JPH01168054A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH01168054A
JPH01168054A JP62327719A JP32771987A JPH01168054A JP H01168054 A JPH01168054 A JP H01168054A JP 62327719 A JP62327719 A JP 62327719A JP 32771987 A JP32771987 A JP 32771987A JP H01168054 A JPH01168054 A JP H01168054A
Authority
JP
Japan
Prior art keywords
film
oxide film
transistor
active region
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62327719A
Other languages
Japanese (ja)
Inventor
Kenji Sano
佐野 建二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62327719A priority Critical patent/JPH01168054A/en
Publication of JPH01168054A publication Critical patent/JPH01168054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To be adapted for a high integration and to satisfy a breakdown strength requirement by varying the thickness of a gate insulating film in response to the function of a transistor. CONSTITUTION:After an isolating oxide film 2 is so formed at a predetermined position as to obtain an active region on the main face of a semiconductor substrate 1, a thicker oxide film 3 is formed by thermally oxidizing, the whole film 3 is coated with resist 4 including the film 2, and so patterned by a photocomposing technique as to expose only the film 3 on the left side active region. After the exposed left side film 3 is removed by etching, the resist 4 is removed, the active region is thermally oxidized, and a new thin oxide film 5 is formed on the main surface of the substrate 1 exposed at its left side. Thus, the difference of the thicknesses of the films 3, 5 after the thermal oxidation can be set to approx. the thickness of the film 3.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は半導体集積回路装置に関し、特にゲート絶縁
膜の膜厚の異なるMOS)ランジスタによって構成され
た半導体集積回路装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor integrated circuit device, and more particularly to a semiconductor integrated circuit device constituted by MOS (MOS) transistors having gate insulating films of different thicknesses.

[従来の技術] 近年半導体集積回路の高集積化は目覚ましく、従来の2
次元的な微細化のみならず3次元的な縦方向の縮小化も
図られてきている。通常の論理回路を構成するMO8集
積回路においては、たとえばゲート長加工精度が数10
〜3または4ミクロンオーダの時代には1000人程度
デート膜厚で論理回路用MO3回路素子が作られていた
が、加工精度が2ミクロンまたは1ミクロン以下のサブ
ミクロンのオーダとなってくると、比例縮小剤が働きゲ
ート膜厚が200A程度またはそれ以下となってくる。
[Prior art] In recent years, the degree of integration of semiconductor integrated circuits has been remarkable.
Not only dimensional miniaturization but also three-dimensional vertical reduction has been attempted. In MO8 integrated circuits that constitute ordinary logic circuits, for example, the gate length machining accuracy is several 10
In the era of ~3 or 4 micron order, MO3 circuit elements for logic circuits were made with a film thickness of about 1,000 times, but as the processing accuracy became submicron order of 2 microns or 1 micron or less, The proportional reduction agent works and the gate film thickness becomes about 200A or less.

第2図はこのような一般のMOSトランジスタの概略構
成断面図である。
FIG. 2 is a schematic cross-sectional view of the structure of such a general MOS transistor.

以下、図を参照してこの構成について説明する。This configuration will be explained below with reference to the drawings.

N型の半導体基板1の主面上に薄いゲート酸化膜15を
介してゲート電極14が形成され、その両側の半導体基
板1の主面にはソース領域17およびドレイン領域16
となるP+型の不純物領域が形成される。トランジスタ
の動作としては、ゲート電極14に所定電圧が印加され
るとゲート電極14下のソース領域17およびドレイン
領域16に挾まれた領域の導電型式がN型からP型に反
・転し、ソース領域17とドレイン領域16とを導通さ
せることによって行なう。ここで−船釣にゲート酸化膜
15の膜厚が薄くなるとMOS)ランジスタのソースお
よびドレインの耐圧が低下する。
A gate electrode 14 is formed on the main surface of an N-type semiconductor substrate 1 via a thin gate oxide film 15, and a source region 17 and a drain region 16 are formed on the main surface of the semiconductor substrate 1 on both sides.
A P+ type impurity region is formed. As for the operation of the transistor, when a predetermined voltage is applied to the gate electrode 14, the conductivity type of the region sandwiched between the source region 17 and the drain region 16 under the gate electrode 14 is reversed from N type to P type, and the source This is done by electrically connecting region 17 and drain region 16. Here, when the thickness of the gate oxide film 15 becomes thinner, the withstand voltage of the source and drain of the MOS transistor decreases.

一般にMOSトランジスタは双方向性素子であるので、
以下ドレインについて述べる。すなわち、ドレイン領域
16とゲート酸化膜15に加わる電界は、ゲート電極1
4およびソース領域17に加わる電圧が同じであればゲ
ート酸化膜15が薄くなればなるほど強くなる。したが
って、ドレイン領域16の表面近傍界面がブレークダウ
ンしやすくなるのである。
Generally, MOS transistors are bidirectional elements, so
The drain will be described below. That is, the electric field applied to the drain region 16 and the gate oxide film 15 is
4 and source region 17 are the same, the thinner the gate oxide film 15 is, the stronger the voltage is. Therefore, the interface near the surface of the drain region 16 is likely to break down.

第3図は上記のような背景に基づくドレイン電界緩和の
ための構造を有するLDD構造よりなるMOS)ランジ
スタの概略断面図である。
FIG. 3 is a schematic cross-sectional view of a MOS transistor having an LDD structure having a structure for relaxing the drain electric field based on the above-mentioned background.

以下、図を参照してこの構成について説明する。This configuration will be explained below with reference to the drawings.

基本的構成は第2図のMOSトランジスタと同様である
が、このトランジスタにおいてはドレイン領域を不純物
濃度が異なるP中型のドレイン領域16aとP−型のド
レイン領域16bとに分けている。高抵抗のドレイン領
域16bがドレイン電界を緩和するのでドレイン耐圧が
上昇するのである。
The basic structure is the same as that of the MOS transistor shown in FIG. 2, but in this transistor, the drain region is divided into a P-type drain region 16a and a P-type drain region 16b having different impurity concentrations. Since the drain region 16b having high resistance alleviates the drain electric field, the drain breakdown voltage increases.

[発明が解決しようとする問題点] 半導体集積回路装置は以上述べたようにその素子の微細
化はさらに進行すると予想されるが、素子の応用面から
は機能の複合化の要求が強くなってきている。たとえば
螢光表示管ドライバを内蔵した1チツプマイクロコンピ
ユータを例にとると、内蔵メモリの容量は益々増大し、
またALU(Arithemetic  Logic 
 Unit)の機能も向上するので、チップサイズ全体
の増大を抑えようとして微細化プロセスの要求はさらに
強くなる。一方、螢光表示管として駆動するセグメント
数の増大、カラー表示および表示明度の向上等によって
駆動部に要求される耐圧は、たとえば40V程度といっ
た高電圧となるのである。ところがこのような駆動部以
外の入出力部は、5v程度以下で動作するものが多く、
各トランジスタに要求される耐圧も必ずしも一定ではな
い。したがって素子の高集積化がもたらす耐圧の低下と
機能上からくる高耐圧化要求とが相反し、これは第3図
に示すような構造を採用することによって対処しようと
されているが、これもゲート絶縁膜の薄膜化による限界
を呈しているという問題点があった。
[Problems to be Solved by the Invention] As mentioned above, it is expected that the elements of semiconductor integrated circuit devices will continue to become smaller and smaller, but from the perspective of application of the elements, there is a growing demand for more complex functions. ing. For example, if we take a single-chip microcomputer with a built-in fluorescent display driver, the capacity of the built-in memory will continue to increase.
Also, ALU (Arithmetic Logic
As the functionality of chips (units) also improves, the demand for miniaturization processes will become even stronger in order to suppress the increase in overall chip size. On the other hand, due to an increase in the number of segments driven as a fluorescent display tube, improvement in color display and display brightness, etc., the withstand voltage required of the drive section becomes a high voltage of about 40V, for example. However, many of the input/output parts other than the drive part operate at about 5V or less,
The breakdown voltage required for each transistor is also not necessarily constant. Therefore, there is a conflict between the reduction in breakdown voltage brought about by higher integration of elements and the demand for higher breakdown voltage due to functionality, and attempts have been made to deal with this by adopting a structure as shown in Figure 3. There has been a problem in that there are limitations due to thinning of the gate insulating film.

一方、耐圧を重視してゲート酸化膜を厚く形成すると、
他の高耐圧が要求されない素子までも同一膜厚となるこ
とから素子の微細化が困難となり、またゲート酸化膜の
膜厚増大による素子の動作速度の低下をもたらし、動作
特性上不利となるのである。
On the other hand, if the gate oxide film is formed thickly with emphasis on breakdown voltage,
Other elements that do not require high breakdown voltage also have the same film thickness, making it difficult to miniaturize the elements, and increasing the thickness of the gate oxide film reduces the operating speed of the element, which is disadvantageous in terms of operating characteristics. be.

この発明はかかる問題点を解決するためになされたもの
で、高集積化に適しかつ耐圧要求を満足し得る半導体集
積回路装置を提供することを目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to provide a semiconductor integrated circuit device that is suitable for high integration and can satisfy voltage resistance requirements.

[問題点を解決するための手段] この発明に係る半導体集積回路装置は、トランジスタの
機能に応じてそのゲート絶縁膜の膜厚を変化させたもの
である。
[Means for Solving the Problems] In the semiconductor integrated circuit device according to the present invention, the thickness of the gate insulating film is changed depending on the function of the transistor.

[作用コ この発明においてはトランジスタの機能に応じてゲート
絶縁膜の膜厚を変化させるので、高耐圧が要求されるト
ランジスタは素子の集積化にかかわらずその耐圧を低下
させることがない。
[Operations] In this invention, the thickness of the gate insulating film is changed according to the function of the transistor, so that the breakdown voltage of a transistor that requires a high breakdown voltage will not be reduced regardless of the integration of the elements.

[実施例] 第1A図〜第1H図はこの発明の一実施例の製造方法を
示す概略工程断面図である。
[Example] Figures 1A to 1H are schematic process cross-sectional views showing a manufacturing method according to an example of the present invention.

以下、図を参照してこの製造方法について説明する。This manufacturing method will be described below with reference to the drawings.

まず、シリコン基板よりなる半導体基板1の主面に活性
領域を確保すべくLOCO8法を用いて分離酸化膜2を
所定位置に形成(第1A図参照)した後、露出している
半導体基板1の主面表面を熱酸化することによって厚め
の酸化膜3を形成する(第1B図参照)。
First, in order to secure an active region on the main surface of a semiconductor substrate 1 made of a silicon substrate, an isolation oxide film 2 is formed at a predetermined position using the LOCO8 method (see FIG. 1A), and then the exposed semiconductor substrate 1 is A thick oxide film 3 is formed by thermally oxidizing the main surface (see FIG. 1B).

次に、レジスト4を分離酸化膜2上を含めて酸化膜3上
全面に塗布し、これを写真製版技術を用いて左側の活性
領域上の酸化膜3のみ露出するようにバターニングする
(第1C図参照)。
Next, a resist 4 is applied to the entire surface of the oxide film 3 including the isolation oxide film 2, and this is patterned using a photolithography technique so that only the oxide film 3 on the left active region is exposed. (See Figure 1C).

露出した左側の酸化膜3のみエツチング除去(第1D図
参照)した後、レジスト4を除去し活性領域上を熱酸化
すると左側の露出していた半導体基板1の主面表面に新
たな薄い酸化膜5が形成される。この熱酸化によって右
側の酸化膜3表面にも同様に酸化膜が形成されるので、
熱酸化後の酸化膜3と酸化膜5との膜厚の差はほぼ第1
B図において形成された酸化膜3の膜厚程度となる(第
1E図参照)。
After removing only the exposed oxide film 3 on the left side by etching (see Figure 1D), removing the resist 4 and thermally oxidizing the active region, a new thin oxide film is formed on the exposed main surface of the semiconductor substrate 1 on the left side. 5 is formed. As a result of this thermal oxidation, an oxide film is similarly formed on the surface of the oxide film 3 on the right side.
The difference in film thickness between oxide film 3 and oxide film 5 after thermal oxidation is approximately 1.
The thickness is approximately the same as that of the oxide film 3 formed in Figure B (see Figure 1E).

続いて、分離酸化膜2上を含めて酸化膜3.5上全面に
ポリシリコン層を堆積し、これを写真製版技術とエツチ
ングとを用いてトランジスタのゲート電極とすべく酸化
11!3. 5のそれぞれの上にポリシリコンロ、7を
形成する(第1FII参照)。
Subsequently, a polysilicon layer is deposited on the entire surface of the oxide film 3.5 including the isolation oxide film 2, and this is oxidized 11!3. to form the gate electrode of the transistor using photolithography and etching. A polysilicon layer 7 is formed on each of the layers 5 (see first FII).

さらに、分離酸化膜2およびポリシリコンロ。Further, isolation oxide film 2 and polysilicon film 2 are formed.

7上を含み、酸化膜3.5上全面にレジストを塗布して
これをパターニングして所定範囲に開口を有したレジス
ト8を形成し、これをマスクとして不純物イオン9を酸
化膜3,5を介して半導体基板1にイオン注入する(第
1G図参照)。
A resist is applied to the entire surface of the oxide film 3.5, including the upper surface of the oxide film 3. Ions are implanted into the semiconductor substrate 1 through the wafer (see FIG. 1G).

最後に、レジスト8を除去しポリシリコンロ。Finally, remove the resist 8 and remove the polysilicon.

7をマスクとして露出した酸化膜3,5をエツチング除
去することによって、活性領域各々にソース/ドレイン
領域となる不純物領域12を有したMOSトランジスタ
が形成される。すなわち、右側のトランジスタは厚いゲ
ート酸化膜10を有し、左側のトランジスタは薄いゲー
ト酸化膜11を有した半導体集積回路装置が同一半導体
基板1上に形成される(第1H図参照)。
By etching and removing the exposed oxide films 3 and 5 using 7 as a mask, a MOS transistor having impurity regions 12 serving as source/drain regions in each active region is formed. That is, a semiconductor integrated circuit device in which the right transistor has a thick gate oxide film 10 and the left transistor has a thin gate oxide film 11 are formed on the same semiconductor substrate 1 (see FIG. 1H).

以下、層間絶縁膜や配線等の形成工程が続くが、この発
明の範囲外であるのでここでの説明は省略する。
Thereafter, steps for forming an interlayer insulating film, wiring, etc. continue, but since they are outside the scope of this invention, their explanations will be omitted here.

なお、上記実施例では、NチャンネルMOSについて適
用しているが、PチャンネルMOSやC/MOSのいず
れについても同様に適用できる。
In the above embodiment, the present invention is applied to an N-channel MOS, but the present invention can be similarly applied to either a P-channel MOS or a C/MOS.

また、上記実施例では、通常MOSトランジスタに適用
しているが、LDD構造よりなるMOSトランジスタに
も適用できることは言うまでもない。
Furthermore, although the above embodiments are applied to normal MOS transistors, it goes without saying that the invention can also be applied to MOS transistors having an LDD structure.

さらに、上記実施例では、ゲート絶縁膜の膜厚を2種類
としているが、必要に応じて3種類以上の膜厚とするこ
ともできるのは言うまでもない。
Further, in the above embodiment, the gate insulating film has two types of film thickness, but it goes without saying that three or more types of film thickness can be used as necessary.

[発明の効果] この発明は以上説明したとおり、トランジスタの機能に
応じてそのゲート絶縁膜の膜厚を変えるので素子の高集
積化に適し、また素子の機能特性上にも有利な半導体集
積回路装置となる効果がある。
[Effects of the Invention] As explained above, the present invention provides a semiconductor integrated circuit which is suitable for higher integration of elements and is advantageous in terms of the functional characteristics of the elements because the thickness of the gate insulating film is changed according to the function of the transistor. It has the effect of becoming a device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図〜第1H図はこの発明の一実施例の製造方法を
示す概略工程断面図、第2図は一般のMOSトランジス
タの概略構成断面図、第3図はLDD構造よりなるMO
Sトランジスタの概略構成断面図である。 図において、1は半導体基板、6,7はポリシリコン、
10.11はゲート酸化膜、12は不純物領域である。
1A to 1H are schematic process sectional views showing a manufacturing method according to an embodiment of the present invention, FIG. 2 is a schematic sectional view of a general MOS transistor, and FIG. 3 is a MOS transistor having an LDD structure.
1 is a schematic cross-sectional view of an S transistor; FIG. In the figure, 1 is a semiconductor substrate, 6 and 7 are polysilicon,
10.11 is a gate oxide film, and 12 is an impurity region.

Claims (1)

【特許請求の範囲】  主面を有する半導体基板と、 前記半導体基板の前記主面に形成された第1のゲート絶
縁膜を有する第1のトランジスタと、前記半導体基板の
前記主面に形成された第2のゲート絶縁膜を有する第2
のトランジスタとを備え、 前記第1および第2のゲート絶縁膜は膜厚が異なる、半
導体集積回路装置。
[Scope of Claims] A semiconductor substrate having a main surface; a first transistor having a first gate insulating film formed on the main surface of the semiconductor substrate; a second gate insulating film having a second gate insulating film;
A semiconductor integrated circuit device, comprising: a transistor, wherein the first and second gate insulating films have different film thicknesses.
JP62327719A 1987-12-23 1987-12-23 Semiconductor integrated circuit device Pending JPH01168054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327719A JPH01168054A (en) 1987-12-23 1987-12-23 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327719A JPH01168054A (en) 1987-12-23 1987-12-23 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH01168054A true JPH01168054A (en) 1989-07-03

Family

ID=18202223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327719A Pending JPH01168054A (en) 1987-12-23 1987-12-23 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH01168054A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6831020B2 (en) 2001-11-05 2004-12-14 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor device
JP2011091437A (en) * 2011-01-24 2011-05-06 Renesas Electronics Corp Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6831020B2 (en) 2001-11-05 2004-12-14 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor device
JP2011091437A (en) * 2011-01-24 2011-05-06 Renesas Electronics Corp Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
JPH05308128A (en) Semiconductor device and its manufacture
JPS6272144A (en) Semiconductor device
JPH01168054A (en) Semiconductor integrated circuit device
JPH04365373A (en) Semiconductor intrgtrated circuit device
JP2602848B2 (en) Method for manufacturing semiconductor device
JP2635577B2 (en) Semiconductor device
JPH08288400A (en) Logic circuit device
JPH05145073A (en) Complementary thin film transistor
JPH10326896A (en) Semiconductor device and manufacture thereof
JP2940954B2 (en) Method for manufacturing semiconductor device
JPH0864827A (en) Semiconductor device and method of fabrication thereof
JPH0621369A (en) Manufacture of mos integrated circuit
US6043546A (en) Planar channel-type MOS transistor
JP3259439B2 (en) Method for manufacturing semiconductor device
JPS6146042A (en) Semiconductor device
JP2921266B2 (en) Complementary MOS integrated circuit device
JPH05145023A (en) Semiconductor device
JP3333485B2 (en) Method for manufacturing semiconductor device
JPH0456280A (en) Semiconductor device and manufacture thereof
JPS61114552A (en) Semiconductor device
JPH07321218A (en) Manufacture of semiconductor device
JPS63272066A (en) Manufacture of semiconductor device
JPS61140164A (en) Manufacture of semiconductor ic
JPH03276680A (en) Semiconductor device and manufacture thereof
JPH06260640A (en) Variable threshold voltage transistor