15...N-type region , 6.16...
...Silicon oxide film, 7°°゛°°°Second polycrystalline silicon film, 8=°°°...Silicon oxide film, 9.21--
--...Aluminum wiring 1.17...Silicon nitride film, 18...°/°°second polycrystalline silicon film,
19...Phosphorus glass, 20...Silicon oxide film. )) Heat / Times 1/ Figure 3 %4

Claims (1)

【特許請求の範囲】[Claims] 絶縁物層を介して下層配線層と上層配線層とを積層して
形成する多層配線の半導体集積回路装置の製造方法にお
いて、下層配線層上にシリコン酸化膜およびシリコン窒
化膜を積層し、該シリコン輩化膜上に上層配線層を形状
形成し、これによシ賑出した該シリコン窒化膜の部分に
不純物を導入することによって該膜を変質せしめること
を特徴とする半導体集積回路装置の製造方法。
In a method for manufacturing a semiconductor integrated circuit device with multilayer wiring formed by laminating a lower wiring layer and an upper wiring layer with an insulator layer in between, a silicon oxide film and a silicon nitride film are laminated on the lower wiring layer, and the silicon A method for manufacturing a semiconductor integrated circuit device, comprising forming an upper wiring layer on a silicon nitride film, and introducing impurities into the exposed portion of the silicon nitride film to alter the quality of the film. .
JP23405483A 1983-12-12 1983-12-12 Method for manufacturing semiconductor integrated circuit device Expired JPS6048904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23405483A JPS6048904B2 (en) 1983-12-12 1983-12-12 Method for manufacturing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23405483A JPS6048904B2 (en) 1983-12-12 1983-12-12 Method for manufacturing semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7121483A Division JPS58194356A (en) 1983-04-22 1983-04-22 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS59130445A true JPS59130445A (en) 1984-07-27
JPS6048904B2 JPS6048904B2 (en) 1985-10-30

Family

ID=16964848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23405483A Expired JPS6048904B2 (en) 1983-12-12 1983-12-12 Method for manufacturing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6048904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251041A (en) * 1985-04-26 1986-11-08 Nippon Denso Co Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251041A (en) * 1985-04-26 1986-11-08 Nippon Denso Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS6048904B2 (en) 1985-10-30

Similar Documents

Publication Publication Date Title
JPS59130445A (en) Manufacture of semiconductor integrated circuit device
JP2602848B2 (en) Method for manufacturing semiconductor device
JPH08227901A (en) Fabrication of semiconductor device
JPH03263330A (en) Semiconductor device
JP2809172B2 (en) Semiconductor device
JPH1092953A (en) Semiconductor device and its manufacture
JPS62224077A (en) Semiconductor integrated circuit device
JPH10326896A (en) Semiconductor device and manufacture thereof
JPS58194356A (en) Semiconductor integrated circuit device
JPS6161539B2 (en)
JPS6047437A (en) Semiconductor device and manufacture thereof
JPS63102340A (en) Manufacture of semiconductor device
JPH08236608A (en) Fabrication of semiconductor device
JPS6113383B2 (en)
JPS62156857A (en) Manufacture of semiconductor device containing memory element
JPS6081838A (en) Semiconductor integrated circuit
JPH04304658A (en) High breakdown voltage semiconductor device and manufacture thereof
JPH05291174A (en) Manufacture of semiconductor device
JPH03109736A (en) Manufacture of semiconductor device
JPH01168054A (en) Semiconductor integrated circuit device
JPH03145729A (en) Manufacture of semiconductor device
JPS62199065A (en) Semiconductor device and manufacture thereof
JPH0216019B2 (en)
JPH01209744A (en) Manufacture of semiconductor device
JPS58137259A (en) Manufacture of semiconductor device