JPH0864827A - Semiconductor device and method of fabrication thereof - Google Patents

Semiconductor device and method of fabrication thereof

Info

Publication number
JPH0864827A
JPH0864827A JP6198151A JP19815194A JPH0864827A JP H0864827 A JPH0864827 A JP H0864827A JP 6198151 A JP6198151 A JP 6198151A JP 19815194 A JP19815194 A JP 19815194A JP H0864827 A JPH0864827 A JP H0864827A
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
film
gate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6198151A
Other languages
Japanese (ja)
Inventor
Katsutada Horiuchi
勝忠 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6198151A priority Critical patent/JPH0864827A/en
Publication of JPH0864827A publication Critical patent/JPH0864827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To prevent gate electrodes from being displaced therebetween by constructing a first gate electrode below an ultrathin film, a single crystal ultra-thin film and a second gate electrode with the same mask in a self matching manner. CONSTITUTION: A 300nm thick Si film and a 100nm thick Si oxide film are deposited by a chemical vapor reaction, and are patterned whereby a minimum 200nm wide second gate electrode 12 and a gate protective insulating film 13 are formed. A second gate insulating film 10, an Si ultrathin film 5, and an oxide film 9 are processed using the gate protective insulating film 13 as a mask. Then, anisotropic dry etching is applied using the gate protective insulating film 13 as a mask to process an Si film 3 substantially vertically for patterning a first gate electrode 15. Accordingly, the gate electrodes are prevented from being displaced by constructing the first and second gate electrodes 12, 15, and the Si ultrathin film 5 in a self aligning manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁膜上に構成された半
導体装置及びその製造方法に係り、特に、電流駆動能力
に優れた超薄膜二重ゲート構造MOS型トランジスタと
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device formed on an insulating film and a manufacturing method thereof, and more particularly to an ultra thin film double gate structure MOS transistor excellent in current driving capability and a manufacturing method thereof.

【0002】[0002]

【従来の技術】半導体基板上に絶縁膜を介して構成され
た単結晶超薄膜にトランジスタを形成する技術はSOI
技術と称されており公知である。特に、単結晶超薄膜を
薄いゲート絶縁膜を介して上下から挾むようにゲート電
極を配置した構造も二重ゲート構造と称されて公知であ
る。
2. Description of the Related Art A technique for forming a transistor in a single crystal ultrathin film formed on a semiconductor substrate with an insulating film interposed is SOI.
It is called technology and is well known. In particular, a structure in which a gate electrode is arranged so as to sandwich a single crystal ultra-thin film from above and below via a thin gate insulating film is also known as a double gate structure.

【0003】図2は上記二重ゲート構造を有する半導体
装置の断面構造を示す。図に於いて、1は半導体基板、
2は埋込み絶縁膜、50は単結晶超薄膜であり、絶縁膜
24及び90を介して第一のゲート電極140と第二の
ゲート電極110により挾まれる構成となっている。9
0は素子間分離絶縁膜、180,190は単結晶超薄膜
50内に形成されたソース拡散層及びドレイン拡散層で
あり、25及び26はソース電極及びドレイン電極であ
る。
FIG. 2 shows a cross-sectional structure of a semiconductor device having the above double gate structure. In the figure, 1 is a semiconductor substrate,
Reference numeral 2 is a buried insulating film, and 50 is a single crystal ultra-thin film, which is sandwiched by the first gate electrode 140 and the second gate electrode 110 via the insulating films 24 and 90. 9
Reference numeral 0 is an element isolation insulating film, 180 and 190 are source diffusion layers and drain diffusion layers formed in the single crystal ultrathin film 50, and 25 and 26 are source electrodes and drain electrodes.

【0004】上記構造は素子間分離絶縁膜90,第一の
ゲート絶縁膜及び第一のゲート電極140、更には厚い
半導体膜又は絶縁膜91までを半導体基板50に形成
し、厚い半導体膜又は絶縁膜91表面を平坦化研磨し、
ウエハ貼合せ技術により絶縁膜2が表面に形成された別
の半導体基板1と貼合せる技術に基づいている。貼合せ
工程の後、半導体基板50の裏面側から研削,研磨によ
り素子間分離絶縁膜90の裏面で規定される厚さまで薄
膜化し、単結晶超薄膜50を形成している。
In the above structure, the element isolation insulating film 90, the first gate insulating film and the first gate electrode 140, and even the thick semiconductor film or insulating film 91 are formed on the semiconductor substrate 50, and the thick semiconductor film or insulating film is formed. The surface of the film 91 is flattened and polished,
It is based on a technique of bonding another semiconductor substrate 1 having an insulating film 2 formed on its surface by a wafer bonding technique. After the bonding step, the single crystal ultra-thin film 50 is formed by grinding and polishing from the back surface side of the semiconductor substrate 50 to a thickness defined by the back surface of the element isolation insulating film 90.

【0005】この工程により形成した単結晶超薄膜50
領域に第二のゲート電極110,ソース拡散層180,
ドレイン拡散層190等を従来製造工程に基づいて形成
している。上記の従来製造方法に基づく超薄膜二重ゲー
ト構造トランジスタにおいては半導体基板に製造された
通常トランジスタに比べて2倍以上の大電流化が可能で
ある。
Single crystal ultra-thin film 50 formed by this process
The second gate electrode 110, the source diffusion layer 180,
The drain diffusion layer 190 and the like are formed based on the conventional manufacturing process. In the ultra thin film double gate structure transistor based on the above conventional manufacturing method, the current can be increased by a factor of 2 or more as compared with the normal transistor manufactured on the semiconductor substrate.

【0006】[0006]

【発明が解決しようとする課題】従来の二重ゲートトラ
ンジスタは製造方法からも明らかなように、第二のゲー
ト電極110は第一のゲート電極140に位置合せして
別途に形成されるためゲート電極間の位置ずれが避けら
れなかった。特に、ソース,ドレイン拡散層180、及び
190は第二のゲート電極110をマスクとして超薄膜
50に導入するため、ソース,ドレイン拡散層180、
及び190と第一のゲート電極間の寄生容量が上記位置
ずれに従って、ばらつき、このためトランジスタの動特
性がばらつくという欠点があった。
In the conventional double gate transistor, as is apparent from the manufacturing method, the second gate electrode 110 is formed separately in alignment with the first gate electrode 140. The displacement between the electrodes was unavoidable. In particular, since the source / drain diffusion layers 180 and 190 are introduced into the ultrathin film 50 using the second gate electrode 110 as a mask, the source / drain diffusion layers 180,
The parasitic capacitance between the gate electrodes 190 and 190 and the first gate electrode fluctuates according to the positional deviation, and thus the dynamic characteristics of the transistor fluctuate.

【0007】MOSトランジスタの基本動作速度はCを
寄生容量,Vを電源電圧,Iをソース・ドレイン電流と
するとC・V/Iに比例するが、二重ゲートトランジス
タではゲート容量の倍増とソース,ドレイン拡散層18
0、及び190と第一のゲート電極間寄生容量の増加の
ために駆動電流増加の特徴も基本動作速度向上の効果は
小さかった。更に、この構造ではゲート電極形成が二回
にわたり、さらに製造工程途中にパターン付きウエハの
貼合せ(貼合せ強度向上のための高温熱処理工程を含
む)と研削,研磨工程等従来の半導体装置製造工程に比
べて清浄でない製造工程を経過せねばならず、通常のト
ランジスタに比べて製造工程数の増加が避けられなかっ
た。これにより製造原価の上昇と良品歩留りの低下が避
けられなかった。
The basic operating speed of a MOS transistor is proportional to C · V / I, where C is the parasitic capacitance, V is the power supply voltage, and I is the source / drain current. Drain diffusion layer 18
0 and 190 and the first parasitic capacitance between the gate electrodes were increased, but the feature of increasing the driving current was also small in the effect of improving the basic operation speed. Furthermore, in this structure, the gate electrode is formed twice, and the conventional semiconductor device manufacturing process such as the bonding of the patterned wafer (including the high temperature heat treatment process for improving the bonding strength), the grinding and the polishing process during the manufacturing process. As compared with the conventional transistor, an unclean manufacturing process must be performed, and an increase in the number of manufacturing processes is inevitable compared with a normal transistor. This inevitably causes an increase in manufacturing cost and a decrease in yield of non-defective products.

【0008】特にパターン付きウエハの貼合せ工程は、
半導体表面に絶縁膜等が形成された反りの状態が異なる
二枚のウエハを貼合せるため、パターン歪が避けられ
ず、位置合わせで重大な支障が生じる欠点があった。
In particular, the step of laminating the patterned wafer is
Since two wafers having an insulating film or the like formed on the semiconductor surface and having different warp states are bonded to each other, pattern distortion cannot be avoided, which causes a serious problem in alignment.

【0009】また、従来の二重ゲートトランジスタの他
の欠点は、ゲート直下からソース電極までの電流経路が
超薄膜の膜厚で規定されるため、チャネルコンダクタン
スの増加の特徴が大きなソース直列抵抗のため阻害され
る欠点を有していた。
Another drawback of the conventional double-gate transistor is that the current path from directly under the gate to the source electrode is defined by the thickness of the ultrathin film, so that the source series resistance of the source series resistor, which has a large feature of increasing the channel conductance. Therefore, it had the drawback of being hindered.

【0010】[0010]

【課題を解決するための手段】本発明においては、超薄
膜二重ゲートトランジスタの上記した欠点を解消するた
め、支持基板の上に絶縁膜,半導体薄膜,薄い第一のゲ
ート絶縁膜,単結晶超薄膜が順に構成された多層構造半
導体基板を準備する。上記基板の単結晶超薄膜に通常の
MOSトランジスタの製造方法に基づき、第二のゲート
絶縁膜,ゲート電極を形成し、引き続いてゲート電極加
工マスクのまま第二のゲート絶縁膜,単結晶超薄膜,第
一のゲート絶縁膜、更には半導体薄膜をパターニングし
て第一のゲート電極を形成する。
According to the present invention, in order to solve the above-mentioned drawbacks of an ultrathin film double gate transistor, an insulating film, a semiconductor thin film, a thin first gate insulating film, and a single crystal are formed on a supporting substrate. A multi-layered semiconductor substrate in which ultra thin films are sequentially formed is prepared. A second gate insulating film and a gate electrode are formed on the single-crystal ultra-thin film of the substrate based on a general MOS transistor manufacturing method, and subsequently, the second gate insulating film and the single-crystal ultra-thin film are left as the gate electrode processing mask. , The first gate insulating film and further the semiconductor thin film are patterned to form a first gate electrode.

【0011】尚、半導体薄膜の上記パターニングに先だ
って、少なくとも単結晶超薄膜の側面部を覆うように薄
い側壁絶縁膜を構成させる。半導体薄膜のパターニング
の後、側壁絶縁膜をマスクとして第一のゲート電極の側
壁から不純物を拡散により導入して低抵抗化させる。同
時に第二のゲート電極も上部から不純物を導入して低抵
抗化してもよい。その後、単結晶超薄膜の側面部の絶縁
膜を除去してから湿式熱酸化法により第一及び第二のゲ
ート電極の露出部に厚い酸化膜を、単結晶超薄膜の側面
部には薄い酸化膜を形成する。
Prior to the above patterning of the semiconductor thin film, a thin side wall insulating film is formed so as to cover at least the side surface of the single crystal ultra thin film. After patterning the semiconductor thin film, impurities are diffused from the sidewall of the first gate electrode by using the sidewall insulating film as a mask to reduce the resistance. At the same time, the second gate electrode may be doped with impurities from above to reduce the resistance. Then, after removing the insulating film on the side surface of the single crystal ultra-thin film, a wet oxide film is used to form a thick oxide film on the exposed portions of the first and second gate electrodes and a thin oxide film on the side surface of the single crystal ultra-thin film. Form a film.

【0012】単結晶超薄膜の側面部の薄い酸化膜膜厚分
をエッチング除去すると第一及び第二のゲート電極部に
のみ自己整合的に絶縁膜が残置される。この状態より不
純物が高濃度に添加された半導体薄膜を全面に堆積し、
その後の熱処理により単結晶超薄膜の側面から不純物を
拡散させてソース,ドレイン拡散層を形成する。その
後、不純物が高濃度に添加された半導体薄膜をパターニ
ングしてソース,ドレイン引出し電極とする。最後に絶
縁膜の堆積と所望箇所への開口、更には配線金属膜の堆
積とそのパターニングによりソース,ドレイン電極等を
形成すれば良い。尚、第一及び第二のゲート電極の露出
部に厚い酸化膜が選択的に形成される現象は高濃度に不
純物が添加された半導体領域で増速酸化が行われる現象
に基づく。
When the thin oxide film on the side surface of the single crystal ultra-thin film is removed by etching, the insulating film is left in a self-aligned manner only on the first and second gate electrode portions. From this state, a semiconductor thin film with a high concentration of impurities is deposited on the entire surface,
Impurities are diffused from the side surface of the single crystal ultra-thin film by the subsequent heat treatment to form source and drain diffusion layers. After that, the semiconductor thin film to which impurities are added at a high concentration is patterned to serve as source and drain extraction electrodes. Finally, the source and drain electrodes and the like may be formed by depositing an insulating film and opening at desired locations, and further depositing a wiring metal film and patterning the same. The phenomenon that a thick oxide film is selectively formed on the exposed portions of the first and second gate electrodes is based on the phenomenon that accelerated oxidation is performed in a semiconductor region to which a high concentration of impurities is added.

【0013】[0013]

【作用】上記手法に基づけば超薄膜下部に配置される第
一のゲート電極と単結晶超薄膜及び第二のゲート電極は
同一マスクにより自己整合の関係で構成されるのでソー
ス,ドレイン拡散層と第一のゲート電極間の寄生容量の
ばらつきは本質的に解消される。上記手法に基づけば、
製造工程数も通常のMOSトランジスタと同等であり、
通常のMOSトランジスタ製造における微細化技術がそ
のまま適用できるばかりでなく、従来の二重ゲートトラ
ンジスタの製造に比べて製造工程数の低減が可能とな
る。その上、製造工程途中に研削,研磨等の清浄でない
工程を使用せずにすむ。従って、製造原価の上昇を伴う
ことなく大電流特性に優れ、超高速動作が可能な微細な
トランジスタを実現することができる。
According to the above method, the first gate electrode, the single crystal ultra thin film, and the second gate electrode, which are arranged under the ultra thin film, are formed in a self-aligned relationship by the same mask. Variations in parasitic capacitance between the first gate electrodes are essentially eliminated. Based on the above method,
The number of manufacturing steps is the same as that of normal MOS transistors,
Not only the miniaturization technology in the usual MOS transistor manufacturing can be applied as it is, but also the number of manufacturing steps can be reduced as compared with the conventional manufacturing of a double gate transistor. Moreover, it is not necessary to use unclean steps such as grinding and polishing during the manufacturing process. Therefore, it is possible to realize a fine transistor which is excellent in large-current characteristics and can operate at an ultrahigh speed without increasing the manufacturing cost.

【0014】更に、本発明に基づけば第一及び第二のゲ
ート電極寸法ばかりでなくその側壁に形成する絶縁膜の
膜厚も同一製造工程で同一条件で形成可能となり、寄生
容量低減が容易となる。側壁絶縁膜の形成で、第一及び
第二のゲート絶縁膜に着目すると、超薄膜端部からの酸
化が進行するため端部では内部に較べて膜厚が厚く構成
される現象も付加される。これにより超薄膜端部に構成
されるソース,ドレイン拡散層と第一、及び第二のゲー
ト電極の重畳部におけるゲート絶縁膜膜厚を選択的に厚
く構成できる。従って、ゲート端で通常問題となるソー
ス・ゲート間短絡不良等の不良発生を低減でき、且つ、
ソース・ゲート及びドレイン・ゲート間重畳寄生容量も
低減できる効果がある。即ち、信頼性に優れ、且つ、高
速動作特性を有する二重ゲートトランジスタを提供する
ことができる。
Further, according to the present invention, not only the dimensions of the first and second gate electrodes but also the film thickness of the insulating film formed on the side walls thereof can be formed under the same conditions in the same manufacturing process, and the parasitic capacitance can be easily reduced. Become. Focusing on the first and second gate insulating films in the formation of the side wall insulating film, the phenomenon that the film thickness is thicker at the edges than at the inside is added due to the progress of oxidation from the edges of the ultrathin film. . As a result, it is possible to selectively increase the film thickness of the gate insulating film in the overlapping portion of the source / drain diffusion layers and the first and second gate electrodes formed at the end of the ultrathin film. Therefore, it is possible to reduce the occurrence of defects such as a source-gate short circuit defect, which is usually a problem at the gate end, and
This has the effect of reducing the parasitic parasitic capacitance between the source / gate and the drain / gate. That is, it is possible to provide a double gate transistor having excellent reliability and high-speed operation characteristics.

【0015】更に、本発明ではソース抵抗として作用す
るゲート電極端部から金属配線との接続までをトランジ
スタが形成される単結晶超薄膜の膜厚に制限されること
なく十分に厚い別の半導体膜,金属膜、あるいは金属珪
化膜で構成できるので従来二重ゲート構造トランジスタ
のソース抵抗が活性層を構成する超薄膜半導体の膜厚で
制限されて低減できず、結果的に大電流化上の障害とな
っていた欠点を解消できる効果もある。
Further, according to the present invention, the semiconductor layer from the end portion of the gate electrode which acts as the source resistance to the connection with the metal wiring is not limited to the thickness of the single crystal ultra-thin film in which the transistor is formed and is sufficiently thick. , A metal film or a metal silicide film, the source resistance of the conventional double gate structure transistor cannot be reduced because it is limited by the thickness of the ultra-thin film semiconductor that constitutes the active layer, resulting in an obstacle to increasing the current. It also has the effect of eliminating the drawbacks.

【0016】[0016]

【実施例】【Example】

(実施例1)図1は実施例1に基づく半導体装置の断面
図、図3から図10は実施例1に基づく半導体装置の製
造工程を示す断面図である。なお、図3以下では、埋込
絶縁膜2底部の支持基板1の図示を省略している。
(Embodiment 1) FIG. 1 is a sectional view of a semiconductor device based on the embodiment 1, and FIGS. 3 to 10 are sectional views showing manufacturing steps of the semiconductor device according to the embodiment 1. Note that the support substrate 1 at the bottom of the embedded insulating film 2 is not shown in FIGS.

【0017】各図で、左側はトランジスタのゲート長方
向断面を、右側にはゲート幅方向断面を示す。半導体基
板よりなる支持基板1上に順に500nm厚のシリコン
(Si)熱酸化膜よりなる埋込絶縁膜2,300nm厚
のSi膜3,5nm厚のSi熱酸化膜よりなる第一のゲ
ート絶縁膜4、及び100nm厚のSi単結晶超薄膜5
が構成された多層半導体基板を用意する。多層半導体基
板は絶縁膜2が主表面に形成された第一の単結晶Si基
板と主表面にゲート絶縁膜4、及びSi膜3が順次形成
された第二の単結晶Si基板とを直接貼合せ法により接
着させ、1100℃程度の高温熱処理により結合強度を
高めた後、第一のSi基板の裏面側から研削、及び研磨
により略薄層化した後、層厚分布を補正するように局所
エッチングを施して超薄膜化して形成する。
In each drawing, the left side shows a cross section in the gate length direction of the transistor, and the right side shows a cross section in the gate width direction. A buried insulating film made of a silicon (Si) thermal oxide film having a thickness of 500 nm, a Si insulating film having a thickness of 300 nm, a Si gate film having a Si thermal oxide film having a thickness of 5 nm 4, and 100 nm thick Si single crystal ultra-thin film 5
A multi-layer semiconductor substrate having the above is prepared. The multi-layer semiconductor substrate is obtained by directly bonding a first single crystal Si substrate having an insulating film 2 formed on its main surface and a second single crystal Si substrate having a gate insulating film 4 and a Si film 3 sequentially formed on its main surface. After bonding by the bonding method and increasing the bond strength by high-temperature heat treatment at about 1100 ° C., the back surface of the first Si substrate is ground and polished to make a thin layer, and the layer thickness distribution is locally corrected to correct the layer thickness distribution. An ultra thin film is formed by etching.

【0018】上記多層半導体基板で、Si膜3には高濃
度の燐、又は硼素等の不純物を高濃度に添加し、低抵抗
化したものであってもよい。更に、第一のゲート絶縁膜
4はSi酸化膜ではなく、例えば、酸化膜を窒化した窒
化酸化膜、あるいはSi窒化膜、その他の堆積絶縁膜で
あってもよい。尚、多層半導体基板の製造方法はこの手
法に基づく方法に限定されることなく、例えば、酸素イ
オン注入法により半導体基板の所定深さ位置に所望膜厚
の酸化膜を形成する手法に基づいてもよい(図3)。
In the above-mentioned multilayer semiconductor substrate, the Si film 3 may be made to have a low resistance by adding a high concentration of impurities such as phosphorus or boron at a high concentration. Further, the first gate insulating film 4 may be, for example, a oxynitride film obtained by nitriding an oxide film, a Si nitride film, or another deposited insulating film instead of the Si oxide film. The method for manufacturing the multilayer semiconductor substrate is not limited to the method based on this method, and may be based on, for example, the method of forming an oxide film having a desired film thickness at a predetermined depth position of the semiconductor substrate by the oxygen ion implantation method. Good (Figure 3).

【0019】図3で示される多層半導体基板の単結晶S
i超薄膜5の表面の薄いSi酸化膜6とSi窒化膜7か
らなる積層膜を形成し、所望領域に選択的に残置するよ
うにパターニングしてから積層膜をマスクにして5×1
15/cm2 の燐をSi膜3にイオン注入し、その後の熱
処理により低抵抗Si膜領域8を形成した(図4)。
Single crystal S of the multilayer semiconductor substrate shown in FIG.
Forming a laminated film composed of the thin Si oxide film 6 and the Si nitride film 7 on the surface of the i ultra-thin film 5, patterning so as to selectively leave it in a desired region, and then using the laminated film as a mask 5 × 1
Phosphorus of 0 15 / cm 2 was ion-implanted into the Si film 3, and a low resistance Si film region 8 was formed by subsequent heat treatment (FIG. 4).

【0020】図4の状態からSi窒化膜7を酸化マスク
とする選択酸化を施して露出されているSi超薄膜5側
面、及び低抵抗Si膜領域8表面に50nm厚の酸化膜
9を形成してから薄いSi酸化膜6とSi窒化膜7から
なる積層膜を選択的に除去した。この状態から露出され
ているSi超薄膜5の表面に改めて5nm厚の熱酸化膜
を形成して第二のゲート絶縁膜10を形成した。その
後、後述する第一のゲート電極と第二のゲート電極の接
続のための開口を酸化膜9の所望箇所に形成した(図
5)。
From the state shown in FIG. 4, a 50 nm thick oxide film 9 is formed on the side surface of the Si ultra-thin film 5 exposed by selective oxidation using the Si nitride film 7 as an oxidation mask and on the surface of the low resistance Si film region 8. Then, the laminated film including the thin Si oxide film 6 and the Si nitride film 7 was selectively removed. A thermal oxide film having a thickness of 5 nm was formed again on the surface of the Si ultrathin film 5 exposed from this state to form the second gate insulating film 10. After that, an opening for connecting a first gate electrode and a second gate electrode, which will be described later, was formed in a desired portion of the oxide film 9 (FIG. 5).

【0021】図5の状態より化学気相反応による300
nm厚のSi膜と100nm厚のSi酸化膜を堆積し、
そのパターニングにより最小寸法200nm幅の第二の
ゲート電極12、及びゲート保護絶縁膜13を形成し
た。Si膜には堆積時に高濃度の不純物を添加しても良
い(図6)。
From the state of FIG. 5, 300 by chemical vapor reaction
nm Si film and 100 nm Si oxide film are deposited,
By the patterning, the second gate electrode 12 having the minimum dimension of 200 nm width and the gate protective insulating film 13 were formed. A high concentration of impurities may be added to the Si film during deposition (FIG. 6).

【0022】図6の状態より第二のゲート絶縁膜10と
Si超薄膜5、及び酸化膜9ををゲート保護絶縁膜13
をマスクとして異方性ドライエッチングにより加工し
た。その後、10nm厚のSi窒化膜を全面に堆積して
から異方性ドライエッチングにより平坦部分のSi窒化
膜を選択的に除去して第二のゲート電極12、及びSi
超薄膜5の側壁部にのみSi窒化膜14を残置させた
(図7)。
From the state shown in FIG. 6, the second gate insulating film 10, the Si ultra-thin film 5, and the oxide film 9 are formed on the gate protective insulating film 13
Was used as a mask for anisotropic dry etching. Thereafter, a Si nitride film having a thickness of 10 nm is deposited on the entire surface, and then the Si nitride film on the flat portion is selectively removed by anisotropic dry etching to remove the second gate electrode 12 and Si.
The Si nitride film 14 was left only on the side wall of the ultrathin film 5 (FIG. 7).

【0023】図7の状態から残置しているゲート保護絶
縁膜13をマスクとして異方性ドライエッチングを施
し、Si膜3を略垂直加工して第一のゲート電極15を
パターニングした。その後、ゲート保護絶縁膜13を除
去してからSi窒化膜14を拡散阻止マスクとして露出
されている第一のゲート電極15の側壁から、また第二
のゲート電極12の上部からPOCl3 を拡散源する燐
の拡散を行い、第一のゲート電極15を低抵抗化させた
(図8)。
Anisotropic dry etching was performed using the gate protection insulating film 13 remaining from the state of FIG. 7 as a mask, the Si film 3 was processed substantially vertically, and the first gate electrode 15 was patterned. Then, after removing the gate protection insulating film 13, POCl 3 is diffused from the sidewall of the first gate electrode 15 exposed using the Si nitride film 14 as a diffusion blocking mask and from the upper portion of the second gate electrode 12. Then, phosphorus was diffused to reduce the resistance of the first gate electrode 15 (FIG. 8).

【0024】図8の状態からSi窒化膜14を選択的に
除去し、第一のゲート電極15と単結晶Si超薄膜5の
側壁、及び第二のゲート電極12の上面と側壁面を露出
させた。続いて、酸化温度800℃の湿式熱酸化法によ
り露出面に酸化膜を形成してゲート側壁絶縁膜16とし
た。湿式熱酸化で、燐が高濃度に添加された第一のゲー
ト電極15、及び第二のゲート電極12の露出面には1
50nm厚の酸化膜を形成したが低不純物濃度の単結晶
Si超薄膜5の側壁には15nmの酸化膜が形成された
だけであった。その後、単結晶Si超薄膜5の側壁に形
成された酸化膜を水で稀釈したフッ化水素(HF)溶液
で完全に除去したが、この工程により第一のゲート電極
15、及び第二のゲート電極12の側壁絶縁膜の膜厚は
120nmとなった。この状態より燐が高濃度に添加さ
れた低抵抗Si膜17を300nmの厚さで堆積し、そ
の後の熱処理により単結晶Si超薄膜5の側壁部に高濃
度のn型ソース拡散層18、及びドレイン拡散層19を
形成させた(図9)。
The Si nitride film 14 is selectively removed from the state shown in FIG. 8 to expose the sidewalls of the first gate electrode 15 and the single crystal Si ultrathin film 5, and the upper surface and sidewall surface of the second gate electrode 12. It was Then, an oxide film was formed on the exposed surface by a wet thermal oxidation method at an oxidation temperature of 800 ° C. to form a gate sidewall insulating film 16. 1 is formed on the exposed surface of the first gate electrode 15 and the second gate electrode 12 to which phosphorus is added at a high concentration by wet thermal oxidation.
An oxide film having a thickness of 50 nm was formed, but only a 15 nm oxide film was formed on the side wall of the single crystal Si ultrathin film 5 having a low impurity concentration. After that, the oxide film formed on the side wall of the single crystal Si ultra-thin film 5 was completely removed by a hydrogen fluoride (HF) solution diluted with water. The film thickness of the sidewall insulating film of the electrode 12 was 120 nm. From this state, a low resistance Si film 17 to which phosphorus is added at a high concentration is deposited to a thickness of 300 nm, and the subsequent heat treatment causes a high concentration n-type source diffusion layer 18 to be formed on the side wall of the single crystal Si ultrathin film 5, and The drain diffusion layer 19 was formed (FIG. 9).

【0025】図9の状態から第二のゲート電極12のパ
ターンを800nm太らせた相似形状の白黒反転マスク
により第二のゲート電極12上面と上面がほぼ一致する
ごとき厚さのレジスト膜パターン20を第二のゲート電
極12から略一定距離になるように配置してからレジス
ト膜パターン20と第二のゲート電極12以外の凹部を
埋めるように第二のレジスト膜21を塗布して表面を平
坦化させた。
From the state shown in FIG. 9, a resist film pattern 20 having a thickness such that the upper surface of the second gate electrode 12 and the upper surface of the second gate electrode 12 are substantially aligned with each other is formed by thickening the pattern of the second gate electrode 12 by 800 nm. The second gate electrode 12 is arranged at a substantially constant distance, and then a second resist film 21 is applied so as to fill the recesses other than the resist film pattern 20 and the second gate electrode 12, thereby flattening the surface. Let

【0026】続いて、第二のレジスト膜21表面からレ
ジスト膜をドライエッチングにより均一に除去して第二
のゲート電極上の低抵抗Si膜17面を露出させた。続
いて、等方性ドライエッチングにより低抵抗Si膜17
をその略膜厚分だけエッチングした。この工程により低
抵抗Si膜17は第二のゲート電極12上で選択的に除
去される(図10)。
Subsequently, the resist film was uniformly removed from the surface of the second resist film 21 by dry etching to expose the surface of the low resistance Si film 17 on the second gate electrode. Then, a low resistance Si film 17 is formed by isotropic dry etching.
Was etched by the thickness of the film. By this step, the low resistance Si film 17 is selectively removed on the second gate electrode 12 (FIG. 10).

【0027】図10の状態からレジスト膜パターン2
0、及びレジスト膜21を全面的に除去してから低抵抗
Si膜17をパターニングしてソース引出し電極22と
ドレイン引出し電極23を形成した。尚、図10で示し
た第二のゲート電極12上の低抵抗Si膜17の除去工
程を省略し、ソース引出し電極22とドレイン引出し電
極23の形成工程で第二のゲート電極12上のSi膜1
7を除去しても何らさしつかえない。ソース引出し電極
22とドレイン引出し電極23の形成の後、全面に配線
層間絶縁膜24を堆積し、その所望箇所に開口を施して
からAlを主材料とする金属膜を蒸着とそのパターニン
グによりソース金属配線25,ドレイン金属配線26,
ゲート金属配線27を含む配線層を形成した(図1)。
From the state of FIG. 10, the resist film pattern 2
0 and the resist film 21 were completely removed, and then the low resistance Si film 17 was patterned to form a source extraction electrode 22 and a drain extraction electrode 23. The removal process of the low resistance Si film 17 on the second gate electrode 12 shown in FIG. 10 is omitted, and the Si film on the second gate electrode 12 is omitted in the process of forming the source extraction electrode 22 and the drain extraction electrode 23. 1
There is nothing wrong with removing 7. After forming the source lead-out electrode 22 and the drain lead-out electrode 23, a wiring interlayer insulating film 24 is deposited on the entire surface, an opening is formed at a desired portion thereof, and then a metal film containing Al as a main material is deposited and patterned to form a source metal. Wiring 25, drain metal wiring 26,
A wiring layer including the gate metal wiring 27 was formed (FIG. 1).

【0028】製造工程順に従って製造された本実施例の
半導体装置では、10nm以下と極めて薄い単結晶半導
体薄膜をゲート絶縁膜を介して上下から挟みこむように
二つのゲート電極で制御する二重ゲート完全空乏型MO
Sトランジスタに関し、上部のゲート電極12,チャネ
ルを構成する超薄膜単結晶半導体層5、及び下部のゲー
ト電極15を同一断面形状で且つ、自己整合の関係で構
成できる。この構成で、ソース,ドレイン拡散領域18
及び19は超薄膜単結晶半導体層5の側壁から導入され
るため、ソース,ドレイン拡散層18及び19が上下の
各々のゲート電極と重畳する面積も自己整合の関係で一
義的に決定される。これにより上下のゲート電極が自己
整合でなく構成されていた従来の二重ゲート構造に於い
て、上部ゲート電極を拡散素子マスクとして導入された
ソース,ドレイン拡散層は下部ゲート電極との重畳面積
が素子ごとにばらつき入出力容量が特定できなかった欠
点、更に最悪の場合はソース,ドレイン領域と下部ゲー
ト電極が重畳せず、いわゆる、オフセット領域が形成さ
れて下部ゲート電極の効果が変動することに起因する電
流の低減、又はばらつき等の問題を本質的に解消するこ
とができた。
In the semiconductor device of this embodiment manufactured according to the manufacturing process sequence, the double gate complete control is performed by the two gate electrodes so that the extremely thin single crystal semiconductor thin film of 10 nm or less is sandwiched from above and below via the gate insulating film. Depleted MO
Regarding the S-transistor, the upper gate electrode 12, the ultra-thin single-crystal semiconductor layer 5 forming the channel, and the lower gate electrode 15 can be formed in the same sectional shape and in a self-aligned relationship. With this configuration, the source / drain diffusion region 18
Since and 19 are introduced from the side wall of the ultrathin single crystal semiconductor layer 5, the area where the source / drain diffusion layers 18 and 19 overlap the upper and lower gate electrodes is also uniquely determined by the self-alignment relationship. As a result, in the conventional double gate structure in which the upper and lower gate electrodes are not self-aligned, the source / drain diffusion layer introduced with the upper gate electrode as a diffusion element mask has an overlapping area with the lower gate electrode. There is a drawback that the input / output capacitance cannot be specified for each element, and in the worst case, the source / drain regions and the lower gate electrode do not overlap with each other, so that a so-called offset region is formed and the effect of the lower gate electrode varies. It was possible to essentially solve the problems such as the reduction of the current caused by the variation or the variation.

【0029】本実施例に基づく半導体装置に於いて、単
結晶半導体超薄膜4は第一のゲート電極15及び第二の
ゲート電極16と同一マスクにより自己整合の関係でパ
ターニングされ、且つ第一のゲート電極15及び第二の
ゲート電極16の側壁には高不純物濃度領域での形成膜
厚が低不純物濃度領域上の10倍以上に達する濃度差酸
化法を利用して形成できる。側壁絶縁膜16の形成は一
度の湿式低温酸化と単結晶半導体超薄膜4の側壁に形成
された薄い酸化膜の除去により実現でき、第一のゲート
電極15及び第二のゲート電極16と自己整合的に構成
される。従って、複数工程による従来の側壁絶縁膜の形
成法に比べて製造工程が簡略化され、膜厚ばらつきの低
減、及びチャネル長等の精密制御が可能となった。
In the semiconductor device according to this embodiment, the single crystal semiconductor ultrathin film 4 is patterned in a self-aligned relationship with the first gate electrode 15 and the second gate electrode 16 by the same mask, and The sidewalls of the gate electrode 15 and the second gate electrode 16 can be formed by using the concentration difference oxidation method in which the film thickness formed in the high impurity concentration region reaches 10 times or more that in the low impurity concentration region. The sidewall insulating film 16 can be formed by once performing wet low temperature oxidation and removing the thin oxide film formed on the sidewall of the single crystal semiconductor ultrathin film 4, and is self-aligned with the first gate electrode 15 and the second gate electrode 16. Is composed of Therefore, the manufacturing process is simplified as compared with the conventional method of forming the sidewall insulating film by a plurality of steps, and it becomes possible to reduce the film thickness variation and precisely control the channel length and the like.

【0030】本実施例に基づく半導体装置では、側壁絶
縁膜の形成に堆積絶縁膜を用いることなく、リソグラフ
技術で決定される最小寸法で加工したゲート電極の側壁
を熱酸化させて形成した絶縁膜を残置させている。従っ
て、ゲート電極の寸法は更に微細化することが可能とな
り、最新鋭の製造装置を用いることなく大電流,高速動
作に適した超微細半導体装置を従来装置で実現すること
が可能となった。
In the semiconductor device according to the present embodiment, an insulating film formed by thermally oxidizing the side wall of the gate electrode processed to the minimum dimension determined by the lithographic technique without using the deposited insulating film for forming the side wall insulating film. Is left. Therefore, the size of the gate electrode can be further miniaturized, and an ultrafine semiconductor device suitable for a large current and high speed operation can be realized by a conventional device without using a state-of-the-art manufacturing device.

【0031】更に本実施例に基づく半導体装置に於いて
はソース,ドレイン拡散層18及び19を導入すべき単
結晶超薄膜5幅はゲート側壁絶縁膜16の形成に基づ
き、ゲート電極12及び15の幅より大きく構成され、
単結晶超薄膜5端部はゲート側壁絶縁膜16に挟まれた
領域に一致するように規定されて構成される。これによ
り単結晶超薄膜5端部はゲート側壁絶縁膜16により保
護され、ソース,ドレイン拡散層の導入前処理時におけ
るゲート絶縁膜4及び6の予期せぬ削れを防ぐことがで
き、ソース,ドレイン拡散層18及び19と第一又は第
二のゲート電極15、又は12との短絡不良の発生も防
止することができた。
Further, in the semiconductor device according to the present embodiment, the width of the single crystal ultra-thin film 5 into which the source / drain diffusion layers 18 and 19 are to be introduced is based on the formation of the gate side wall insulating film 16 so that Configured to be wider than the width,
The end portion of the single crystal ultra-thin film 5 is defined and configured so as to coincide with the region sandwiched by the gate sidewall insulating films 16. As a result, the end portions of the single crystal ultra-thin film 5 are protected by the gate side wall insulating film 16, and it is possible to prevent the gate insulating films 4 and 6 from being unexpectedly scraped during the pretreatment for introducing the source and drain diffusion layers. It was also possible to prevent the occurrence of a short circuit defect between the diffusion layers 18 and 19 and the first or second gate electrode 15 or 12.

【0032】本実施例に基づく半導体装置では100n
m以下と極薄の単結晶半導体超薄膜5の端部に形成され
るソース,ドレイン拡散層18、及び19は十分に広い
電流経路を構成するソース,ドレイン引出し電極22及
び23に接続されてから金属電極25及び26に接続さ
れる構成となっている。これにより従来の半導体超薄膜
による半導体装置のように金属電極25及び26との接
続孔に至るまでの電流経路が単結晶半導体超薄膜で規定
された狭隘な状態に比べてソース,ドレイン直列抵抗を
低減することができた。即ち、金属電極25及び26と
の接続孔からゲート電極端までの間隔が0.3μm ,ゲ
ート幅10μmのマスク構成のトランジスタに於いて、
従来構造トランジスタのソース,ドレイン直列抵抗が
9.6Ω と無視できない大きさであったのに対し、本実
施例に基づくトランジスタに於いては3.2Ω と1/3
に直列抵抗を低減することができた。
In the semiconductor device according to this embodiment, 100 n
The source and drain diffusion layers 18 and 19 formed at the ends of the ultra-thin single crystal semiconductor ultrathin film 5 of m or less are connected to the source and drain extraction electrodes 22 and 23 forming a sufficiently wide current path. It is connected to the metal electrodes 25 and 26. As a result, the source / drain series resistance is reduced as compared with a conventional semiconductor device using a semiconductor ultrathin film, in which the current path to the connection holes with the metal electrodes 25 and 26 is narrower than that defined by the single crystal semiconductor ultrathin film. Could be reduced. That is, in a transistor having a mask structure in which the distance from the connection hole with the metal electrodes 25 and 26 to the end of the gate electrode is 0.3 μm and the gate width is 10 μm,
The source / drain series resistance of the conventional structure transistor was 9.6Ω, which was not negligible, whereas the transistor according to the present embodiment was 3.2Ω and 1/3.
It was possible to reduce the series resistance.

【0033】本実施例に基づく半導体装置では第一及び
第二のゲート電極15及び12へ添加する不純物として
n導電型不純物を用いた。これはn導電型不純物が高濃
度に添加された半導体領域面の方がp導電型高濃度不純
物添加の半導体領域面に比べて湿式熱酸化による濃度差
酸化膜形成現象がより顕著である事実に基づく。即ち、
不純物を導入しない単結晶半導体超薄膜5側壁に形成さ
れる膜厚が10nmなる条件に於いてn導電型高濃度半
導体領域上では150nm、p導電型高濃度半導体領域
上では40nmの酸化膜が形成された。このように、十
分の膜厚を有する絶縁膜をゲート側壁に残置する目的に
はn導電型の高濃度不純物をゲート電極12、及び15
に添加することが好ましい。
In the semiconductor device according to this embodiment, n-conductivity type impurities are used as impurities to be added to the first and second gate electrodes 15 and 12. This is due to the fact that the concentration difference oxide film formation phenomenon by wet thermal oxidation is more remarkable on the surface of the semiconductor region to which the n-conductivity type impurity is added at a higher concentration than on the surface of the semiconductor region to which the p-conductivity type high concentration impurity is added. Based on. That is,
An oxide film of 150 nm is formed on the n-conductivity type high-concentration semiconductor region and 40 nm is formed on the p-conductivity type high-concentration semiconductor region under the condition that the film thickness formed on the side wall of the single crystal semiconductor ultra-thin film 5 without introducing impurities is 10 nm. Was done. Thus, for the purpose of leaving the insulating film having a sufficient film thickness on the gate side wall, the n-conductivity-type high-concentration impurity is added to the gate electrodes 12 and 15.
Is preferably added to.

【0034】本実施例に基づく半導体装置の製造におい
て、第一及び第二のゲート電極15及び12への不純物
添加は第一のゲート電極15加工後、同一製造工程で同
時に実施されており、製造の簡略化が達成されている。
In the manufacture of the semiconductor device according to this embodiment, the impurity addition to the first and second gate electrodes 15 and 12 is carried out at the same time in the same manufacturing process after processing the first gate electrode 15. Simplification of has been achieved.

【0035】(実施例2)図11は本発明の第二の実施
例による半導体装置の製造工程途中の断面図であり、完
成した断面図は図1となる。実施例1に基づき図7の状
態まで半導体装置を製造した。第二のゲート電極長は
0.3μm に設定した。この状態よりPOCl3を拡散源と
する燐の拡散を行い、Si膜3全体を低抵抗化させ、単
結晶半導体超薄膜5下部まで低抵抗化させた。尚、上部
ゲート電極12への不純物導入はゲート加工前に予めP
OCl3 を拡散源とする燐の拡散を実施し、低抵抗化し
ておく(図11)。
(Embodiment 2) FIG. 11 is a sectional view of the semiconductor device according to the second embodiment of the present invention during the manufacturing process, and the completed sectional view is shown in FIG. Based on Example 1, a semiconductor device was manufactured up to the state shown in FIG. The second gate electrode length was set to 0.3 μm. From this state, phosphorus was diffused using POCl 3 as a diffusion source to reduce the resistance of the entire Si film 3 to the lower part of the single crystal semiconductor ultrathin film 5. It is to be noted that the impurities should be introduced into the upper gate electrode 12 before the gate processing.
Phosphorus is diffused by using OCl 3 as a diffusion source to reduce the resistance (FIG. 11).

【0036】図11の状態より拡散マスクとして用いた
シリコン窒化膜14を熱燐酸液で選択除去してからゲー
ト保護絶縁膜13をエッチングマスクとした垂直ドライ
エッチングを施し、第一のゲート電極15を形成した。
その後、第一のゲート電極15の加工マスクに用いたゲ
ート保護絶縁膜13を除去し、800℃なる低温湿式酸
化法により高濃度n導電型に変換された第一のゲート電
極15及び第二のゲート電極12の露出面に200nm
の酸化膜を、高濃度n導電型不純物が導入されていない
単結晶半導体超薄膜5の露出側壁面には25nmの酸化
膜を成長させた。
From the state shown in FIG. 11, the silicon nitride film 14 used as the diffusion mask is selectively removed with a hot phosphoric acid solution, and then vertical dry etching is performed using the gate protective insulating film 13 as an etching mask to form the first gate electrode 15. Formed.
After that, the gate protection insulating film 13 used as the processing mask of the first gate electrode 15 is removed, and the first gate electrode 15 and the second gate electrode 15 and the second gate electrode 15 which have been converted into the high-concentration n conductivity type by the low temperature wet oxidation method at 800 ° C. 200 nm on the exposed surface of the gate electrode 12
25 nm of oxide film was grown on the exposed side wall surface of the single crystal semiconductor ultrathin film 5 in which the high concentration n conductivity type impurity was not introduced.

【0037】この状態より単結晶半導体超薄膜5の露出
側壁面に形成された酸化膜を水で稀釈したフッ化水素溶
液で除去したが、この工程により第一のゲート電極1
5、及び第二のゲート電極12の側壁絶縁膜16の膜厚
は150nmとなった。側壁絶縁膜16の選択残置の
後、実施例1に従って燐が高濃度に添加された低抵抗S
i膜17の堆積とその後の熱処理による単結晶Si超薄
膜5の側壁部にn導電型ソース拡散層18、及びドレイ
ン拡散層19の形成、更にはソース引出し電極22,ド
レイン引出し電極23、及びソース金属配線25,ドレ
イン金属配線26,ゲート金属配線等を形成した(図
1)。
From this state, the oxide film formed on the exposed side wall surface of the single crystal semiconductor ultrathin film 5 was removed with a hydrogen fluoride solution diluted with water.
5 and the thickness of the sidewall insulating film 16 of the second gate electrode 12 was 150 nm. After the sidewall insulating film 16 is selectively left, according to the first embodiment, phosphorus having a high concentration is added to the low resistance S.
The formation of the n-conductivity type source diffusion layer 18 and the drain diffusion layer 19 on the side wall of the single crystal Si ultrathin film 5 by the deposition of the i film 17 and the subsequent heat treatment, and further the source extraction electrode 22, the drain extraction electrode 23, and the source. A metal wiring 25, a drain metal wiring 26, a gate metal wiring, etc. were formed (FIG. 1).

【0038】本実施例に基づいて製造された半導体装置
では第一のゲート電極15の加工を単結晶半導体超薄膜
5の側壁への不純物導入阻止に用いたSi窒化膜14を
除去してから実施することができる。これにより実施例
1に基づく半導体装置に較べて、第一のゲート電極15
の寸法を第二のゲート電極12と殆ど同一寸法にするこ
とができた。これにより、第一のゲート電極15を加工
マスク寸法と殆ど同一にすることができ、第一のゲート
電極15とソース,ドレイン拡散層との重畳寄生容量も
低減することができた。
In the semiconductor device manufactured according to this embodiment, the first gate electrode 15 is processed after removing the Si nitride film 14 used to prevent the introduction of impurities into the side wall of the single crystal semiconductor ultrathin film 5. can do. As a result, as compared with the semiconductor device according to the first embodiment, the first gate electrode 15
The size of can be made almost the same as that of the second gate electrode 12. As a result, the size of the first gate electrode 15 can be made almost the same as the processing mask size, and the overlapping parasitic capacitance between the first gate electrode 15 and the source / drain diffusion layers can be reduced.

【0039】本実施例に基づく半導体装置の製造工程
で、側壁絶縁膜16を実施例1に較べてやや厚く構成し
たが側壁絶縁膜16の形成膜厚を厚く形成するに従い第
一のゲート絶縁膜4及び第二のゲート絶縁膜10の膜厚
は内部に較べて側壁部で厚くなるように構成した。即
ち、内部での膜厚が5nmであるのに対し、側壁部での
膜厚は8nm以上の膜厚となっていた。この結果、ゲー
ト電極15及び12とソース,ドレイン拡散層間の絶縁
耐圧が向上され、約6.5ボルトと1.5倍以上向上し
た。
In the manufacturing process of the semiconductor device according to this embodiment, the side wall insulating film 16 is formed to be slightly thicker than that of the first embodiment. However, as the side wall insulating film 16 is formed thicker, the first gate insulating film is formed. The film thicknesses of the fourth and second gate insulating films 10 are configured to be thicker on the side wall portion than in the inside. That is, while the film thickness inside was 5 nm, the film thickness at the side wall was 8 nm or more. As a result, the withstand voltage between the gate electrodes 15 and 12 and the source / drain diffusion layers was improved to about 6.5 V, which is more than 1.5 times higher.

【0040】(実施例3)実施例2で、図7の状態まで
半導体装置を製造した後、更に、約30nmの厚さSi
膜3を垂直方向にエッチングを進めてからPOCl3
拡散源とする燐の拡散を行い、Si膜3全体を低抵抗化
させ、単結晶半導体超薄膜5下部まで低抵抗化させた。
その後、実施例2に従い第一のゲート電極15の加工以
降の製造工程を施して半導体装置を製造した。
(Embodiment 3) After manufacturing a semiconductor device up to the state of FIG. 7 in Embodiment 2, a thickness Si of about 30 nm is further added.
After etching the film 3 in the vertical direction, phosphorus was diffused using POCl 3 as a diffusion source to reduce the resistance of the entire Si film 3 and lower the resistance down to the single crystal semiconductor ultrathin film 5.
Thereafter, according to the second embodiment, the semiconductor device is manufactured by performing the manufacturing steps after the processing of the first gate electrode 15.

【0041】本実施例に基づく半導体装置ではSi膜3
への燐の高濃度拡散工程に関し製造歩留りを向上するこ
とができた。即ち、第一のゲート絶縁膜4の加工で、加
工ばらつきの為、単結晶半導体超薄膜5の一部が側壁部
で露出され、単結晶半導体超薄膜5へ誤って燐が導入さ
れる不良が実施例2に基づく半導体装置の製造方法では
ある確率で存在したが、不良は本実施例に基づくことに
より完全に解消することができた。この不良は第一のゲ
ート絶縁膜4の加工で、単結晶半導体超薄膜5が露出さ
れていなくとも第一のゲート絶縁膜4の一部が露出され
ていた場合、燐の拡散工程中に第一のゲート絶縁膜4が
燐ガラス化されることにより第一のゲート絶縁膜4が拡
散阻止の役割を果たし得なくなる為と考えられる。
In the semiconductor device according to this embodiment, the Si film 3 is used.
It was possible to improve the production yield in the high-concentration diffusion process of phosphorus to the substrate. That is, in the processing of the first gate insulating film 4, a part of the single crystal semiconductor ultra-thin film 5 is exposed at the side wall portion due to processing variations, and phosphorus is erroneously introduced into the single crystal semiconductor ultra-thin film 5. Although there was a certain probability in the method of manufacturing a semiconductor device according to the second embodiment, the defect could be completely eliminated by the method according to the present embodiment. This defect is due to the processing of the first gate insulating film 4, and if a part of the first gate insulating film 4 is exposed even if the single crystal semiconductor ultra-thin film 5 is not exposed, the defect may occur during the phosphorus diffusion process. It is considered that the first gate insulating film 4 cannot play the role of diffusion prevention because the first gate insulating film 4 is made of phosphorus.

【0042】上記考察に基づき本実施例に基づく半導体
装置の製造で、第一のゲート絶縁膜4をSi酸化膜の代
わりにSi窒化膜で構成した半導体装置を形成したとこ
ろ、第一のゲート絶縁膜4の一部が露出されていた場合
にも単結晶半導体超薄膜5への燐の導入を完全に防ぐこ
とができた。従って、第一のゲート絶縁膜4、更には第
二のゲート絶縁膜10として不純物拡散阻止効果の大き
いSi窒化膜を用いることが有効である。
Based on the above consideration, in the manufacture of the semiconductor device according to the present embodiment, a semiconductor device in which the first gate insulating film 4 is composed of the Si nitride film instead of the Si oxide film is formed. Even when part of the film 4 was exposed, introduction of phosphorus into the single crystal semiconductor ultrathin film 5 could be completely prevented. Therefore, it is effective to use the Si nitride film having a large impurity diffusion blocking effect as the first gate insulating film 4 and the second gate insulating film 10.

【0043】尚、実施例1に基づく半導体装置の製造の
ように、第一のゲート電極15の加工の後に燐の高濃度
拡散を施す場合にも拡散阻止膜として作用させる第二の
ゲート電極12の側壁に残置するSi窒化膜14は第一
のゲート絶縁膜4の加工、及びSi膜3の僅かなエッチ
ングの後に形成し、第一のゲート絶縁膜4の側壁がSi
窒化膜14により保護される構成とすることが望まし
い。
The second gate electrode 12 which acts as a diffusion blocking film also when high-concentration diffusion of phosphorus is performed after the processing of the first gate electrode 15 as in the manufacture of the semiconductor device according to the first embodiment. The Si nitride film 14 remaining on the side wall of the first gate insulating film 4 is formed after processing the first gate insulating film 4 and slightly etching the Si film 3.
It is desirable that the structure be protected by the nitride film 14.

【0044】(実施例4)図12は本発明の第四の実施
例に基づく半導体装置の製造工程を示す断面図、図13
はその完成断面図である。図12及び図13は何れもト
ランジスタのチャネル長方向断面図である。実施例1に
従いゲート側壁絶縁膜16の形成と単結晶Si超薄膜5
側壁の露出までを施した。この状態より不純物が添加さ
れていないSi膜を全面に堆積した後、pチャネル型M
OSトランジスタ構成部分のSi膜をレジスト膜で選択
的に覆い、レジスト膜をマスクとする砒素の高濃度イオ
ン注入,レジスト膜の除去、更には注入イオンの活性化
熱処理を施してnチャネル型MOSトランジスタ構成領
域上のSi膜のみを選択的にn導電型低抵抗Si膜17
に変換させた。
(Embodiment 4) FIG. 12 is a sectional view showing a manufacturing process of a semiconductor device according to a fourth embodiment of the present invention, and FIG.
Is a completed sectional view thereof. 12 and 13 are cross-sectional views of the transistor in the channel length direction. Formation of gate sidewall insulating film 16 and ultra-thin single crystal Si film 5 according to the first embodiment
The side wall was exposed. In this state, after a Si film having no added impurities is deposited on the entire surface, a p-channel type M
An n-channel MOS transistor is formed by selectively covering the Si film of the OS transistor constituent portion with a resist film, performing high-concentration ion implantation of arsenic using the resist film as a mask, removing the resist film, and further performing heat treatment for activating the implanted ions. N conductive type low resistance Si film 17 is selectively formed only on the Si film on the constituent region.
Was converted to.

【0045】上記熱処理により単結晶Si超薄膜5の側
壁部にn導電型のソース拡散層18、及びドレイン拡散
層19も同時に形成された。次に750℃なる低温湿式
酸化法によりSi堆積膜表面に酸化膜38を形成させた
がn導電型低抵抗Si膜17領域上では約150nm、
pチャネル型MOSトランジスタ構成部分の不純物が未
だ導入されていないSi膜上では約8nmの酸化膜が形
成された。n導電型低抵抗Si膜17領域上に形成され
た厚い酸化膜38をイオン注入阻止マスクとする硼素の
高濃度イオン注入とその後の熱処理を施し、n導電型低
抵抗Si膜17領域と自己整合の関係で隣接する領域の
Si膜をp導電型低抵抗Si膜28に変換させた。熱処
理により単結晶Si超薄膜51の側壁部にp導電型のソ
ース拡散層30、及びドレイン拡散層29も同時に形成
された(図12)。
By the above heat treatment, the n-conductivity type source diffusion layer 18 and the drain diffusion layer 19 were simultaneously formed on the side wall of the single crystal Si ultrathin film 5. Next, an oxide film 38 was formed on the surface of the Si deposition film by a low temperature wet oxidation method at 750 ° C., but about 150 nm on the n-conductivity type low resistance Si film 17 region,
An oxide film having a thickness of about 8 nm was formed on the Si film in which the impurities of the p-channel type MOS transistor constituent portion were not yet introduced. High-concentration boron ion implantation using the thick oxide film 38 formed on the n-conductivity type low resistance Si film 17 region as an ion implantation blocking mask and subsequent heat treatment are performed to self-align with the n-conductivity type low resistance Si film 17 region. Therefore, the Si film in the adjacent region was converted into the p-conductive type low resistance Si film 28. By the heat treatment, the p-conductivity type source diffusion layer 30 and the drain diffusion layer 29 were simultaneously formed on the side wall of the single crystal Si ultrathin film 51 (FIG. 12).

【0046】図12の状態よりイオン注入阻止酸化膜3
8を除去してから実施例1に従い、n導電型のソース引
出し電極31、及びドレイン引出し電極32,p導電型
のソース引出し電極34,ドレイン引出し電極33の形
成、更には配線保護絶縁膜24の形成,接地電位金属配
線35,出力金属端子36,電源供給金属配線37を含
む所望の金属配線を施した(図13)。
From the state of FIG. 12, the ion implantation blocking oxide film 3
8 is removed and then the n-conductivity type source extraction electrode 31, the drain extraction electrode 32, the p-conduction type source extraction electrode 34, and the drain extraction electrode 33 are formed according to the first embodiment, and further, the wiring protection insulating film 24 is formed. The desired metal wiring including the formation, the ground potential metal wiring 35, the output metal terminal 36, and the power supply metal wiring 37 was formed (FIG. 13).

【0047】上記の製造工程を経て製造された本実施例
に基づく半導体装置では単結晶Si超薄膜5及び51を
ゲート絶縁膜4及び10を介して第一のゲート電極15
及び第二のゲート電極12により上下から挾みこむよう
に構成された二重ゲート構造トランジスタによる相補型
MOSトランジスタを自己整合の構成で製造することが
できた。相補型トランジスタでは上下のゲート電極、及
びソース,ドレイン拡散層の何れもが互いに自己整合の
関係で構成されているのでゲート電極とソース,ドレイ
ン間寄生容量を極小に設計することができ、且つ、第一
及び第二のゲート電極間の位置合せ余裕が本質的に無視
できるため素子寸法を微細化することができた。これに
より二重ゲート構造の特徴と合せて超高速動作を可能と
する相補型トランジスタを実現することができた。
In the semiconductor device according to this embodiment manufactured through the above manufacturing steps, the single crystal Si ultrathin films 5 and 51 are provided with the first gate electrode 15 via the gate insulating films 4 and 10.
It was possible to manufacture a complementary MOS transistor having a self-aligned structure with a double-gate structure transistor which is configured to be sandwiched from above and below by the second gate electrode 12. In the complementary transistor, since the upper and lower gate electrodes and the source and drain diffusion layers are configured in a self-aligned relationship with each other, the parasitic capacitance between the gate electrode and the source and drain can be designed to be minimal, and Since the alignment margin between the first and second gate electrodes is essentially negligible, the device size can be miniaturized. This has made it possible to realize a complementary transistor that enables ultra-high-speed operation in combination with the characteristics of the double gate structure.

【0048】更に、本実施例に基づく半導体装置では従
来の二重ゲート構造トランジスタの製法における複雑で
高価な製造手法、即ち、ミラー反転マスクを用いて途中
工程まで製造したパターン付きウエハを半導体製造工程
と異質のウエハ貼合せ技術により製造工程途中に施す手
法を必要としない為、高性能の相補トランジスタを廉価
に供給することができた。尚、本実施例に基づく相補型
MOSトランジスタは二重ゲート構造にも係らず通常基
板に製造する従来構造の相補型MOSトランジスタの製
造に用いる同一のホトリソグラフマスクのみで製造でき
るので新たなマスク設計や新たな半導体装置製造設備の
導入を要しないで超高速動作が可能な高性能相補型MO
Sトランジスタを廉価に提供することができる。
Further, in the semiconductor device according to the present embodiment, a complicated and expensive manufacturing method in the conventional method for manufacturing a double-gate structure transistor, that is, a patterned wafer manufactured up to an intermediate step using a mirror inversion mask is used in the semiconductor manufacturing process. With the wafer bonding technology of different type, it is possible to supply high-performance complementary transistors at a low price because there is no need for a method applied during the manufacturing process. Incidentally, the complementary MOS transistor according to this embodiment can be manufactured only with the same photolithographic mask used for manufacturing the complementary MOS transistor of the conventional structure which is normally manufactured on the substrate regardless of the double gate structure, so that a new mask design is made. High-performance complementary MO capable of ultra-high-speed operation without the need to install new semiconductor device manufacturing equipment
The S transistor can be provided at a low price.

【0049】(実施例5)本実施例は、請求項1から1
5記載の本発明に基づいて製造された半導体装置により
構成された信号伝送処理装置に関し、特に、非同期伝送
方式(ATM交換器と称される)に関する信号伝送処理
装置であり、その構成図を図14により説明する。
(Embodiment 5) This embodiment is characterized by claims 1 to 1.
5 relates to a signal transmission processing device constituted by a semiconductor device manufactured according to the present invention described in 5, and particularly to a signal transmission processing device relating to an asynchronous transmission system (referred to as an ATM switch). 14 will be described.

【0050】図14に於いて、光ファイバにより超高速
で直列的に伝送されてきた情報信号は電気信号に変換し
(O/E変換)、且つ並列化(S/P変換)させる装置
を介して本発明の実施例1に基づいて製造された二重ゲ
ート型MOSトランジスタで構成される集積回路(BF
MLSI)に導入した。
In FIG. 14, an information signal transmitted at a high speed in series by an optical fiber is converted into an electric signal (O / E conversion) and is parallelized (S / P conversion) through a device. Integrated circuit (BF) composed of double-gate MOS transistors manufactured according to the first embodiment of the present invention.
MLSI).

【0051】上記集積回路で番地付処理された電気信号
は直列化(P/S変換)及び光信号化(E/O変換)され
て光ファイバで出力される。BFMLSIは多重器(M
UX),バッファメモリ(BFM)、及び分離器(DM
UX)により構成される。BFMLSIはメモリ制御L
SI、及び空アドレス振分け制御の機能を有するLSI
(空アドレスFIFOメモリLSI)により制御され
る。本信号伝送処理装置は伝送すべき番地と無関係に送
られてくる超高速伝送信号を所望番地に超高速で伝送す
るスイッチの機能を有する装置である。
The electric signal subjected to the addressing processing in the integrated circuit is serialized (P / S conversion) and converted into an optical signal (E / O conversion) and output through the optical fiber. BFMLSI is a multiplexer (M
UX), buffer memory (BFM), and separator (DM)
UX). BFMLSI is a memory control L
LSI with SI and free address allocation control function
(Empty address FIFO memory LSI). This signal transmission processing device is a device having a function of a switch for transmitting an ultra high speed transmission signal sent to a desired address at an ultra high speed regardless of an address to be transmitted.

【0052】BFMLSIは入力光信号の伝送速度に比
べて著しく動作速度が遅い為、入力信号を直接スイッチ
ングできず、入力信号を一時記憶させ、記憶された信号
をスイッチングしてから超高速な光信号に変換して所望
番地に伝送する方式を用いている。BFMLSIの動作
速度が遅ければ、大きな記憶容量が要求される。本実施
例に基づくATM交換器ではBFMLSIが実施例1に
基づき製造された半導体装置で構成されることにより従
来のBFMLSIに比べて動作速度が三倍と高速で、且
つ、廉価なため、BFMLSIの記憶容量を従来比で約
1/3と低減することが可能となった。これによりAT
M交換器の製造原価を低減することができた。
Since the operation speed of the BFMLSI is remarkably slower than the transmission speed of the input optical signal, the input signal cannot be directly switched, and the input signal is temporarily stored, and the stored signal is switched, and then the ultrahigh-speed optical signal is switched. Is used for transmission to a desired address. If the operation speed of the BFMLSI is slow, a large storage capacity is required. In the ATM switch according to the present embodiment, since the BFMLSI is composed of the semiconductor device manufactured according to the first embodiment, the operating speed is three times as high as that of the conventional BFMLSI, and the cost is low. It has become possible to reduce the storage capacity to about 1/3 of the conventional one. This allows AT
It was possible to reduce the manufacturing cost of the M exchanger.

【0053】(実施例6)次に、実施例6を図15の計
算機のブロック図で説明する。本実施例は、請求項1か
ら15記載の本発明に基づいて製造された半導体装置を
命令や演算を処理するプロセッサ500が、複数個並列
に接続された高速大型計算機に適用した例である。
(Sixth Embodiment) Next, a sixth embodiment will be described with reference to the block diagram of the computer shown in FIG. The present embodiment is an example in which the semiconductor device manufactured according to the present invention according to claims 1 to 15 is applied to a high-speed large-scale computer in which a plurality of processors 500 for processing instructions and operations are connected in parallel.

【0054】本実施例では、本発明を実施した相補型半
導体装置の集積度が高いため、命令や演算を処理するプ
ロセッサ500や,システム制御装置501や,主記憶
装置502などを、1辺が約10〜30mmのシリコン半
導体チップで構成出来た。これら命令や演算を処理する
プロセッサ500と,システム制御装置501と,化合
物半導体集積回路よりなるデータ通信インタフェース5
03を、同一セラミック基板506に実装した。また、
データ通信インタフェース503と,データ通信制御装
置504を、同一セラミック基板507に実装した。こ
れらセラミック基板506並びに507と,主記憶装置
502を実装したセラミック基板を、大きさが1辺約5
0cm程度、あるいはそれ以下の基板に実装し、大型計算
機の中央処理ユニット508を形成した。
In this embodiment, since the complementary semiconductor device embodying the present invention has a high degree of integration, one side of the processor 500 for processing instructions and operations, the system control device 501, the main storage device 502, etc. It could be composed of about 10 to 30 mm silicon semiconductor chip. A processor 500 for processing these commands and operations, a system controller 501, and a data communication interface 5 composed of a compound semiconductor integrated circuit.
03 was mounted on the same ceramic substrate 506. Also,
The data communication interface 503 and the data communication control device 504 are mounted on the same ceramic substrate 507. These ceramic substrates 506 and 507 and the ceramic substrate on which the main memory device 502 is mounted have a size of about 5 sides.
A central processing unit 508 of a large-scale computer was formed by mounting it on a substrate of about 0 cm or less.

【0055】中央処理ユニット508内データ通信や,
複数の中央処理ユニット間データ通信、あるいはデータ
通信インタフェース503と入出力プロセッサ505を
実装した基板509との間のデータの通信は、図中の両
端矢印線で示される光ファイバ510を介して行われ
た。この計算機では、命令や演算を処理するプロセッサ
500や,システム制御装置501や,主記憶装置50
2などの半導体装置が、並列に高速で動作し、また、デ
ータの通信を光を媒体に行ったため、1秒間当りの命令
処理回数を大幅に増加することができた。
Data communication in the central processing unit 508,
Data communication between a plurality of central processing units, or data communication between the data communication interface 503 and the substrate 509 on which the input / output processor 505 is mounted is performed via an optical fiber 510 indicated by double-ended arrow lines in the figure. It was In this computer, a processor 500 that processes instructions and operations, a system control device 501, a main storage device 50
The semiconductor devices such as No. 2 and the like operate in parallel at high speed, and the data communication is performed through the optical medium, so that the number of instruction processings per second can be significantly increased.

【0056】尚、本実施例では大型電子計算機の例につ
いて記載したが、本発明の請求項1から15の製造方法
に基づく半導体装置は大型電子計算機としてシステム化
された装置に限定されるのではなく、プロセッサ500
だけを製造する場合にも適用される。プロセッサを多数
台並列接続させたいわゆる、超並列プロセッサの構成素
子の製造に関しても当然適用される。
Although an example of a large-scale electronic computer has been described in the present embodiment, the semiconductor device based on the manufacturing method according to claims 1 to 15 of the present invention is not limited to a device systematized as a large-scale computer. Without the processor 500
It also applies when manufacturing only. This is naturally applied to the manufacture of so-called massively parallel processor components in which a large number of processors are connected in parallel.

【0057】[0057]

【発明の効果】本発明に基づけば大電流化が期待でき、
超高速動作が可能な高性能超薄膜二重ゲートトランジス
タに関し、ゲート・ソース,ドレイン間重畳容量の低
減,ゲート間合わせずれ解消による動作特性のばらつき
改善,位置合せ余裕解消による素子寸法の微細化,製造
工程数の低減,製造方法の簡略化、更には新たなマスク
設計や新たな半導体装置製造設備の導入を要しない超高
速動作が可能な半導体装置の廉価提供等の効果がある。
According to the present invention, a large current can be expected,
Regarding high-performance ultra-thin film double gate transistor capable of ultra-high speed operation, reduction of gate-source / drain overlap capacitance, improvement of operating characteristic variation by eliminating misalignment between gates, miniaturization of device dimensions by eliminating alignment margin, This has the effects of reducing the number of manufacturing steps, simplifying the manufacturing method, and providing a semiconductor device at a low cost that enables ultra-high-speed operation without the need for new mask design or introduction of new semiconductor device manufacturing equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1及び2の半導体装置の断面
図。
FIG. 1 is a sectional view of a semiconductor device according to first and second embodiments of the present invention.

【図2】従来の半導体装置の断面図。FIG. 2 is a sectional view of a conventional semiconductor device.

【図3】本発明の実施例1の半導体装置の製造の第一工
程を示す断面図。
FIG. 3 is a sectional view showing a first step of manufacturing the semiconductor device of Example 1 of the invention.

【図4】本発明の実施例1の半導体装置の製造の第二工
程を示す断面図。
FIG. 4 is a sectional view showing a second step of manufacturing the semiconductor device according to the first embodiment of the present invention.

【図5】本発明の実施例1の半導体装置の製造の第三工
程を示す断面図。
FIG. 5 is a sectional view showing a third step of manufacturing the semiconductor device of Example 1 of the invention.

【図6】本発明の実施例1の半導体装置の製造の第四工
程を示す断面図。
FIG. 6 is a sectional view showing a fourth step of manufacturing the semiconductor device of Example 1 of the invention.

【図7】本発明の実施例1の半導体装置の製造の第五工
程を示す断面図。
FIG. 7 is a sectional view showing a fifth step of manufacturing the semiconductor device according to Example 1 of the present invention.

【図8】本発明の実施例1の半導体装置の製造の第六工
程を示す断面図。
FIG. 8 is a sectional view showing a sixth step of manufacturing the semiconductor device of Example 1 of the invention.

【図9】本発明の実施例1の半導体装置の製造の第七工
程を示す断面図。
FIG. 9 is a cross-sectional view showing the seventh step of manufacturing the semiconductor device of Example 1 of the invention.

【図10】本発明の実施例1の半導体装置の製造の第八
工程を示す断面図。
FIG. 10 is a sectional view showing an eighth step of manufacturing the semiconductor device of Example 1 of the invention.

【図11】本発明の実施例2の半導体装置の製造工程を
示す断面図。
FIG. 11 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the second embodiment of the invention.

【図12】本発明の実施例4の半導体装置の製造工程を
示す断面図。
FIG. 12 is a sectional view showing a manufacturing process of a semiconductor device according to a fourth embodiment of the present invention.

【図13】本発明の実施例4の半導体装置の断面図。FIG. 13 is a sectional view of a semiconductor device according to a fourth embodiment of the present invention.

【図14】本発明の実施例5による信号伝送処理装置の
説明図。
FIG. 14 is an explanatory diagram of a signal transmission processing device according to a fifth embodiment of the present invention.

【図15】本発明の実施例6による計算機のブロック
図。
FIG. 15 is a block diagram of a computer according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2…埋込み絶縁膜、4…第一のゲート絶縁膜、5…Si
単結晶超薄膜、6…薄いSi酸化膜、9…酸化膜、10
…第二のゲート絶縁膜、11…開口、12…第二のゲー
ト電極、15…第一のゲート電極、16…ゲート側壁絶
縁膜、18…n型ソース拡散層、19…n型ドレイン拡
散層、22及び31…n型ソース引出し電極、23…n
型ドレイン引出し電極、24…配線層間絶縁膜、25…
ソース金属配線、26…ドレイン金属配線、27…ゲー
ト金属配線。
2 ... Buried insulating film, 4 ... First gate insulating film, 5 ... Si
Single crystal ultra-thin film, 6 ... Thin Si oxide film, 9 ... Oxide film, 10
... second gate insulating film, 11 ... opening, 12 ... second gate electrode, 15 ... first gate electrode, 16 ... gate sidewall insulating film, 18 ... n type source diffusion layer, 19 ... n type drain diffusion layer , 22 and 31 ... N-type source extraction electrode, 23 ... N
Type drain extraction electrode, 24 ... Wiring interlayer insulating film, 25 ...
Source metal wiring, 26 ... Drain metal wiring, 27 ... Gate metal wiring.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/78 301 H 9056−4M 617 S Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 29/78 301 H 9056-4M 617 S

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】絶縁膜上に第一のゲート電極,第一のゲー
ト絶縁膜,単結晶半導体薄膜,第二のゲート絶縁膜,第
二のゲート電極の順で構成された半導体装置において、
上記単結晶半導体薄膜の端部と上記第一のゲート電極の
端部までの間隔は上記単結晶半導体薄膜の端部と上記第
二のゲート電極の端部までの間隔と等しくなるように構
成されたことを特徴とする半導体装置。
1. A semiconductor device comprising a first gate electrode, a first gate insulating film, a single crystal semiconductor thin film, a second gate insulating film, and a second gate electrode in this order on an insulating film,
The distance between the edge of the single crystal semiconductor thin film and the edge of the first gate electrode is equal to the distance between the edge of the single crystal semiconductor thin film and the edge of the second gate electrode. A semiconductor device characterized by the above.
【請求項2】請求項1において、上記単結晶半導体薄膜
の両側壁はそれぞれソース,ドレイン引出し電極を構成
する低抵抗半導体膜に各々接続される半導体装置。
2. The semiconductor device according to claim 1, wherein both side walls of the single crystal semiconductor thin film are respectively connected to low resistance semiconductor films constituting source and drain extraction electrodes.
【請求項3】請求項1において、上記第一及び第二のゲ
ート電極がn導電型低抵抗多結晶半導体膜で構成されて
いる半導体装置。
3. The semiconductor device according to claim 1, wherein the first and second gate electrodes are composed of an n-conductivity type low resistance polycrystalline semiconductor film.
【請求項4】絶縁膜上に第一のゲート電極,第一のゲー
ト絶縁膜,単結晶半導体薄膜,第二のゲート絶縁膜,第
二のゲート電極の順で構成された半導体装置において、
上記第一のゲート絶縁膜はシリコン窒化膜、又は、シリ
コン窒化酸化膜で構成されていることを特徴とする半導
体装置。
4. A semiconductor device comprising a first gate electrode, a first gate insulating film, a single crystal semiconductor thin film, a second gate insulating film, and a second gate electrode in this order on an insulating film,
The semiconductor device, wherein the first gate insulating film is composed of a silicon nitride film or a silicon oxynitride film.
【請求項5】絶縁膜上に第一のゲート電極,第一のゲー
ト絶縁膜,単結晶半導体薄膜,第二のゲート絶縁膜,第
二のゲート電極の順で構成された半導体装置において、
上記第一及び第二のゲート絶縁膜の各々の膜厚はチャネ
ル中央部で薄く、チャネル端部で厚くなるように構成さ
れたことを特徴とする半導体装置。
5. A semiconductor device in which a first gate electrode, a first gate insulating film, a single crystal semiconductor thin film, a second gate insulating film, and a second gate electrode are formed in this order on an insulating film,
A semiconductor device, wherein each of the first and second gate insulating films is configured to be thin at a central portion of a channel and thick at an end portion of the channel.
【請求項6】絶縁膜上に第一のゲート電極,第一のゲー
ト絶縁膜,単結晶半導体薄膜,第二のゲート絶縁膜,第
二のゲート電極の順で構成された半導体装置の製造方法
において、上記単結晶半導体薄膜と第一のゲート電極は
上記第二のゲート電極をマスクとして加工されたことを
特徴とする半導体装置の製造方法。
6. A method of manufacturing a semiconductor device comprising a first gate electrode, a first gate insulating film, a single crystal semiconductor thin film, a second gate insulating film, and a second gate electrode in this order on an insulating film. 2. The method for manufacturing a semiconductor device according to, wherein the single crystal semiconductor thin film and the first gate electrode are processed using the second gate electrode as a mask.
【請求項7】絶縁膜上に第一のゲート電極,第一のゲー
ト絶縁膜,単結晶半導体薄膜,第二のゲート絶縁膜,第
二のゲート電極の順で構成された半導体装置の製造方法
において、上記第一のゲート電極と第二のゲート電極の
側壁に構成される絶縁膜は同一製造工程で形成されるこ
とを特徴とする半導体装置の製造方法。
7. A method of manufacturing a semiconductor device comprising a first gate electrode, a first gate insulating film, a single crystal semiconductor thin film, a second gate insulating film, and a second gate electrode in this order on an insulating film. 2. The method for manufacturing a semiconductor device according to, wherein the insulating films formed on the sidewalls of the first gate electrode and the second gate electrode are formed in the same manufacturing process.
【請求項8】請求項6または7において、上記第一のゲ
ート電極と第二のゲート電極の側壁部にのみ絶縁膜が選
択的に残置されるように、上記単結晶半導体薄膜側壁の
絶縁膜を除去する半導体装置の製造方法。
8. The insulating film on the side wall of the single crystal semiconductor thin film according to claim 6, wherein the insulating film is selectively left only on the side wall portions of the first gate electrode and the second gate electrode. A method for manufacturing a semiconductor device, the method for removing a semiconductor device.
【請求項9】請求項6,7または8において、上記第一
のゲート電極と第二のゲート電極の側壁に構成される絶
縁膜は熱酸化法により形成される半導体装置の製造方
法。
9. The method for manufacturing a semiconductor device according to claim 6, 7 or 8, wherein the insulating film formed on the sidewalls of the first gate electrode and the second gate electrode is formed by a thermal oxidation method.
【請求項10】絶縁膜上に第一のゲート電極,第一のゲ
ート絶縁膜,単結晶半導体薄膜,第二のゲート絶縁膜,
第二のゲート電極の順で構成された半導体装置の製造方
法において、上記第二のゲート電極と第二のゲート絶縁
膜,上記単結晶半導体薄膜と第一のゲート絶縁膜、及び
上記第一のゲート電極のパターニングの後に第一のゲー
ト電極に不純物が選択的に導入されることを特徴とする
半導体装置の製造方法。
10. A first gate electrode, a first gate insulating film, a single crystal semiconductor thin film, a second gate insulating film, on the insulating film.
In a method of manufacturing a semiconductor device having a second gate electrode in this order, the second gate electrode and the second gate insulating film, the single crystal semiconductor thin film and the first gate insulating film, and the first gate insulating film. A method for manufacturing a semiconductor device, wherein impurities are selectively introduced into the first gate electrode after the patterning of the gate electrode.
【請求項11】絶縁膜上に第一のゲート電極,第一のゲ
ート絶縁膜,単結晶半導体薄膜,第二のゲート絶縁膜,
第二のゲート電極の順で構成された半導体装置の製造方
法において、上記第一のゲート電極と第二のゲート電極
は同一製造工程により不純物が導入されることを特徴と
する半導体装置の製造方法。
11. A first gate electrode, a first gate insulating film, a single crystal semiconductor thin film, a second gate insulating film, on the insulating film.
A method of manufacturing a semiconductor device comprising a second gate electrode in this order, wherein impurities are introduced into the first gate electrode and the second gate electrode in the same manufacturing process. .
【請求項12】請求項10において、上記不純物導入工
程は上記第二のゲート電極と第二のゲート絶縁膜,上記
単結晶半導体薄膜と第一のゲート絶縁膜のパターニング
の後になされる半導体装置の製造方法。
12. The semiconductor device according to claim 10, wherein the impurity introduction step is performed after patterning of the second gate electrode and the second gate insulating film, the single crystal semiconductor thin film and the first gate insulating film. Production method.
【請求項13】請求項10において、上記不純物導入工
程は上記第二のゲート電極と第二のゲート絶縁膜,上記
単結晶半導体薄膜と第一のゲート絶縁膜のパターニング
の後、下地半導体膜を同一マスクで所望厚さ除去してか
らなされる半導体装置の製造方法。
13. The impurity doping step according to claim 10, wherein the underlying semiconductor film is formed after patterning the second gate electrode and the second gate insulating film, the single crystal semiconductor thin film and the first gate insulating film. A method of manufacturing a semiconductor device, wherein a desired thickness is removed by the same mask.
【請求項14】請求項1,2,3,4または5におい
て、上記半導体装置は相補型MOSトランジスタよりな
る半導体装置。
14. The semiconductor device according to claim 1, 2, 3, 4, or 5, wherein the semiconductor device is a complementary MOS transistor.
【請求項15】請求項6,7,8,9,10,11,1
2または13において、上記半導体装置の製造方法によ
り製造された半導体装置は相補型MOSトランジスタで
ある半導体装置の製造方法。
15. Claims 6, 7, 8, 9, 10, 11, 1
2 or 13, wherein the semiconductor device manufactured by the method for manufacturing a semiconductor device is a complementary MOS transistor.
【請求項16】請求項1,2,3,4,5または14に
おいて、上記半導体装置により構成される非同期型伝送
モード装置。
16. An asynchronous transmission mode device according to claim 1, 2, 3, 4, 5 or 14.
【請求項17】請求項1,2,3,4,5または14に
おいて、上記半導体装置により構成されるプロセッサ装
置。
17. A processor device according to claim 1, 2, 3, 4, 5, or 14.
JP6198151A 1994-08-23 1994-08-23 Semiconductor device and method of fabrication thereof Pending JPH0864827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6198151A JPH0864827A (en) 1994-08-23 1994-08-23 Semiconductor device and method of fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6198151A JPH0864827A (en) 1994-08-23 1994-08-23 Semiconductor device and method of fabrication thereof

Publications (1)

Publication Number Publication Date
JPH0864827A true JPH0864827A (en) 1996-03-08

Family

ID=16386314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6198151A Pending JPH0864827A (en) 1994-08-23 1994-08-23 Semiconductor device and method of fabrication thereof

Country Status (1)

Country Link
JP (1) JPH0864827A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313395A (en) * 2000-04-28 2001-11-09 Takehide Shirato Misfet and method of manufacturing the same
JP2001313394A (en) * 2000-04-28 2001-11-09 Takehide Shirato Semiconductor device
US7078773B2 (en) 2002-12-23 2006-07-18 International Business Machines Corporation Nitride-encapsulated FET (NNCFET)
US8198680B2 (en) 2003-04-23 2012-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device and methods for manufacturing thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313395A (en) * 2000-04-28 2001-11-09 Takehide Shirato Misfet and method of manufacturing the same
JP2001313394A (en) * 2000-04-28 2001-11-09 Takehide Shirato Semiconductor device
US7078773B2 (en) 2002-12-23 2006-07-18 International Business Machines Corporation Nitride-encapsulated FET (NNCFET)
US7442612B2 (en) 2002-12-23 2008-10-28 International Business Machines Corporation Nitride-encapsulated FET (NNCFET)
US7648880B2 (en) 2002-12-23 2010-01-19 International Business Machines Corporation Nitride-encapsulated FET (NNCFET)
US8198680B2 (en) 2003-04-23 2012-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device and methods for manufacturing thereof
US9171919B2 (en) 2003-04-23 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device and methods for manufacturing thereof

Similar Documents

Publication Publication Date Title
JP2940880B2 (en) Semiconductor device and manufacturing method thereof
JP4332925B2 (en) Semiconductor device and manufacturing method thereof
JPH039631B2 (en)
JP2001111056A (en) Semiconductor device and its manufacturing method
JPH03285351A (en) Cmis semiconductor device and manufacture thereof
JP3298509B2 (en) Method for manufacturing semiconductor device
JP3171673B2 (en) Thin film transistor and method of manufacturing the same
JPH0864827A (en) Semiconductor device and method of fabrication thereof
JPH08181323A (en) Semiconductor device and its manufacture
JP2000012851A (en) Field-effect transistor and manufacture thereof
JP2002124682A (en) Mis field effect transistor and manufacturing method thereof
JPH06275803A (en) Semiconductor device and its manufacture
JPH0831928A (en) Manufacture of semiconductor device
JP2003249650A (en) Semiconductor device and manufacturing method therefor
JPH08130315A (en) Semiconductor device and its manufacture
JPH07321324A (en) Semiconductor device and its manufacturing method
JPH08241999A (en) Semiconductor device and fabrication thereof
JP2001284557A (en) Producing method for non-volatile semiconductor memory device
JP2001250950A (en) Semiconductor device
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JPH07169848A (en) Semiconductor device and manufacture of it
JP4010425B2 (en) Semiconductor device and manufacturing method thereof
JPS6240765A (en) Read-only semiconductor memory and manufacture thereof
JP4750244B2 (en) Semiconductor device
WO1997049131A1 (en) Semiconductor device with buried conductive silicide layer