JPS61140164A - Manufacture of semiconductor ic - Google Patents

Manufacture of semiconductor ic

Info

Publication number
JPS61140164A
JPS61140164A JP59262567A JP26256784A JPS61140164A JP S61140164 A JPS61140164 A JP S61140164A JP 59262567 A JP59262567 A JP 59262567A JP 26256784 A JP26256784 A JP 26256784A JP S61140164 A JPS61140164 A JP S61140164A
Authority
JP
Japan
Prior art keywords
channel
drain
output
type
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59262567A
Other languages
Japanese (ja)
Other versions
JPH0369184B2 (en
Inventor
Hiroshi Kamijo
上條 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59262567A priority Critical patent/JPS61140164A/en
Publication of JPS61140164A publication Critical patent/JPS61140164A/en
Publication of JPH0369184B2 publication Critical patent/JPH0369184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS

Abstract

PURPOSE:To allow the output N-channel type element to have higher dielectric strength than that of the signal processing part by a method wherein the N-type diffusion to form the channel stopper of the P-channel type MOS element is used to form the drain of the output N-channel type element, thus rounding the shape of a junction plane. CONSTITUTION:In coexistence of the output channel-type element, source 11a and a drain 12a which are deep diffused layers can be obtained by applying the process of N-type impurity diffusion to form the channel stopper 4 of a P-channel type element also for the formation of the source and drain of the output N-channel type element. Further, in order to improve dielectric strength from the viewpoint of element shape, the junction plane of the drain 12a is allowed to have a rounding of a curvature radius (r), so as to generate no edges, by using an N-type diffusion window 18 patterned during this diffusion.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は相補形電界効果トランジスタ集積回路(0MO
SIC)の信号処理部と共存して形成される出力用Nチ
ャンネル型MOS素子に信号処理部より高い耐電圧を付
与する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a complementary field effect transistor integrated circuit (0MO
The present invention relates to a method of imparting a higher withstand voltage than the signal processing section to an output N-channel type MOS element formed coexisting with the signal processing section of a SIC.

〔従来技術とその問題点〕[Prior art and its problems]

第3図は従来の0MOSICの基本的な構造の一例を示
した断面図である。第3図において1はN型半導体基板
、2,3はPウェル領域、4はPチ成されたNチャンネ
ル型素子のP+チャンネルストッパー、8,9は丈ソー
スとドレイン、10はPウェル領域3に形成され九Nチ
ャンネル型素子のP+チャンネルストッパー、11.1
2は丈ンースとドレインであシ、これら各素子には配線
金属13およびゲート電極14が設けられる。
FIG. 3 is a sectional view showing an example of the basic structure of a conventional 0MOSIC. In FIG. 3, 1 is an N-type semiconductor substrate, 2 and 3 are P-well regions, 4 is a P+ channel stopper of an N-channel type element formed by a P-chip, 8 and 9 are long sources and drains, and 10 is a P-well region 3. P+ channel stopper of nine N-channel type devices formed in 11.1
Reference numeral 2 denotes a source and a drain, and each of these elements is provided with a wiring metal 13 and a gate electrode 14.

このような構造において0MOSICの電源電圧として
は通常5v程度の単一電源が採用されているが、出力素
子だけにはさらに高い耐電圧を要求されることがある◎
出力用素子にはNチャンネル型素子を用いることが多く
、第3図において例えばPウェル領域3に形成された出
力用Nチャンネル型素子はPウェル領域2に形成された
信号処理部のNチャンネル型素子よシ高耐圧にする必要
がある。第3図から明らかなようにこれら二つのNチャ
ンネル製素子は同様の構造をもっており、Pウェル領域
3に形成される出力用Nチャンネル型の素子の!形ソー
ス拡散層11およびV形ドレイン拡散層12はPウェル
領域2に形成される信号処理部のNチャンネル型素子の
r形ソース拡散層8および丈形ドレイン拡散層9と同一
製造工程によシ設けられるのが一般的である。
In such a structure, a single power supply of around 5V is normally used as the power supply voltage of 0MOSIC, but there are cases where an even higher withstand voltage is required for the output element only.
N-channel type elements are often used as output elements; for example, in FIG. It is necessary for the element to have a high withstand voltage. As is clear from FIG. 3, these two N-channel devices have similar structures, and the output N-channel device formed in the P-well region 3! The type source diffusion layer 11 and the V type drain diffusion layer 12 are manufactured by the same manufacturing process as the r type source diffusion layer 8 and the length type drain diffusion layer 9 of the N channel type element of the signal processing section formed in the P well region 2. Generally, it is provided.

しかし、出力用Nチャンネル製素子に信号処理部のNチ
ャンネル型素子よシ高い耐電圧を付与させるとき、上述
のように出力用Nチャンネル型素子と信号処理部のNチ
ャンネル型素子が基本的に同一構造を有しておりそれぞ
れのソース、ドレインが同じ工程で形成されるために次
のような不都合が生ずる。
However, when applying a higher withstand voltage to the output N-channel element than the N-channel element in the signal processing section, as mentioned above, the output N-channel element and the signal processing section N-channel element are basically Since they have the same structure and their respective sources and drains are formed in the same process, the following disadvantages arise.

すなわち、信号処理部のNチャンネル型素子については
増々微細化が要求され、拡散層の横方向への拡がフによ
る占有面積を無視することができなくなるためにソース
8.ドレイン9の拡散深さをよシ浅く形成しなければな
らないが、周知のように浅い拡散層による接合の逆方向
耐電圧は低下するので従来技術によれば同一工程で形成
される出力用Nチャンネル型素子の耐電圧も必然的に低
下することになる。
That is, the N-channel type elements in the signal processing section are required to be increasingly miniaturized, and the area occupied by the diffusion layer in the lateral direction cannot be ignored, so the source 8. The diffusion depth of the drain 9 must be made very shallow, but as is well known, the reverse withstand voltage of the junction decreases due to the shallow diffusion layer. The withstand voltage of the mold element also inevitably decreases.

第4図は信号処理部のNチャンネル型素子の要部を示し
た平面図であシ、第十図と共通部分は同一トを備える製
造方法の要点を述べるとまず素子の周囲にチャンネルス
トッパ一層7を形成し被拡散領域15を除くフィールド
部分を選択的に酸化した後、ポリシリコンゲート14を
形成し、次いでフィールド部とゲート電極14をマスク
として不純物を導入することによりソース8およびドレ
イン9を形成する。13は配線金属、16はそのコンタ
クト孔である。第2図に示したように微細な信号処理部
の形状は方形とするのが占有面積を低減させるのに有効
であるが、この場合ソース8およびドレイン9の接合面
には球形の一部であるような部分17が形成され、この
球形状接合面を有することも耐電圧低下の一因となる。
Figure 4 is a plan view showing the main parts of an N-channel type element in the signal processing section.It has the same parts as Figure 10. After selectively oxidizing the field portion excluding the diffusion region 15, a polysilicon gate 14 is formed, and then an impurity is introduced using the field portion and gate electrode 14 as a mask to form a source 8 and a drain 9. Form. 13 is a wiring metal, and 16 is a contact hole thereof. As shown in Fig. 2, it is effective to make the fine signal processing part rectangular in shape in order to reduce the occupied area. The fact that such a portion 17 is formed and has this spherical joint surface also contributes to a decrease in withstand voltage.

第5図は接合の形状について逆方向耐電圧とドレイン接
合深さとの関係を示した線図である。第5図はPウェル
の表面濃度がI X 1016an−3の場合であるが
Pウェルの表面濃度が多少変化しても曲線の傾向は同じ
であって拡散深さが1μm近傍で耐電圧は急激に変化す
る。第5図から接合の形状については球面の一部である
ような部分をもった接合はその部分が円筒形となる接合
に比べてIOV程度耐電圧が低下することがわかる。
FIG. 5 is a diagram showing the relationship between reverse withstand voltage and drain junction depth regarding the shape of the junction. Figure 5 shows the case where the surface concentration of the P-well is I x 1016an-3, but even if the surface concentration of the P-well changes slightly, the trend of the curve remains the same, and the withstand voltage suddenly increases when the diffusion depth is around 1 μm. Changes to As for the shape of the joint, it can be seen from FIG. 5 that a joint having a part that is a part of a spherical surface has a withstand voltage lower by about IOV than a joint having a cylindrical part.

以上のように従来の0MOSICでは出力用Nチャンネ
ル型素子に信号処理部よシ高い耐電圧をもたせるためK
は、ソースおよびドレイyの拡散深さとこれらの接合面
形状の点が障害となっていた。
As mentioned above, in the conventional 0MOSIC, in order to make the output N-channel type element have a higher withstand voltage than the signal processing section, K
The obstacles were the diffusion depth of the source and drain y and the shape of their junction surfaces.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みてなされたものであシ、その目
的は0MOSICにおける信号処理部よシ高い耐電圧を
もった出力用Nチャンネル11MOS素子の製造方法を
提供することにある。
The present invention has been made in view of the above points, and its purpose is to provide a method for manufacturing an output N-channel 11MOS element having a higher withstand voltage than the signal processing section in an 0MOSIC.

〔発明の要点〕[Key points of the invention]

本発明は信号処理部としてNチャンネル型MOS素子と
Pチャンネル型MOS素子を有するCMOS構造と出力
用Nチャンネル型MOS素子を同一半導体基板上に形成
するに際して、Pチャンネル型MOS素子のチャンネル
ストッパーを形成するための8世拡散を出力用Nチャン
ネル型素子の少くともドレイン形成に用いて深い拡散層
とするとともに出力用Nチャンネル型素子の接合面の形
状に丸みを持たせることによシ出力用Nチャンネル型素
子に信号処理部より高い耐電圧をもたせるようにしたも
のである◇ 〔発明の実施例〕 以下本発明を実施例に基づき説明する。
The present invention forms a channel stopper for the P-channel MOS element when forming a CMOS structure having an N-channel MOS element and a P-channel MOS element as a signal processing part and an output N-channel MOS element on the same semiconductor substrate. By using 8th generation diffusion to form at least the drain of the output N-channel type element to form a deep diffusion layer and rounding the shape of the junction surface of the output N-channel type element, The channel type element is made to have a higher withstand voltage than the signal processing section. [Embodiments of the Invention] The present invention will be described below based on embodiments.

はじめに第1図に本発明により得られた0MOSICの
構造断面図を示す。第1図で第3図と共通する部分は同
一符号で表わしである。
First, FIG. 1 shows a cross-sectional view of the structure of a 0MOSIC obtained according to the present invention. Portions in FIG. 1 that are common to FIG. 3 are designated by the same reference numerals.

既に述べたようにCMOS回路はPチャンネル型素子を
含んでおシ、特に選択酸化法を用いて製造する場合、P
チャンネル型素子の周囲に選択酸化工程前にN型不純物
によるチャンネルストッパー4を配置するようにしてい
る。このチャンネルストッパー4はこれが形成された後
、かな9長時間の熱処理を受けるため、最終的に到達す
る拡散深さは、同じタイプの不純物に二るNチャンネル
型素子のソース8.ドレイン9の拡散層よりも深くなる
。したがって出力用Nチャンネル型素子を共存するとき
、Pチャンネル型素子のチャンネルストッパー4を形成
するためのN型不純物拡散工程を出力用Nチャンネル型
素子のソースおよびドレインの形成にも適用することに
よシ、第1図に示したような深い拡散層のソースlla
およびドレイン12aを得ることができる。なお信号処
理部のNチャンネル型素子のソース8.ドレイン9の浅
い拡散を行なう工程は出力用Nチャンネル型素子のソー
スllaおよびドレイン12aKも施され浅い炉拡散層
11bおよび12bを形成し、これらは配線金属13と
のコンタクトを良好にする役割シを果す。
As already mentioned, a CMOS circuit includes a P-channel type device, and especially when manufactured using a selective oxidation method, a P-channel type device is included.
A channel stopper 4 made of N-type impurities is arranged around the channel type element before the selective oxidation process. After this channel stopper 4 is formed, it undergoes a long heat treatment, so that the final diffusion depth reached is equal to that of the source 8 of the N-channel device, which is equal to that of the same type of impurity. It becomes deeper than the diffusion layer of the drain 9. Therefore, when an N-channel output device is used, the N-type impurity diffusion process for forming the channel stopper 4 of the P-channel device can be applied to the source and drain of the output N-channel device. Source lla of deep diffusion layer as shown in Figure 1
and a drain 12a can be obtained. Note that the source 8 of the N-channel type element in the signal processing section. In the step of shallowly diffusing the drain 9, the source lla and drain 12aK of the output N-channel type element are also applied to form shallow furnace diffusion layers 11b and 12b, which play a role in making good contact with the wiring metal 13. accomplish

拡散深さについては前記第5図に示したように浅い拡散
の接合による耐電圧の低下は、接合深さ11Ifnの近
傍で激しくなるので、出力用Nチャンネル型素子に適用
されるPチャンネル型素子のチャンネルストッパー4を
形成するN型拡散の深さは1−以上とすれば有効であシ
、その上限の深さはチャンネルストッパー4の拡散深さ
で決まるPチャンネル型素子の有効面積の許容限界に対
応して5μm以下とすべきである。
Regarding the diffusion depth, as shown in FIG. 5 above, the drop in withstand voltage due to shallow diffusion junctions becomes severe near the junction depth 11Ifn, so P-channel type elements applied to output N-channel type elements It is effective if the depth of the N-type diffusion forming the channel stopper 4 is 1- or more, and the upper limit depth is the allowable limit of the effective area of the P-channel type element determined by the diffusion depth of the channel stopper 4. The thickness should be 5 μm or less in accordance with this.

なお出力用Nチャンネル型素子のソースllaは通常P
ウェル領域3と同電位とするので、耐電圧の観点からは
深いN型拡散層はドレイン12aにのみ形成されるよう
にすれば十分である。しかし同一素子内に浅い拡散層の
ソースと深い拡散層のドレインを別の工程で形成するの
は、位置合わせの誤差を生じ、チャンネル長のばらつき
が生ずるため、第1図のようにソースおよびドレインの
双方に深い拡散層11aおよび12aを形成してもよい
Note that the source lla of the output N-channel element is normally P.
Since the potential is the same as that of the well region 3, it is sufficient from the viewpoint of withstand voltage that the deep N-type diffusion layer is formed only in the drain 12a. However, forming the source in the shallow diffusion layer and the drain in the deep diffusion layer in separate processes in the same device causes alignment errors and variations in channel length. Deep diffusion layers 11a and 12a may be formed in both.

次に第2図に本発明を適用する出力用Nチャンネル型素
子の形状について要部の平面図を示す。
Next, FIG. 2 shows a plan view of essential parts of the shape of an output N-channel type element to which the present invention is applied.

第2図も第4図と共通部分を同一符号で表わす。In FIG. 2, parts common to those in FIG. 4 are indicated by the same reference numerals.

前記した第4図、第5図で説明したように素子の平面形
状が方形をなす場合、そのエツジ部に球面の一部である
ような接合面が形成され、この球状接合面が円筒形接合
面に比べて電界集中が大きくなシ耐電圧が低下する。本
発明では出力用Nチャンネル型素子の耐電圧をあげるた
め、少くともドレイン12aはPチャンネル型素子のチ
ャンネルストッパー4を形成するとき同時に深い拡散層
として出力用Nチャンネル型素子に形成したものである
がさらに素子形状の観点からも耐電圧を向上させるため
に、この拡散のときパターニングされたN型拡散用の窓
18を用いて第2図に示す通りドレイン12aの接合面
の形状をエツジ部を生ずることかないよう矢印で表わし
た曲率半径rの丸味を持たせである@しかもドレイン1
2aの接合面は後工程で形成される一点鎖線で画いた被
拡散領域15の選択酸化膜との境界およびゲート電極1
4をマスクとしてN型拡散した浅い拡散層12bの拡散
前面の外側に位置するようにする◇このようにすると浅
い拡散層12bのエツジによる曲率半径の小さな球面状
接合部17aは深く拡散されたドレイン12mの接合面
よシ内部に包含されるようKなるから出力用Nチャンネ
ル型素子の耐電圧に悪影響を及ぼすことはない。
As explained in FIGS. 4 and 5 above, when the planar shape of the element is rectangular, a bonding surface that is a part of a spherical surface is formed at the edge, and this spherical bonding surface forms a cylindrical bonding surface. The electric field concentration is greater than that on the surface, and the withstand voltage decreases. In the present invention, in order to increase the withstand voltage of the output N-channel type element, at least the drain 12a is formed as a deep diffusion layer in the output N-channel type element at the same time as the channel stopper 4 of the P-channel type element is formed. However, in order to further improve the withstand voltage from the viewpoint of the element shape, the shape of the junction surface of the drain 12a is changed to the edge part by using the patterned N-type diffusion window 18 during this diffusion, as shown in FIG. It has a roundness with a radius of curvature r shown by the arrow so that it does not occur.@Moreover, the drain 1
The bonding surface of 2a is the boundary with the selective oxide film of the diffused region 15, which is formed in a later process and is drawn with a dashed line, and the gate electrode 1.
4 as a mask to position it outside the diffusion front of the N-type shallow diffusion layer 12b. In this way, the spherical junction 17a with a small radius of curvature due to the edge of the shallow diffusion layer 12b becomes a deeply diffused drain. Since K is contained within the junction surface of 12 m, there is no adverse effect on the withstand voltage of the output N-channel type element.

またドレイン12aの接合面に形成される丸味の曲率半
径rの大きさは小さ過ぎると球面状接合に近づいて耐電
圧向上の効果が得られなくなるので5μm以上とするの
がよく、このような丸味をもった接合面による耐電圧は
円筒形接合面の場合とほぼ等しい値が得られる。なお第
2図におけるソース側に関しては説明を省略するが深い
拡散層11aを設けるときはドレイン12aと全く同様
に行うことができる。
Furthermore, if the radius of curvature r of the roundness formed on the junction surface of the drain 12a is too small, it will approach a spherical junction and the effect of improving withstand voltage will not be obtained, so it is better to set it to 5 μm or more. The withstand voltage of a joint surface with a cylindrical joint surface is approximately the same as that of a cylindrical joint surface. Although the explanation regarding the source side in FIG. 2 will be omitted, when providing the deep diffusion layer 11a, it can be done in exactly the same way as the drain 12a.

以上のように本発明は出力用Nチャンネル凰素子の耐電
圧をあげるため特別な製造工程を付加することなく、ソ
ースおよびドレインもしくはドレイン単独で深いN型拡
散層を形成するとともに、その接合面の形状を半径5μ
m以上の曲率をつけてエツジ部をなくすようにしたもの
である。
As described above, the present invention forms a deep N-type diffusion layer in the source and drain, or the drain alone, without adding any special manufacturing process, in order to increase the withstand voltage of the output N-channel dielectric element, and also forms a deep N-type diffusion layer in the junction surface of the source and drain, or the drain alone. Shape radius 5μ
The edge portion is eliminated by adding a curvature of m or more.

〔発明の効果〕〔Effect of the invention〕

Nチャンネル型MOS素子とPチャンネル型MOS素子
を有するCMOS構造と、出力用Nチャンネル型MOS
素子とを同一基板上に形成する0MOSICの出力用N
チャンネル11MOS素子の耐電圧を向上させるに当シ
、従来、出力用Nチャンネル型MOS素子のソースおよ
びドレインの拡散深さが同一工程で形成される信号処理
部の微細なNチャンネル型MOS素子のソースおよびド
レインの浅い拡散によって決定されることと、素子の平
面形状が方形であるために球面状接合部が形成されるこ
とから大きな制約を受けていたのに対して、本発明によ
れば実施例で説明したようにPチャンネル型MOS素子
のチャンネルストッパーのす拡散を行う工程を出力用N
チャンネル型MOS素子のソースおよびドレインもしく
はドレインのみを形成する拡散にも同時に適用すること
によシ、深い拡散層を得るようにし、またこの際これら
ソース、ドレインの拡散層に球面状接合部が生ずること
のないようエツジ部となる個所の接合面に5μm以上の
曲率を持たせる二うKしたために、深い拡散層と接合部
に丸味をつけるという二つの点が効果的に作用して出力
用Nチャンネル型MOS素子に信号処理部より高い耐電
圧を付与させることに成功したものである。
CMOS structure with N-channel MOS element and P-channel MOS element, and N-channel MOS for output
N for output of 0MOSIC which is formed on the same substrate as the device
In order to improve the withstand voltage of the channel 11 MOS element, we have conventionally used a fine N-channel MOS element source in the signal processing section where the source and drain diffusion depths of the output N-channel MOS element are formed in the same process. However, according to the present invention, the embodiment of the present invention As explained above, the process of diffusing the channel stopper of a P-channel MOS device is
By simultaneously applying the method to diffusion for forming the source and drain or only the drain of a channel type MOS device, a deep diffusion layer can be obtained, and in this case, a spherical junction is formed in the source and drain diffusion layers. In order to prevent this, the bonding surface at the edge portion has a curvature of 5 μm or more, so the two points of providing a deep diffusion layer and rounding the bonding area work effectively to reduce the output N. This has succeeded in providing a channel type MOS element with a higher withstand voltage than the signal processing section.

しかも本発明は実施に当って特別な製造工程を取)入れ
ることなく、九だ工程手順の組み変えや、拡散パターン
を変更するだけで容易に目的が達成されるという利点を
有する。
Furthermore, the present invention has the advantage that the object can be easily achieved by simply rearranging the nine-step process procedure or changing the diffusion pattern without introducing any special manufacturing steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用され九〇MOSICの構造断面図
、第2図は第1図における出力用Nチャンネル型MOS
素子の要部平面図、第3図は従来の出力用Nチャンネル
型MOS素子を含む0MOSICの構造断面図、第4図
は第3図における出力用Nチャン面と円筒形接合面につ
いて接合深さと耐電圧の関係を示す線図である◇ 1・・・・・・N”型半導体基板、2,3・・・・・・
Pウェル領域、4、7.10・・・・・・チャンネルス
トッパー、5.8.11゜11 a −−・・−ソース
、6,9.12,12a・・・・・・ドレイン、llb
。 12b・・・・・・浅い拡散層、13・・・・・・配線
金属、14・・・・・・ゲート電極、15・・・・・・
被拡散領域、16・・・・・・コンタクト孔、17,1
7a・・・・・・球面接合部、18・・・・・・拡散用
窓。 第2図 第4図 第5図
Figure 1 is a cross-sectional view of the structure of 90 MOSIC to which the present invention is applied, and Figure 2 is the output N-channel type MOS in Figure 1.
A plan view of the main parts of the device, Fig. 3 is a cross-sectional view of the structure of 0MOSIC including a conventional output N-channel type MOS element, and Fig. 4 shows the junction depth and the cylindrical junction surface of the output N-channel surface and the cylindrical junction surface in Fig. 3. ◇ 1...N'' type semiconductor substrate, 2, 3...
P well region, 4, 7.10... Channel stopper, 5.8.11゜11 a --- Source, 6, 9.12, 12a... Drain, llb
. 12b... Shallow diffusion layer, 13... Wiring metal, 14... Gate electrode, 15...
Diffused region, 16... Contact hole, 17, 1
7a... Spherical joint part, 18... Diffusion window. Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1)Nチャンネル型MOS素子とPチャンネル型MOS
素子からなるCMOS回路と、出力用Nチャンネル型M
OS素子とを同一半導体基板の主表面に備えた半導体集
積回路を製造するに当り、前記Pチャンネル型MOS素
子の周辺に配設するチャンネルストッパーをに拡散して
形成する工程を用いて、前記出力用Nチャンネル型MO
S素子のソース、ドレイン両拡散層のうち少くともドレ
イン拡散層を前記チャンネルストッパーと同時に形成し
、その際形成される拡散層の接合面周辺に丸味を持たせ
るようにパターニングすることを特徴とする半導体集積
回路の製造方法。 2)特許請求の範囲第1項記載の方法において、チャン
ネルストッパーを形成するN^+拡散層の深さを1〜5
μmとすることを特徴とする半導体集積回路の製造方法
。 3)特許請求の範囲第1項または第2項に記載の方法に
おいて、接合面周辺の丸味の曲率半径を5μm以上とす
ることを特徴とする半導体集積回路の製造方法。
[Claims] 1) N-channel MOS element and P-channel MOS
CMOS circuit consisting of elements and N-channel type M for output
In manufacturing a semiconductor integrated circuit having an OS element and an OS element on the main surface of the same semiconductor substrate, a process of diffusing and forming a channel stopper to be disposed around the P-channel MOS element is used. N-channel type MO
At least the drain diffusion layer of both the source and drain diffusion layers of the S element is formed at the same time as the channel stopper, and the formed diffusion layer is patterned so as to have a rounded periphery around the bonding surface. A method for manufacturing semiconductor integrated circuits. 2) In the method described in claim 1, the depth of the N^+ diffusion layer forming the channel stopper is 1 to 5.
A method for manufacturing a semiconductor integrated circuit, characterized in that the size of the semiconductor integrated circuit is .mu.m. 3) A method for manufacturing a semiconductor integrated circuit according to claim 1 or 2, characterized in that the radius of curvature of the roundness around the bonding surface is 5 μm or more.
JP59262567A 1984-12-12 1984-12-12 Manufacture of semiconductor ic Granted JPS61140164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262567A JPS61140164A (en) 1984-12-12 1984-12-12 Manufacture of semiconductor ic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262567A JPS61140164A (en) 1984-12-12 1984-12-12 Manufacture of semiconductor ic

Publications (2)

Publication Number Publication Date
JPS61140164A true JPS61140164A (en) 1986-06-27
JPH0369184B2 JPH0369184B2 (en) 1991-10-31

Family

ID=17377592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262567A Granted JPS61140164A (en) 1984-12-12 1984-12-12 Manufacture of semiconductor ic

Country Status (1)

Country Link
JP (1) JPS61140164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394669A (en) * 1986-10-08 1988-04-25 Mitsubishi Electric Corp Semiconductor storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548847Y2 (en) * 1991-12-11 1997-09-24 オーツタイヤ株式会社 Edge light type light guide plate device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101984A (en) * 1976-02-23 1977-08-26 Sony Corp Preparation of semiconductor device
JPS5319773A (en) * 1976-08-06 1978-02-23 Rca Corp Ic device
JPS5467780A (en) * 1977-11-09 1979-05-31 Seiko Instr & Electronics Ltd High integration ic
JPS57120371A (en) * 1981-01-19 1982-07-27 Sanyo Electric Co Ltd Manufacture of complementary type mos semiconductor
JPS5947757A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101984A (en) * 1976-02-23 1977-08-26 Sony Corp Preparation of semiconductor device
JPS5319773A (en) * 1976-08-06 1978-02-23 Rca Corp Ic device
JPS5467780A (en) * 1977-11-09 1979-05-31 Seiko Instr & Electronics Ltd High integration ic
JPS57120371A (en) * 1981-01-19 1982-07-27 Sanyo Electric Co Ltd Manufacture of complementary type mos semiconductor
JPS5947757A (en) * 1982-09-10 1984-03-17 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394669A (en) * 1986-10-08 1988-04-25 Mitsubishi Electric Corp Semiconductor storage device

Also Published As

Publication number Publication date
JPH0369184B2 (en) 1991-10-31

Similar Documents

Publication Publication Date Title
GB1436784A (en) Method of making a semiconductor device
JPS6113661A (en) Semiconductor device and manufacture thereof
JPS61140164A (en) Manufacture of semiconductor ic
JPS61174666A (en) Semiconductor device
JPS6253952B2 (en)
JPS58116763A (en) Mos type rom
JPH0629476A (en) Thin film cmos transistor
JPH04192368A (en) Longitudinal channel fet
JPS5874070A (en) Manufacture of semiconductor device
JPS6074658A (en) Semiconductor ic device
JPS61207051A (en) Semiconductor device
JPS627710B2 (en)
JPH03276680A (en) Semiconductor device and manufacture thereof
JPS63144543A (en) Formation of semiconductor interelement isolation region
JPS61114552A (en) Semiconductor device
JPS6246572A (en) Manufacture of semiconductor device
JPH0214788B2 (en)
JPS628553A (en) Semiconductor device
JPS63116470A (en) Manufacture of semiconductor device provided with memory transistor
JPH01235368A (en) Manufacture of semiconductor device
JPS5966174A (en) Manufacture of junction type field effect transistor
JPH01168054A (en) Semiconductor integrated circuit device
JPS6342161A (en) Manufacture of cmos type semiconductor device
JPS61206252A (en) Cmos semiconductor device
JPS5944785B2 (en) Complementary semiconductor device