JPS61114552A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61114552A
JPS61114552A JP59236055A JP23605584A JPS61114552A JP S61114552 A JPS61114552 A JP S61114552A JP 59236055 A JP59236055 A JP 59236055A JP 23605584 A JP23605584 A JP 23605584A JP S61114552 A JPS61114552 A JP S61114552A
Authority
JP
Japan
Prior art keywords
region
contact region
type
substrate
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59236055A
Other languages
Japanese (ja)
Inventor
Takehide Shirato
猛英 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59236055A priority Critical patent/JPS61114552A/en
Publication of JPS61114552A publication Critical patent/JPS61114552A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To curb the coupling of function elements by a method wherein a contact region defined by a field insulating film is formed on a substrate and surrounds a function element also defined by the field insulating film. CONSTITUTION:In the vicinity of a p-channel MOS transistor defined by a field oxide film 3 including a region wherein gate electrodes 7a, 7b extend, a frame-shape n<+> type substrate contact region 110 is provided, defined by the field oxide film 3 surrounding the p-channel MOS transistor. The contact region 110 is located some distance from p<+> type source.drain regions 9a, 9b, 9c. Similarly, in the vicinity of an n-channel MOS transistor, a frame-shape p<+> type well.contact region 111 is provided, surrounding the n-channel MOS transistor. The p<+> type well.contact region 111 is located some distance from n<+> type source.drain region 8a, 8b, 8c.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の構造の改良に係り、特に動作速度
の向上を図った相補型ゲートアレイ (以下CMOSゲ
ートアレイと略称する)の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in the structure of semiconductor devices, and particularly relates to the structure of complementary gate arrays (hereinafter abbreviated as CMOS gate arrays) aimed at improving operating speed. .

大規模集積回路が大型化するにつれて多品種少量生産の
傾向が著しい今日、製造コストを低減し、製造期間を短
縮するために、ゲートアレイと称するマスクスライス(
master 5lice)方式による大規模集積回路
の製造が盛んになって来ている。
Today, as large-scale integrated circuits become larger, there is a remarkable trend toward high-mix, low-volume production.
Manufacturing of large-scale integrated circuits using the master 5lice method has become popular.

かかるゲートアレイにおいて、低消費電力化の面で有利
なCMOSゲートアレイが多く用いられるが、該CMO
Sゲートアレイにおいて動作速度の向上が強く望まれて
いる。
In such gate arrays, CMOS gate arrays, which are advantageous in terms of low power consumption, are often used;
There is a strong desire to improve the operating speed of S-gate arrays.

〔従来の技術〕[Conventional technology]

第4図は従来のCMOSゲートアレイにおける単位セル
を模式的に示す平面図(a)、A−A矢視断面図(b)
及びB−B矢視断面図(C1で、同図中、1はn−型シ
リコン基板、2はp−型ウェル、3はフィールド酸化膜
、4はn°型チャネル・力・ノド領域、5はp゛゛チャ
ネル・カント領域、6はゲート酸化膜、?a、7bは第
1.第2のゲート電極、8a、8b、8cは第1.第2
.第3のソース若しくはドレインとなるn゛型領領域n
’型ソース・ドレイン領域)、9a、9b、9cはp″
′型ソース・ドレイン領域、10はn°°基板コンタク
ト領域、11はp+型ウェル・コンタクト領域、12は
不純物ブロック用酸化膜(以後ブロック酸化膜と略称す
る)、13は燐珪酸ガラス(PSG)絶縁膜を表す。
Figure 4 is a plan view (a) schematically showing a unit cell in a conventional CMOS gate array, and a cross-sectional view taken along the line A-A (b).
and BB arrow sectional view (C1, in the same figure, 1 is an n-type silicon substrate, 2 is a p-type well, 3 is a field oxide film, 4 is an n° type channel/force/node region, 5 is a p channel cant region, 6 is a gate oxide film, ?a, 7b are first and second gate electrodes, and 8a, 8b, and 8c are first and second gate electrodes.
.. n-type region n that becomes the third source or drain
' type source/drain region), 9a, 9b, 9c are p''
' type source/drain region, 10 is an n°° substrate contact region, 11 is a p+ type well contact region, 12 is an oxide film for impurity blocking (hereinafter abbreviated as block oxide film), 13 is phosphosilicate glass (PSG) Represents an insulating film.

なお同図において、ゲート電極、ソース・ドレイン領域
、基体コンタクト領域に対する配線接続部は省略する。
Note that in the figure, wiring connections to the gate electrode, source/drain region, and base contact region are omitted.

従来のCMOSゲートアレイにおいては同図に異なる方
向の斜線で示すように、機能素子であるpチャネルMO
3I−ランジスタ(p−MOS)を画定するフィールド
酸化膜3の下部の基板面にn゛型チャネル・カット領域
4が、nチャネルMOSトランジスタ(n−MOS)を
画定するフィールド酸化膜3の下部のウェル面にp°°
チャネル・カット領域5がそれぞれ設けられ、隣接する
機能素子即ちトランジスタ間の結合及び隣接する機能領
域即ちソース・ドレイン領域間の結合が阻止されていた
In a conventional CMOS gate array, as shown by diagonal lines in different directions in the same figure, p-channel MOAs are functional elements.
An n-type channel cut region 4 is formed in the substrate surface under the field oxide film 3 defining the 3I-transistor (p-MOS). p°° on the well surface
Channel cut regions 5 were respectively provided to prevent coupling between adjacent functional elements, ie transistors, and between adjacent functional regions, ie source-drain regions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し上記従来の構造においては、高不純物濃度を有する
チャネル・カット領域が各ソース・ドレイン領域に直に
接するために、これらソース・ドレイン領域に基板若し
くはウェルと異なる電位を印加して該CMO3I−ラン
ジスタを駆動する際、該ソース・ドレイン領域の接合容
量が増大し、該CMOSトランジスタの動作速度が低下
するという問題を生ずる。
However, in the conventional structure described above, since the channel cut region having a high impurity concentration is in direct contact with each source/drain region, a potential different from that of the substrate or well is applied to these source/drain regions and the CMO3I-transistor is When driving the CMOS transistor, the junction capacitance of the source/drain region increases, causing a problem that the operating speed of the CMOS transistor decreases.

また上記MO3)ランジスタに限らず、半導体基体に配
設される基体と反対導電型の抵抗素子は上記トランジス
タの場合と同様、基体と@1導電型の高不純物濃度を有
するチャネル・カット領域によって他素子との結合が防
止されていたので、該抵抗素子に大きな容量が寄生し、
回路の動作速度を遅延せしめるという問題もあった。
Furthermore, not only the MO3) transistor mentioned above, but also a resistance element of the conductivity type opposite to the base body disposed on the semiconductor base body is connected to the base body by a channel cut region having a high impurity concentration of @1 conductivity type, as in the case of the above transistor. Since coupling with the element was prevented, a large capacitance was parasitic to the resistor element,
There was also the problem that the operating speed of the circuit was delayed.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、半導体基体上にフィールド絶縁膜
と、該フィールド絶縁膜の開花によってそれぞれ画定さ
れる素子領域及び基体コンタクト領域を有し、且つ該基
体コンタクト領域が該素子領域を囲んでチャネル・カッ
ト機能を兼ね備える本発明による半導体装置によって達
成される。
A solution to the above problem is to have a field insulating film on a semiconductor substrate, a device region and a substrate contact region respectively defined by blooming of the field insulating film, and the substrate contact region surrounds the device region and forms a channel. - Achieved by the semiconductor device according to the present invention that also has a cutting function.

〔作用〕[Effect]

即ち本発明は基板或いはウェル等の半導体基体面のフィ
ールド絶縁膜によって画定されるトランジスタ或いは抵
抗等の機能素子を囲んで、上記フィールド絶縁膜によっ
て画定される基体コンタクト領域を設け、該基体コンタ
クト領域にチャネル・カット機能を合わせ持たしめるこ
とによって、機能素子間の分離を行い、更には該機能素
子のゲート電極と該基体コンタクト領域とで該機能素子
内の分離すべき機能領域を完全に囲んで、該機能領域間
の結合を阻止するものである。
That is, the present invention provides a base contact region defined by the field insulating film surrounding a functional element such as a transistor or a resistor defined by a field insulating film on the surface of a semiconductor substrate such as a substrate or a well, and a base contact region defined by the field insulating film. By also having a channel cut function, the functional elements are separated, and furthermore, the functional area to be separated in the functional element is completely surrounded by the gate electrode of the functional element and the base contact region, This prevents binding between the functional regions.

かくて各機能領域は高濃度の不純物領域即ちチャネル・
カット領域に直に接することがなくなりその接合容量が
減少するので、該半導体装置の動作速度が向上する。
Thus, each functional region has a high concentration impurity region, that is, a channel region.
Since it is no longer in direct contact with the cut region and its junction capacitance is reduced, the operating speed of the semiconductor device is improved.

〔実施例〕〔Example〕

以下本発明を図示実施例により、具体的に説明する。 The present invention will be specifically described below with reference to illustrated embodiments.

第1図はCMOSゲートアレイにおける第1の実施例を
模式的に示す平面図(al、A−A矢視断面図(bl、
B−B矢視断面図(C1及びC−C矢視断面図+d)、
第2図はCM OSゲートアレイにおける第2の実施例
を模式的に示す平面図(a)、A−A矢視断面図(b)
及びB−B矢視断面図+C)で、第3図は抵抗素子にお
ける一実施例を模式的に示す平面図(al及びA−A矢
視断面図(blである。
FIG. 1 is a plan view (al) schematically showing a first embodiment of a CMOS gate array;
BB arrow sectional view (C1 and C-C arrow sectional view + d),
FIG. 2 is a plan view (a) schematically showing a second embodiment of the CMOS gate array, and a cross-sectional view taken along the line A-A (b).
FIG. 3 is a plan view (al) and a cross-sectional view along A-A (BL) schematically showing one embodiment of the resistance element.

全図を通じ同一対象物は同一符号で示す。Identical objects are indicated by the same reference numerals throughout the figures.

第1図において、1はn−型シリコン基板、2はp−型
ウェル、3はフィールド酸化膜、6はゲート酸化膜、7
a、7bは第1.第2のゲート電極、8a、8b、8c
は第1.第2.第3のソース若しくはドレインとなるn
°型領領域n”型ソース・ドレイン領域)、9a、9b
、9cはpゝ型ソース・ドレイン領域、110はn゛型
基板コンタクト領域、°111はp°°ウェル・コンタ
クト領域、12は不純物ブロック用酸化n!(ブロック
酸化膜)、13はPSG (燐珪酸ガラス)絶縁膜を示
している。
In FIG. 1, 1 is an n-type silicon substrate, 2 is a p-type well, 3 is a field oxide film, 6 is a gate oxide film, and 7 is a p-type well.
a, 7b are the first. Second gate electrode, 8a, 8b, 8c
is the first. Second. n that becomes the third source or drain
° type region n'' type source/drain region), 9a, 9b
, 9c are p-type source/drain regions, 110 is an n-type substrate contact region, 111 is a p-well contact region, and 12 is an oxidized n! for impurity block. (Block oxide film), 13 indicates a PSG (phosphosilicate glass) insulating film.

該第1の実施例においては同図に示すように、ゲート電
極7a、7bの延在領域を含むフィールド酸化膜3によ
って画定されたpチャネルMOSトランジスタ(p−M
OS)の周辺部に該p−M○Sを囲むフィールド酸化膜
βによって画定された枠状のn゛゛基板コンタクト領域
110が、p゛゛ソース・ドレイン領域9a、9b、9
cと離れて設けられ、またnチャネルMOSトランジス
タ(n−MOS)の周辺部に同様該n −M OSを囲
む枠状のp°型ウェル・コンタクト領域111が、n“
型ソース・ドレイン領域8a、8b、8cと離れて設け
られる。
In the first embodiment, as shown in the figure, a p-channel MOS transistor (p-M
A frame-shaped n゛゛ substrate contact region 110 defined by a field oxide film β surrounding the p-M○S is provided in the peripheral part of the p-M○S in the peripheral part of the p-M○S.
A frame-shaped p° type well contact region 111 is provided at a distance from the n-channel MOS transistor (n-MOS) and similarly surrounds the n-channel MOS transistor (n-MOS).
It is provided apart from type source/drain regions 8a, 8b, and 8c.

なおp−MOS側の上記A−A、B−B矢視に相当する
断面の構造は、(b)、 [0)図のp−型ウェル2を
除き、ソース・ドレイン領域がp゛゛ソース・ドレイン
領域i域9 a、9 b、9 cに、ウェル・コンタク
ト領域がn゛゛基板コンタクト領域110に代わるのみ
で、他は変わりないので省略する。
Note that the structure of the cross section corresponding to the A-A and B-B arrows on the p-MOS side is such that the source/drain regions are p'source/drain regions except for the p-type well 2 in Figures (b) and [0] In drain region i regions 9a, 9b, and 9c, well contact regions are only replaced with n'substrate contact regions 110, and the rest remains unchanged, so a description thereof will be omitted.

該実施例の構造において、図示p−MO3とn−MOS
の間及び図示しない隣接トランジスタとの間の空乏層の
延びによる結合は、枠状のn°型基板コンタクト領域1
10及びp゛゛ウェル・コンタクト領域111によって
阻止される。
In the structure of this embodiment, the illustrated p-MO3 and n-MOS
The coupling due to the extension of the depletion layer between the transistors and adjacent transistors (not shown) is achieved through the frame-shaped n° type substrate contact region 1.
10 and p'well contact region 111.

またn1型ソース・ドレイン領域3a、3b。Also, n1 type source/drain regions 3a, 3b.

8cはそれぞれゲート電極7a若しくは7bとp1型ウ
ェル・コンタクト領域111によって完全に囲まれ、p
“型ソース・ドレイン領域9a、9b。
8c is completely surrounded by gate electrode 7a or 7b and p1 type well contact region 111, respectively, and p
“type source/drain regions 9a, 9b.

9Cはそれぞれゲート電極7a若しくは7bとn“型基
板コンタクト領域110によって完全に囲まれるので、
それぞれ隣接するソース・ドレイン領域に対する空乏層
の延びによる結合は阻止される。
9C are completely surrounded by the gate electrode 7a or 7b and the n" type substrate contact region 110, respectively, so that
Coupling due to the extension of the depletion layer to each adjacent source/drain region is prevented.

そして又チャネル・ストッパが形成されないので、各ソ
ース・ドレイン領域は高濃度層に接することがなく、そ
の接合容量は減少する。
Furthermore, since no channel stopper is formed, each source/drain region does not come into contact with the high concentration layer, and its junction capacitance is reduced.

第2図はゲート電極?a、7bの配線接続領域70a、
 70bの平坦化を図り、配線接続を容易ならしめるた
めに、枠状n゛゛基板コンタクト領域210及びp゛゛
ウェル・コンタクト領域211をゲート電極7a、7b
の下部で終端せしめゲート電極7a、7bの下部におい
てその一部を欠如せしめた例である。
Is the gate electrode in Figure 2? a, 7b wiring connection area 70a,
In order to flatten the area 70b and facilitate wiring connections, the frame-shaped n゛゛ substrate contact region 210 and the p゛゛ well contact region 211 are connected to the gate electrodes 7a, 7b.
This is an example in which the gate electrodes are terminated at the lower part of the gate electrodes 7a and 7b, and a part of the lower part of the gate electrodes 7a and 7b is cut out.

他の部分は第1図の例と変わりない。ここでDは上記コ
ンタク) %J[域の欠如部を示す。
Other parts are the same as the example shown in FIG. Here, D indicates the missing part of the above-mentioned contact) %J[area.

この構造においては、上記コンタクト領域欠如部りをゲ
ート電極?a、7bで覆い、−電位が印加されている該
ゲート電極が、該欠、如部りにおけるチャネル・カット
の役目を果たすので、該ゲート電極と基体コンタクト領
域によってソース、ドレイン領域がそれぞれ完全に包囲
された形になる。
In this structure, the missing contact area is used as the gate electrode. The gate electrodes covered by electrodes a and 7b and to which a - potential is applied serve as channel cuts in the gaps and regions, so that the source and drain regions are completely separated by the gate electrodes and the substrate contact regions. become surrounded.

従って該構造においても、各ソース、ドレインの結合は
完全に阻止される。
Therefore, in this structure as well, coupling between the sources and drains is completely prevented.

なお第1の実施例においては、ソース、ドレイン形成用
の不純物導入と基体コンタクト形成用の不純物導入は別
々に行われるが、これは同時に行っても良い。但しその
場合、第1図(C1におけるゲート電極延在部の下部に
は基体コンタクト領域は存在せず、基体コンタクHff
域がゲート電極下で終端する第2の実施例の変形となる
In the first embodiment, the impurity introduction for forming the source and drain and the impurity introduction for forming the base contact are performed separately, but they may be performed simultaneously. However, in that case, there is no base contact region under the gate electrode extension part in FIG.
This is a modification of the second embodiment in which the region ends under the gate electrode.

第3図は抵抗素子における実施例を示したちのである。FIG. 3 shows an example of a resistive element.

図中、21はp゛型低抵抗層22a 、 22b 、 
22cは配線コンタクト窓、23a 、 23bは抵抗
素子に接続される配線、23cは基板コンタクト配線を
示し、他の符号は第1図及び第2図と同一の対象物を示
している。
In the figure, 21 denotes p-type low resistance layers 22a, 22b,
22c is a wiring contact window, 23a and 23b are wirings connected to the resistance element, 23c is a substrate contact wiring, and other symbols indicate the same objects as in FIGS. 1 and 2.

該構造において抵抗層21は、該抵抗層21の周辺部に
形成した枠状のn°型法板コンタクト領域110で囲ま
れるので、該抵抗層接合における空乏層の拡がりによっ
て生ずる該抵抗素子と他素子との結合は、該基板コンタ
クト領域によって阻止される。
In this structure, the resistance layer 21 is surrounded by a frame-shaped n° type contact region 110 formed around the periphery of the resistance layer 21, so that the resistance element and other elements caused by the expansion of the depletion layer at the resistance layer junction are Coupling with the device is prevented by the substrate contact region.

また抵抗層の周囲にチャネル・ストッパが形成されない
ので該抵抗層が高濃度領域に接することがなく、該抵抗
層の寄生容量は減少する。
Furthermore, since no channel stopper is formed around the resistance layer, the resistance layer does not come into contact with the high concentration region, and the parasitic capacitance of the resistance layer is reduced.

なお上記総ての実施例において、n゛゛基板コンタクト
領域110.210及びp゛゛ウェル・コンタクト領域
111,211の不純物濃度は通常10”cm−3程度
の高濃度に形成される。
In all of the embodiments described above, the impurity concentration of the n'' substrate contact regions 110, 210 and the p'' well contact regions 111, 211 is usually formed at a high concentration of about 10''cm@-3.

該基板コンタクト領域及びウェル・コンタクト領域は、
基板及びウェルと同電位が印加される機能領域とは特に
離して形成しないでも良い。
The substrate contact area and the well contact area are
It is not necessary to form the layer separately from the functional region to which the same potential as that of the substrate and the well is applied.

なお又本発明は上記実施例に限らず、nウェルを有する
CMO5半導体装置、ツインタブ構造のCMOS半導体
装置、及び単一チャネルのMOS半導体装置にも適用さ
れることは勿論である。
It goes without saying that the present invention is not limited to the above-mentioned embodiments, but can also be applied to CMO5 semiconductor devices having an n-well, CMOS semiconductor devices with a twin-tub structure, and single-channel MOS semiconductor devices.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば、基板或いはウェル等
の半導体基体上に形成されるトランジスタ或いは抵抗等
の素子の周辺部にチャネル・カット領域を形成しないで
も機能素子間及び機能素子内の機能領域間の結合が阻止
出来る。
As explained above, according to the present invention, functions between and within functional elements can be maintained even without forming channel cut regions around elements such as transistors and resistors formed on a semiconductor substrate such as a substrate or well. Coupling between regions can be prevented.

従って上記半導体素子の基体と異なる電位の印加される
機能領域が直に高不純物濃度を有するチャネル・カット
領域に接することがなくなりその接合容量が減少するの
で、CMOS半導体集積回路装置等の動作速度の向上が
図れる。
Therefore, the functional region to which a potential different from that of the substrate of the semiconductor element is applied does not come into direct contact with the channel cut region having a high impurity concentration, and its junction capacitance is reduced, which reduces the operating speed of CMOS semiconductor integrated circuit devices, etc. Improvements can be made.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCM OSゲートアレイにおける第1の実施例
を模式的に示す平面図(al、A−A矢視断面図(bl
、B−B矢視断面図(C1及びC−C矢視断面図[dl
、 第2図はCMOSゲートアレイにおける第2の実施例を
模式的に示す平面図(a)、A−A矢視断面図fb)及
びB−B矢視断面図(C1、第3図は抵抗素子における
一実施例を模式的に示す平面図(aLA−A矢視断面図
(bl、第4図は従来のCMOSゲートアレイにおける
単位セルを模式的に示す平面図(al、A−A矢視断面
図(bl及びB−B矢視断面図(C)である。 図において、 1はn−型シリコン基板、 2はp−型ウェル、 3はフィールド酸化膜、 6はゲート酸化膜、 7a、7bは第1.第2のゲート電極、8a、8b、8
cは n9型ソース・ドレイン領域、 9a、9b、9cは p゛型ソース・ドレイン領域、 12は不純物ブロック用酸化膜、 13はPSG (燐珪酸ガラス)絶縁膜、110はn°
型基板コンタクト領域、 111はp4型ウェル・コンタクト領域を示す。 革f 区 (I2) n−MOS              fi−MθS
茎 Z 酊 使 革3区 2/     /   yta
FIG. 1 is a plan view (al) schematically showing a first embodiment of a CMOS gate array, and a cross-sectional view taken along the line A-A (bl).
, B-B arrow sectional view (C1 and C-C arrow sectional view [dl
, FIG. 2 is a plan view (a) schematically showing a second embodiment of a CMOS gate array, a cross-sectional view along A-A (fb), and a cross-sectional view along B-B (C1, FIG. 3 shows a resistor). A plan view schematically showing an example of an element (aLA-A sectional view (bl), FIG. 4 is a plan view (al, A-A cross-sectional view schematically showing a unit cell in a conventional CMOS gate array) Cross-sectional view (BL and BB arrow cross-sectional view (C). In the figure, 1 is an n-type silicon substrate, 2 is a p-type well, 3 is a field oxide film, 6 is a gate oxide film, 7a, 7b is the first and second gate electrodes, 8a, 8b, 8
c is an n9 type source/drain region; 9a, 9b, 9c are p' type source/drain regions; 12 is an oxide film for impurity blocking; 13 is a PSG (phosphosilicate glass) insulating film; 110 is an n°
type substrate contact region; 111 indicates a p4 type well contact region; Leather f Ward (I2) n-MOS fi-MθS
Stem Z Drunken leather 3 ward 2/ / yta

Claims (1)

【特許請求の範囲】 1、半導体基体上にフィールド絶縁膜と、該フィールド
絶縁膜の開孔によってそれぞれ画定される素子領域及び
基体コンタクト領域を有し、且つ該基体コンタクト領域
が該素子領域を囲んでチャネル・カット機能を兼ね備え
ることを特徴とする半導体装置。 2、上記基体コンタクト領域がゲート下で終端していて
、該ゲート・パターンと該基体コンタクト領域によって
上記素子領域内の分離すべき機能領域が完全に包囲され
ていることを特徴とする特許請求の範囲第1項記載の半
導体装置。
[Scope of Claims] 1. A field insulating film on a semiconductor substrate, and an element region and a substrate contact region each defined by an opening in the field insulating film, and the substrate contact region surrounds the device region. A semiconductor device characterized by having a channel cut function. 2. The substrate contact region terminates under the gate, and the gate pattern and the substrate contact region completely surround the functional region to be separated in the device region. A semiconductor device according to scope 1.
JP59236055A 1984-11-09 1984-11-09 Semiconductor device Pending JPS61114552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236055A JPS61114552A (en) 1984-11-09 1984-11-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236055A JPS61114552A (en) 1984-11-09 1984-11-09 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61114552A true JPS61114552A (en) 1986-06-02

Family

ID=16995069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236055A Pending JPS61114552A (en) 1984-11-09 1984-11-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61114552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399895A (en) * 1993-03-23 1995-03-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing thereof
JPH08288479A (en) * 1995-04-20 1996-11-01 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399895A (en) * 1993-03-23 1995-03-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing thereof
JPH08288479A (en) * 1995-04-20 1996-11-01 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US4893164A (en) Complementary semiconductor device having high switching speed and latchup-free capability
JPH03214666A (en) Semiconductor device containing charge transfer device and manufacture thereof
JPS61114552A (en) Semiconductor device
JPH02862B2 (en)
JPS6161536B2 (en)
JPS62174965A (en) Integrated circuit
JP2780896B2 (en) Method for manufacturing semiconductor integrated circuit
JPS5937858B2 (en) Semiconductor device and its manufacturing method
JPS618969A (en) Semiconductor integrated circuit device
JP2635577B2 (en) Semiconductor device
JPH0287568A (en) Manufacture of semiconductor device
JP3138263B2 (en) Method for manufacturing semiconductor device
JPS63137450A (en) Laminated type cmos gate array
JPS61283157A (en) Cmos semiconductor integrated circuit device
JPS61120459A (en) Manufacture of semiconductor integrated circuit
JP4517410B2 (en) Semiconductor device
JPH0114708B2 (en)
US20050040437A1 (en) Cascaded transistors in one well
JPH09191054A (en) Cmos transistor
JP2993041B2 (en) Complementary MOS semiconductor device
JP2738602B2 (en) Semiconductor device
JPS61140164A (en) Manufacture of semiconductor ic
JPH02208967A (en) Semiconductor integrated circuit
JPH03120752A (en) Semiconductor device and manufacture thereof
JPH01168054A (en) Semiconductor integrated circuit device