JPH07321218A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH07321218A
JPH07321218A JP6113250A JP11325094A JPH07321218A JP H07321218 A JPH07321218 A JP H07321218A JP 6113250 A JP6113250 A JP 6113250A JP 11325094 A JP11325094 A JP 11325094A JP H07321218 A JPH07321218 A JP H07321218A
Authority
JP
Japan
Prior art keywords
insulating film
oxide film
forming
gate
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6113250A
Other languages
Japanese (ja)
Other versions
JP3198803B2 (en
Inventor
Hajime Tada
元 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11325094A priority Critical patent/JP3198803B2/en
Publication of JPH07321218A publication Critical patent/JPH07321218A/en
Application granted granted Critical
Publication of JP3198803B2 publication Critical patent/JP3198803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Weting (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a semiconductor device, which has two kinds of gate oxide films different in width capable of being formed easily, by etching an oxide film made at the same time with a field oxide film thereby forming a thick gate oxide film. CONSTITUTION:After application of resist 11 on the topside of a field oxide film 9, the resist 11 is patterned, using a photomask where holes are bored only in the regions where a p-channel MOSFET and the gate electrode of an n-channel are to be formed in a region where a high voltage drive CMOS is to be formed, and the field oxide film 9 is wet-etched to form a residual film which becomes a thick gate oxide film 91 later. Then, a thin gate oxide film is formed, and further through a specified process, a CMOS IC, which has two kinds of gate oxide films different in thickness, is made. Hereby, the formation process of a gate oxide film can be simplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば液晶ディスプレ
イ駆動用ICのように、低電圧駆動CMOS部と高電圧
駆動CMOS部を集積した半導体装置の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, such as an IC for driving a liquid crystal display, in which a low voltage driving CMOS portion and a high voltage driving CMOS portion are integrated.

【0002】[0002]

【従来の技術】液晶フラットパネルディスプレイ (以
下、LCDパネルと記す) の駆動用ICなどに対して
は、その表示特性などを向上する目的に多くの要求があ
る。例えば、LCDパネルの大型化、カラー化にともな
って、コントラスト特性を向上する目的に、駆動用IC
などの高耐電圧化が要求され、また、表示の情報量の増
大にともなって、ロジック回路部には高速動作化が要求
されている。ここで、ロジック回路部の動作速度の向上
に加えて、その低コスト化をも目的に、その構成要素を
微細化して、チップを小型化することが要求されてい
る。LCDパネル駆動用ICは、CMOSICでありな
がら、5V型度以下の低電圧で駆動する低電圧駆動CM
OS部と、数十V以上の高電圧で駆動する高電圧駆動C
MOS部を集積したものであり、ゲート酸化膜の厚さ
は、低電圧駆動CMOS部では、例えば25nmと薄
く、高電圧駆動CMOS部では、例えば150nmと厚
い。このような厚さの異なるゲート酸化膜を形成するた
めに、特開平5−308128号公報で公知の方法は、
高電圧駆動CMOSのゲート酸化膜用の厚い酸化膜を形
成したのち、その上に積層した多結晶シリコン層からゲ
ート電極を形成し、このゲート電極をマスクに利用して
のエッチングにより露出した基板面の上に低電圧駆動C
MOSのゲート酸化膜用の薄い酸化膜を形成し、その上
に積層した多結晶シリコン層からゲート電極を形成す
る。このようにいずれのゲート酸化膜も形成直後の清浄
な状態のまま多結晶シリコン層に覆われ、レジストが直
接ゲート酸化膜に触れることがないので、レジストによ
るゲート酸化膜の汚染がない。
2. Description of the Related Art For a driving IC for a liquid crystal flat panel display (hereinafter referred to as an LCD panel), there are many demands for the purpose of improving its display characteristics. For example, a driving IC for the purpose of improving the contrast characteristics as the LCD panel becomes larger and colorized.
There is a demand for higher withstand voltage, and with the increase in the amount of information displayed, there is a demand for higher speed operation in the logic circuit section. Here, in addition to the improvement of the operation speed of the logic circuit unit, the miniaturization of its components and the miniaturization of the chip are required for the purpose of cost reduction. Although the LCD panel driving IC is a CMOS IC, it is a low voltage driving CM that is driven by a low voltage of 5V or less
OS part and high voltage drive C driven by high voltage of several tens of V or more
The MOS part is integrated, and the thickness of the gate oxide film is as thin as 25 nm in the low voltage driving CMOS part and as thick as 150 nm in the high voltage driving CMOS part. In order to form such gate oxide films having different thicknesses, a method known in Japanese Patent Laid-Open No. 5-308128 is
After forming a thick oxide film for a gate oxide film of a high voltage drive CMOS, a gate electrode is formed from a polycrystalline silicon layer laminated on the oxide film, and a substrate surface exposed by etching using the gate electrode as a mask Low voltage drive on top
A thin oxide film for a MOS gate oxide film is formed, and a gate electrode is formed from a polycrystalline silicon layer laminated thereon. In this way, any gate oxide film is covered with the polycrystalline silicon layer in a clean state immediately after formation, and the resist does not directly contact the gate oxide film, so that the gate oxide film is not contaminated by the resist.

【0003】[0003]

【発明が解決しようとする課題】しかし上記の公知の方
法は、品質のよいゲート酸化膜は形成できるが、2種類
の厚さのゲート酸化膜を形成するために2回の多結晶シ
リコン堆積が必要となり、プロセスの複雑化やコスト高
を招く欠点がある。本発明の目的は、このような欠点を
除去し、簡単に形成できる2種類の異なる厚さのゲート
絶縁膜を有する半導体装置の製造方法を提供することに
ある。
However, although the above-mentioned known method can form a gate oxide film of good quality, two polycrystalline silicon depositions are required to form a gate oxide film having two different thicknesses. However, there is a drawback that the process becomes complicated and the cost becomes high. An object of the present invention is to provide a method for manufacturing a semiconductor device having two types of gate insulating films having different thicknesses, which can eliminate such drawbacks and can be easily formed.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、同一半導体基板の表面側に相対的に厚
いゲート絶縁膜を有するMISFETと相対的に薄いゲ
ート絶縁膜を有するMISFETが形成され、MISF
ET相互間の分離のためにいずれのゲート絶縁膜よりも
厚いフィールド絶縁膜が基板表面上に形成される半導体
装置の製造方法において、厚いゲート絶縁膜をフィール
ド絶縁膜と同時に形成した絶縁膜をエッチングすること
により形成するものとする。半導体基板表面上に相対的
に薄いゲート絶縁膜をフィールド絶縁膜と同時に形成し
た絶縁膜を形成する工程と、フィールド絶縁膜と同時に
形成した絶縁膜を選択的にエッチングして相対的に厚い
ゲート絶縁膜を残す工程と、両ゲート絶縁膜を共通に導
電層により被覆する工程と、この導電層をパターニング
して各MISFETのゲート電極を形成する工程とを含
むことが有効である。その場合、導電層が多結晶シリコ
ンよりなることが良い。また、半導体基板表面上に相対
的に薄いゲート絶縁膜とフィールド絶縁膜と同時に形成
した絶縁膜を形成する工程と、相対的に薄いゲート絶縁
膜上に第一の導電層よりなるゲート電極を形成する工程
と、第一ゲート電極およびフィールド絶縁膜と同時に形
成した絶縁膜を被覆する層間絶縁膜を形成する工程と、
層間絶縁膜をエッチングして第一ゲート電極および半導
体基板表面に達するコンタクトホールを明けると共に、
層間絶縁膜およびフィールド絶縁膜と同時に形成した絶
縁膜をエッチングして相対的に厚いゲート絶縁膜を残す
工程と、各コンタクトホールを埋めると共に厚いゲート
絶縁膜を被覆する第二の導電層を形成する工程と、第二
の導電層より配線および相対的に厚いゲート絶縁膜上の
ゲート電極を形成する工程とを含むことが有効である。
その場合、第一の導電層が多結晶シリコンよりなり、第
二の導電層が金属よりなることが良い。
In order to achieve the above object, the present invention provides a MISFET having a relatively thick gate insulating film and a MISFET having a relatively thin gate insulating film on the surface side of the same semiconductor substrate. Is formed, MISF
In a method of manufacturing a semiconductor device in which a field insulating film thicker than any gate insulating film is formed on a substrate surface for separation between ETs, an insulating film formed by forming a thick gate insulating film at the same time as a field insulating film is etched. To be formed. A step of forming an insulating film in which a relatively thin gate insulating film is formed simultaneously with a field insulating film on the surface of a semiconductor substrate, and a relatively thick gate insulating film by selectively etching the insulating film formed simultaneously with the field insulating film. It is effective to include a step of leaving the film, a step of commonly covering both gate insulating films with a conductive layer, and a step of patterning this conductive layer to form a gate electrode of each MISFET. In that case, the conductive layer is preferably made of polycrystalline silicon. Also, a step of forming an insulating film formed on the surface of the semiconductor substrate at the same time as a relatively thin gate insulating film and a field insulating film, and forming a gate electrode made of a first conductive layer on the relatively thin gate insulating film. And a step of forming an interlayer insulating film covering the insulating film formed simultaneously with the first gate electrode and the field insulating film,
Etching the interlayer insulating film to open contact holes reaching the first gate electrode and the surface of the semiconductor substrate,
A step of etching an insulating film formed simultaneously with the interlayer insulating film and the field insulating film to leave a relatively thick gate insulating film, and forming a second conductive layer filling each contact hole and covering the thick gate insulating film It is effective to include a step and a step of forming a wiring and a gate electrode on the gate insulating film that is relatively thicker than the second conductive layer.
In that case, the first conductive layer is preferably made of polycrystalline silicon, and the second conductive layer is preferably made of metal.

【0005】[0005]

【作用】高電圧駆動回路用の厚いゲート絶縁膜をフィー
ルド絶縁膜と同時に形成されるさらに厚い絶縁膜をエッ
チングして形成することにより、厚いゲート絶縁膜形成
工程が削除できる。また、多結晶シリコン層から低電圧
駆動回路、高電圧駆動回路双方のゲート電極を同時に形
成するか、高電圧駆動回路のゲート電極は金属で形成す
ることにより、前記公開公報で開示された方法と比較す
ると、多結晶シリコン層堆積工程が1回ですみ、一導電
形の多結晶シリコン層のみとなるので配線等が単純化さ
れる。さらに、厚い絶縁膜のエッチング工程を層間絶縁
膜へのコンタクトホール形成のためのエッチング工程に
つづいて行えば、特に新しい工程の付加の必要がない。
By forming a thick gate insulating film for a high voltage drive circuit by etching a thicker insulating film formed at the same time as the field insulating film, the thick gate insulating film forming step can be eliminated. In addition, by simultaneously forming the gate electrodes of both the low-voltage driving circuit and the high-voltage driving circuit from the polycrystalline silicon layer, or by forming the gate electrode of the high-voltage driving circuit with a metal, the method disclosed in the above publication is disclosed. By comparison, the polycrystalline silicon layer deposition process is performed only once, and only one conductivity type polycrystalline silicon layer is provided, so that the wiring and the like are simplified. Furthermore, if the etching process for the thick insulating film is performed after the etching process for forming the contact hole in the interlayer insulating film, it is not necessary to add a new process.

【0006】[0006]

【実施例】以下、図を引用して本発明の実施例について
説明する。図1、図2は、請求項2に記載の本発明の一
実施例のLCDパネル駆動用ICの製造工程を示し、図
1 (a) 〜 (d) は製造工程の後半、図2 (a) 〜
(d)は製造工程の前半である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a manufacturing process of an LCD panel driving IC according to an embodiment of the present invention described in claim 2, and FIGS. 1 (a) to 1 (d) are the latter half of the manufacturing process, and FIG. ) ~
(d) is the first half of the manufacturing process.

【0007】この製造工程は、p形の単結晶シリコン基
板1に、ロジック回路として5V以下の駆動電圧で駆動
される低圧駆動回路部と数十V以上の駆動電圧で駆動さ
れる高電圧駆動回路部とが集積されるLCDパネルの駆
動用ICを製造するものである。 図2 (a) :p形、抵抗率10Ω・cmのCZ法による
単結晶シリコン基板1を用意し、低電圧駆動回路部のC
MOS形成予定領域10の中のpチャネルMOSFET
形成領域30と、高電圧駆動回路部のCMOS形成予定
領域20のpチャネルMOSFET形成領域50に、表
面不純物濃度2〜3×1016cm-3で拡散深さ4〜5μ
mのnウエル21、22を形成する。
In this manufacturing process, a p-type single crystal silicon substrate 1 is provided with a low voltage drive circuit section driven by a drive voltage of 5 V or less and a high voltage drive circuit driven by a drive voltage of several tens of V or more as a logic circuit. To manufacture an IC for driving an LCD panel in which the parts are integrated. FIG. 2A: A single crystal silicon substrate 1 prepared by the CZ method with a p-type and a resistivity of 10 Ω · cm is prepared, and C of the low voltage drive circuit section is prepared.
P-channel MOSFET in the MOS formation region 10
In the formation region 30 and the p-channel MOSFET formation region 50 in the CMOS formation planned region 20 of the high voltage drive circuit portion, the surface impurity concentration is 2 to 3 × 10 16 cm −3 and the diffusion depth is 4 to 5 μm.
m n wells 21 and 22 are formed.

【0008】図2 (b) :次に、低電圧駆動CMOS形
成予定領域10のnチャネルMOSFET形成領域40
と、高電圧駆動CMOS形成予定領域20のnチャネル
MOSFET形成領域60に、表面不純物濃度1×10
17cm-3程度で拡散深さ2〜3μmのpウエル拡散層3
1、32を形成すると同時に、厚さ40nm程度のベー
ス酸化膜4を形成する。
FIG. 2B: Next, the n-channel MOSFET formation region 40 of the low voltage drive CMOS formation planned region 10
And a surface impurity concentration of 1 × 10 in the n-channel MOSFET formation region 60 of the high voltage drive CMOS formation planned region 20.
P-well diffusion layer 3 with a diffusion depth of 2-3 μm at about 17 cm −3
At the same time as forming 1 and 32, the base oxide film 4 having a thickness of about 40 nm is formed.

【0009】図2 (c) :nウエル22の表面層に表面
不純物濃度1×1017cm-3程度で拡散深さ1.5μm程
度のpオフセット拡散層5を、pウエル32の表面層に
表面不純物濃度1×1017cm-3程度で拡散深さ1.5μ
m程度のnオフセット拡散層6をそれぞれ形成する。 図2 (d) :高電圧駆動CMOS20の素子分離のた
め、n+ ガードリング7とp+ ガードリング8をそれぞ
れ形成し、その後、シリコン窒化膜をマスクとして選択
酸化を行い、低電圧駆動CMOS形成予定領域10の活
性領域すなわち後に薄いゲート酸化膜が形成される部分
と高電圧駆動CMOS形成予定領域20のソースおよび
ドレインコンタクトを形成する部分を除いて、フィール
ド酸化膜9を厚さ600nm程度に形成する。なお図で
は省略するが、低電圧駆動CMOS10の素子分離のた
めに、フィールド酸化膜下の所望部分にはpフィールド
拡散層が同時形成される。
FIG. 2C: A p-offset diffusion layer 5 having a surface impurity concentration of about 1 × 10 17 cm −3 and a diffusion depth of about 1.5 μm is formed on the surface layer of the n-well 22 on the surface layer of the p-well 32. Surface impurity concentration of 1 × 10 17 cm -3 and diffusion depth of 1.5μ
The n offset diffusion layers 6 of about m are formed. FIG. 2 (d): n + guard ring 7 and p + guard ring 8 are formed for element isolation of high voltage driven CMOS 20, and then selective oxidation is performed using a silicon nitride film as a mask to form low voltage driven CMOS. A field oxide film 9 is formed to a thickness of about 600 nm except for the active region of the planned region 10, that is, a part where a thin gate oxide film will be formed later and the part of the high voltage driving CMOS formation planned region 20 where the source and drain contacts are formed. To do. Although not shown in the figure, a p-field diffusion layer is simultaneously formed in a desired portion under the field oxide film for element isolation of the low voltage drive CMOS 10.

【0010】図1 (a) :この工程が本発明のポイント
となる工程で、上面にレジスト11を厚さ400Åに塗
布後、高電圧駆動CMOS形成予定領域20中のpチャ
ネルMOSFETおよびnチャネルMOSFETのゲー
ト電極形成予定領域のみに窓明けをしたフォトマスク
(レチクル) を用いてレジスト11のパターニングを行
い、10倍に希釈したふっ酸水溶液を用いて、フィール
ド酸化膜9の残膜91の厚さが200nm程度になるよ
うにウェットエッチングを行った後、レジスト11を除
去する。この残膜91は、後に高電圧駆動CMOS20
のゲート酸化膜として利用される。
FIG. 1 (a): This step is the point of the present invention. After the resist 11 is applied on the upper surface to a thickness of 400Å, the p-channel MOSFET and the n-channel MOSFET in the high voltage drive CMOS formation planned region 20 are formed. Photomask with a window opened only in the area where the gate electrode is to be formed
The resist 11 is patterned using a (reticle), and wet etching is performed using a 10 times diluted hydrofluoric acid aqueous solution so that the residual film 91 of the field oxide film 9 has a thickness of about 200 nm. The resist 11 is removed. This residual film 91 will be used later in the high voltage drive CMOS 20.
Is used as a gate oxide film.

【0011】図1 (b) :次に露出した酸化膜をふっ酸
水溶液を用いてエッチングし、薄いベース酸化膜4は除
去する。図1 (a) の工程で厚さ200nmになったフ
ィールド酸化膜の残膜91は約50nmエッチングされ
て厚さ150nm程度となる。そのあと、低電圧駆動C
MOS10用の約25nmの厚さの薄いゲート酸化膜1
2を形成し、その上に減圧CVD法を用いてn形に高濃
度にドープされた多結晶シリコン層13を約400nm
の厚さに堆積する。
FIG. 1B: Next, the exposed oxide film is etched with an aqueous solution of hydrofluoric acid to remove the thin base oxide film 4. The residual film 91 of the field oxide film having a thickness of 200 nm in the step of FIG. 1A is etched by about 50 nm to have a thickness of about 150 nm. After that, low voltage drive C
Thin gate oxide film 1 with a thickness of about 25 nm for MOS10
2 is formed, and a polycrystalline silicon layer 13 highly doped with n-type at a high concentration of about 400 nm is formed thereon by using the low pressure CVD method.
Deposited to a thickness of.

【0012】図1 (c) :多結晶シリコン層13をパタ
ーニングして低電圧駆動CMOS10および高電圧駆動
CMOS20のゲート電極41、42、43、44を残
す。 図1 (d) :低電圧駆動および高電圧駆動の両CMOS
のnチャネルMOS部40、60にn+ ソース・ドレイ
ン拡散層45、46、pチャネルMOS部30、50に
+ ソース・ドレイン拡散層47、48をそれぞれ形成
する。
FIG. 1C: The polycrystalline silicon layer 13 is patterned to leave the gate electrodes 41, 42, 43 and 44 of the low voltage driving CMOS 10 and the high voltage driving CMOS 20. Figure 1 (d): Low-voltage driven and high-voltage driven CMOS
N + source / drain diffusion layers 45 and 46 are formed in the n-channel MOS portions 40 and 60, and p + source / drain diffusion layers 47 and 48 are formed in the p-channel MOS portions 30 and 50, respectively.

【0013】なお、この後の工程は通常のCMOSプロ
セスと同じで、層間絶縁膜形成工程、コンタクトホール
形成工程、金属配線工程および保護膜形成工程を経てウ
エハプロセスを完了する。図3、図4は、請求項4に記
載の本発明の別の実施例のLCDパネル駆動用ICの製
造工程を示し、前半は図2と同じで、そのあとに図3
(a) 〜 (c) 、図4 (a) 、 (b) がつづく。
The subsequent steps are the same as in a normal CMOS process, and the wafer process is completed through an interlayer insulating film forming step, a contact hole forming step, a metal wiring step and a protective film forming step. 3 and 4 show a manufacturing process of an LCD panel driving IC according to another embodiment of the present invention described in claim 4, the first half of which is the same as that of FIG.
(a)-(c), FIG. 4 (a), (b) continue.

【0014】図3 (a) :図2 (d) の状態と同じで厚
さ600nmのフィールド酸化膜9までの形成工程が終
了している。 図3 (b) :ベース酸化膜4をふっ酸水溶液を用いて除
去する。このときフィールド酸化膜9は約50nmエッ
チングされて残膜が550nm程度の厚さとなる。その
後、低電圧駆動CMOS10用の厚さ約25nmの薄い
ゲート酸化膜12を形成し、n形高濃度の多結晶シリコ
ン層13を減圧CVD法で約400nmの厚さに堆積す
る。
FIG. 3A: Same as the state of FIG. 2D, the formation process up to the field oxide film 9 having a thickness of 600 nm is completed. FIG. 3B: The base oxide film 4 is removed using a hydrofluoric acid aqueous solution. At this time, the field oxide film 9 is etched by about 50 nm, and the remaining film has a thickness of about 550 nm. After that, a thin gate oxide film 12 having a thickness of about 25 nm for the low voltage drive CMOS 10 is formed, and an n-type high concentration polycrystalline silicon layer 13 is deposited to a thickness of about 400 nm by a low pressure CVD method.

【0015】図3 (c) :低電圧駆動CMOS10のゲ
ート電極41、42となる各部を残すように多結晶シリ
コン層13をエッチングする。 図4 (a) :低電圧駆動CMOS10および高電圧駆動
CMOS20のnチャネルMOSFET部40、60に
対してはn+ ソース・ドレイン拡散層45、46を形成
し、pチャネルMOSFET部30、50に対してはp
+ ソース・ドレイン拡散層47、48を形成する。次
に、CVD法で1μmの厚さのPSGなどの層間絶縁膜
14を形成したのち、この発明のポイントであるコンタ
クトホール形成工程を行う。
FIG. 3C: The polycrystalline silicon layer 13 is etched so as to leave the respective portions which will become the gate electrodes 41 and 42 of the low voltage drive CMOS 10. FIG. 4A: n + source / drain diffusion layers 45 and 46 are formed for the n-channel MOSFET sections 40 and 60 of the low voltage drive CMOS 10 and the high voltage drive CMOS 20, and for the p channel MOSFET sections 30 and 50. Is p
+ Source / drain diffusion layers 47 and 48 are formed. Next, after the interlayer insulating film 14 such as PSG having a thickness of 1 μm is formed by the CVD method, the contact hole forming step which is the point of the present invention is performed.

【0016】コンタクトホール形成用フォトマスク (レ
チクル) は、ソース・ドレイン拡散層45、46、4
7、48および低電圧駆動CMOS10のゲート電極4
1、42に接続する部分のほか、高電圧駆動CMOS2
0のゲート部分にもパターン形成しておく。このマスク
を用いてレジストパターンを形成し、まずふっ酸水溶液
で層間絶縁膜14およびゲート酸化膜12のエッチング
を行い、コンタクトホール上部にテーパをつけ、ついで
異方性ドライエッチングでほぼ垂直な切り口のコンタク
トホール下部を形成する。このとき、コンタクトホール
15はソース・ドレイン拡散層45、46、47、48
の表面に到達し、図示しないコンタクトホールは多結晶
シリコンのゲート電極41、42に到達する。高電圧駆
動CMOS20のゲート部分においては、ウェットエッ
チングおよび異方性ドライエッチングで層間絶縁膜14
が貫通され、フィールド酸化膜9の約150nm程度の
厚さの残膜91が残る時点で異方性ドライエッチングを
終了させることでコンタクトホール16が形成される。
Photomasks (reticles) for forming contact holes are composed of source / drain diffusion layers 45, 46, 4
7, 48 and the gate electrode 4 of the low voltage driving CMOS 10
In addition to the parts connected to 1, 42, high voltage drive CMOS2
A pattern is also formed on the 0 gate portion. A resist pattern is formed using this mask. First, the interlayer insulating film 14 and the gate oxide film 12 are etched with an aqueous solution of hydrofluoric acid to taper the upper part of the contact hole, and then anisotropic dry etching is performed to form a substantially vertical cut. The lower part of the contact hole is formed. At this time, the contact holes 15 form the source / drain diffusion layers 45, 46, 47, 48.
Of the polycrystalline silicon, and contact holes (not shown) reach the gate electrodes 41 and 42 of polycrystalline silicon. In the gate portion of the high voltage drive CMOS 20, the interlayer insulating film 14 is formed by wet etching and anisotropic dry etching.
Is penetrated, and the anisotropic dry etching is terminated at the time when the residual film 91 having a thickness of about 150 nm of the field oxide film 9 is left to form the contact hole 16.

【0017】なお、異方性ドライエッチングは酸化膜と
シリコンの選択比が10倍以上あれば、層間絶縁膜14
がエッチングされたあと、フィールド酸化膜9が約40
0nmエッチングされる間に、ソース・ドレイン拡散層
45、46、47、48の表面部のシリコン、ゲート電
極41、42の表面部の多結晶シリコンがオーバーエッ
チングされる深さは40nm程度であり、問題はない。
図4 (a) は、エッチング工程終了後、レジストを除去
した状態を示す。
In the anisotropic dry etching, if the selection ratio of oxide film to silicon is 10 times or more, the interlayer insulating film 14 is formed.
The field oxide film 9 has about 40
The depth at which the surface silicon of the source / drain diffusion layers 45, 46, 47, 48 and the polycrystalline silicon on the surface of the gate electrodes 41, 42 are over-etched is about 40 nm during the 0 nm etching. No problem.
FIG. 4A shows a state in which the resist has been removed after the etching process is completed.

【0018】図4 (b) :Al層の成膜、パターニング
により、コンタクトホール15でソース・ドレイン拡散
層45、46、47、48に接触する金属配線17と、
フィールド酸化膜の残膜91をゲート酸化膜として、そ
のウェットエッチングのコンタクトホール16内に位置
するゲート電極43、44を形成する金属配線工程を行
う。すなわち、この実施例では、低電圧駆動CMOS1
0は多結晶シリコンゲートを有し、高電圧駆動CMOS
20ではAlゲートを有する。このあと、保護膜形成工
程を経てウエハプロセスを終了する。
FIG. 4 (b): Metal wiring 17 contacting the source / drain diffusion layers 45, 46, 47 and 48 at the contact hole 15 by forming and patterning an Al layer,
Using the residual film 91 of the field oxide film as a gate oxide film, a metal wiring process is performed to form the gate electrodes 43 and 44 located in the contact holes 16 of the wet etching. That is, in this embodiment, the low voltage drive CMOS1
0 has a polycrystalline silicon gate and is a high voltage drive CMOS
20 has an Al gate. After that, the wafer process is completed through the protective film forming step.

【0019】[0019]

【発明の効果】本発明によれば、高電圧駆動回路などの
ための厚いゲート絶縁膜をフィールド絶縁膜と同時に形
成できる厚い絶縁膜をエッチングして形成することによ
り、ゲート絶縁膜形成工程が大幅に簡素化される。さら
に、その厚い絶縁膜のエッチング工程をコンタクトホー
ル形成のための層間絶縁膜エッチング工程につづけるこ
とにより、一切の工程の追加が不要となり、製造コスト
の低減を可能とする。ゲート電極を多結晶シリコンより
形成する場合は、一導電形の多結晶シリコン層となるた
め、ゲート電極への配線も簡単になり、チップ面積の大
幅な縮小も達成できる。これらにより低電圧駆動CMO
S部および高電圧駆動CMOS部を集積するLCDパネ
ル駆動用ICの低価格での供給が可能となった。
According to the present invention, a thick gate insulating film for a high voltage driving circuit or the like can be formed simultaneously with a field insulating film by etching to form a thick insulating film. To be simplified. Furthermore, by continuing the etching process of the thick insulating film with the etching process of the interlayer insulating film for forming the contact hole, it is possible to reduce the manufacturing cost because no additional process is required. When the gate electrode is made of polycrystalline silicon, a polycrystalline silicon layer of one conductivity type is formed, so that the wiring to the gate electrode is simplified and the chip area can be greatly reduced. With these, low voltage drive CMO
It has become possible to supply an LCD panel driving IC that integrates the S section and the high voltage driving CMOS section at a low price.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のLCDパネル駆動用IC製
造工程の後半の要部を (a) ないし (d) の順に示す断
面図
FIG. 1 is a sectional view showing an essential part of the latter half of a manufacturing process of an LCD panel driving IC according to an embodiment of the present invention in the order of (a) to (d).

【図2】図1に示した製造工程より前の工程を (a) な
いし (d) の順に示す断面図
FIG. 2 is a cross-sectional view showing steps before the manufacturing step shown in FIG. 1 in the order of (a) to (d).

【図3】本発明の別の実施例のLCDパネル駆動用IC
製造工程の図2に示した工程につづく工程の前半を
(a) 、 (b) 、 (c) の順に示す断面図
FIG. 3 is an LCD panel driving IC according to another embodiment of the present invention.
The first half of the process following the process shown in Fig. 2 of the manufacturing process
Sectional drawing which shows in order of (a), (b), (c)

【図4】図3に示した製造工程につづく工程を (a) 、
(b) の順に示す断面図
FIG. 4 shows a step (a) following the manufacturing step shown in FIG.
Sectional view shown in order of (b)

【符号の説明】[Explanation of symbols]

1 p形シリコン基板 21、22 nウエル 31、32 pウエル 4 ベース酸化膜 5 p形オフセット拡散層 6 n形オフセット拡散層 9 フィールド酸化膜 91 フィールド酸化膜残膜(ゲート酸化膜) 12 ゲート酸化膜 13 多結晶シリコン層 14 層間絶縁膜 15、16 コンタクトホール 17 金属配線 41、42、43、44 ゲート電極 45、46 n+ ソース・ドレイン拡散層 47、48 p+ ソース・ドレイン拡散層 10 低電圧駆動回路部 20 高電圧駆動回路部 30、50 pチャネルMOSFET 40、60 nチャネルMOSFET1 p-type silicon substrate 21, 22 n-well 31, 32 p-well 4 base oxide film 5 p-type offset diffusion layer 6 n-type offset diffusion layer 9 field oxide film 91 field oxide film residual film (gate oxide film) 12 gate oxide film 13 Polycrystalline Silicon Layer 14 Interlayer Insulating Film 15, 16 Contact Hole 17 Metal Wiring 41, 42, 43, 44 Gate Electrode 45, 46 n + Source / Drain Diffusion Layer 47, 48 p + Source / Drain Diffusion Layer 10 Low Voltage Driving Circuit part 20 High voltage drive circuit part 30, 50 p-channel MOSFET 40, 60 n-channel MOSFET

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/78 H01L 29/78 301 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 29/78 H01L 29/78 301 H

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】同一半導体基板の表面側に相対的に厚いゲ
ート絶縁膜を有するMISFETと相対的に薄いゲート
絶縁膜を有するMISFETが形成され、MISFET
相互間の分離のためにいずれのゲート絶縁膜よりも厚い
フィールド絶縁膜が基板表面上に形成される半導体装置
の製造方法において、厚いゲート絶縁膜をフィールド絶
縁膜と同時に形成した絶縁膜をエッチングすることによ
り形成することを特徴とする半導体装置の製造方法。
1. A MISFET having a relatively thick gate insulating film and a MISFET having a relatively thin gate insulating film are formed on the surface side of the same semiconductor substrate.
In a method for manufacturing a semiconductor device in which a field insulating film thicker than any gate insulating film is formed on a substrate surface for mutual isolation, an insulating film formed by forming a thick gate insulating film at the same time as a field insulating film is etched. A method of manufacturing a semiconductor device, comprising:
【請求項2】半導体基板表面上に相対的に薄いゲート絶
縁膜をフィールド絶縁膜と同時に形成した絶縁膜を形成
する工程と、フィールド絶縁膜と同時に形成した絶縁膜
を選択的にエッチングして相対的に厚いゲート絶縁膜を
残す工程と、両ゲート絶縁膜を共通に導電層により被覆
する工程と、この導電層をパターニングして各MISF
ETのゲート電極を形成する工程とを含む請求項1記載
の半導体装置の製造方法。
2. A step of forming an insulating film in which a relatively thin gate insulating film is formed at the same time as a field insulating film on a surface of a semiconductor substrate, and a step of selectively etching the insulating film formed at the same time as the field insulating film to form a relative insulating film. A thick gate insulating film, a step of covering both gate insulating films with a conductive layer in common, and patterning of the conductive layer to form each MISF.
The method of manufacturing a semiconductor device according to claim 1, further comprising the step of forming a gate electrode of ET.
【請求項3】導電層が多結晶シリコンよりなる請求項2
記載の半導体装置の製造方法。
3. The conductive layer is made of polycrystalline silicon.
A method for manufacturing a semiconductor device as described above.
【請求項4】半導体基板表面上に相対的に薄いゲート絶
縁膜とフィールド絶縁膜と同時に形成した絶縁膜を形成
する工程と、相対的に薄いゲート絶縁膜上に第一の導電
層よりなるゲート電極を形成する工程と、第一ゲート電
極およびフィールド絶縁膜と同時に形成した絶縁膜を被
覆する層間絶縁膜を形成する工程と、層間絶縁膜をエッ
チングして第一ゲート電極および半導体基板表面に達す
るコンタクトホールを明けると共に、層間絶縁膜および
フィールド絶縁膜と同時に形成した絶縁膜をエッチング
して相対的に厚いゲート絶縁膜を残す工程と、各コンタ
クトホールを埋めると共に厚いゲート絶縁膜を被覆する
第二の導電層を形成する工程と、第二の導電層より配線
および相対的に厚いゲート絶縁膜上のゲート電極を形成
する工程とを含む請求項1記載の半導体装置の製造方
法。
4. A step of forming an insulating film formed on a surface of a semiconductor substrate at the same time as a relatively thin gate insulating film and a field insulating film, and a gate formed of a first conductive layer on the relatively thin gate insulating film. A step of forming an electrode, a step of forming an interlayer insulating film covering an insulating film formed simultaneously with the first gate electrode and the field insulating film, and a step of etching the interlayer insulating film to reach the surface of the first gate electrode and the semiconductor substrate A step of opening the contact holes and etching the insulating film formed at the same time as the interlayer insulating film and the field insulating film to leave a relatively thick gate insulating film, and filling each contact hole and covering the thick gate insulating film. Forming a conductive layer of the second conductive layer and a step of forming a gate electrode on the wiring and a relatively thick gate insulating film as compared with the second conductive layer. The method of manufacturing a semiconductor device Motomeko 1 wherein.
【請求項5】第一の導電層が多結晶シリコンよりなり、
第二の導電層が金属よりなる請求項4記載の半導体装置
の製造方法。
5. The first conductive layer is made of polycrystalline silicon,
The method of manufacturing a semiconductor device according to claim 4, wherein the second conductive layer is made of metal.
JP11325094A 1994-05-27 1994-05-27 Method for manufacturing semiconductor device Expired - Fee Related JP3198803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11325094A JP3198803B2 (en) 1994-05-27 1994-05-27 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11325094A JP3198803B2 (en) 1994-05-27 1994-05-27 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH07321218A true JPH07321218A (en) 1995-12-08
JP3198803B2 JP3198803B2 (en) 2001-08-13

Family

ID=14607391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11325094A Expired - Fee Related JP3198803B2 (en) 1994-05-27 1994-05-27 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3198803B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044293A (en) * 1999-07-30 2001-02-16 Denso Corp Semiconductor device
US8102006B2 (en) * 2006-03-24 2012-01-24 Micron Technology, Inc. Different gate oxides thicknesses for different transistors in an integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044293A (en) * 1999-07-30 2001-02-16 Denso Corp Semiconductor device
US8102006B2 (en) * 2006-03-24 2012-01-24 Micron Technology, Inc. Different gate oxides thicknesses for different transistors in an integrated circuit

Also Published As

Publication number Publication date
JP3198803B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
US5545577A (en) Method of producing a semiconductor device having two MIS transistor circuits
US5449637A (en) Method of producing low and high voltage MOSFETs with reduced masking steps
JPH1032246A (en) Semiconductor device and manufacture thereof
US5593919A (en) Process for forming a semiconductor device including conductive members
US5733812A (en) Semiconductor device with a field-effect transistor having a lower resistance impurity diffusion layer, and method of manufacturing the same
JP2002343891A (en) Sram cell manufacturing method
US5534450A (en) Method for fabrication a semiconductor device
US5939758A (en) Semiconductor device with gate electrodes having conductive films
JPH07321218A (en) Manufacture of semiconductor device
KR100259688B1 (en) Semiconductor device and method of manufacturing the same
JPH08181223A (en) Manufacture of semiconductor device
JPH08125031A (en) Semiconductor device and its manufacture
JP5178974B2 (en) Semiconductor device and manufacturing method thereof
JP2809172B2 (en) Semiconductor device
JPH05326841A (en) Manufacture of semiconductor device
KR100238644B1 (en) Soi device and manufacturing process thereof
JP2940954B2 (en) Method for manufacturing semiconductor device
JPH11238881A (en) Semiconductor device and manufacture thereof
JPH06232394A (en) Manufacture of semiconductor device
JPH0750739B2 (en) Multilayer wiring structure of semiconductor integrated circuit
JPH0917947A (en) Semiconductor integrated circuit device and manufacture thereof
JPH01168054A (en) Semiconductor integrated circuit device
JPH05136353A (en) Manufacture of mos semiconductor device
JPH05259408A (en) Semiconductor device and fabrication thereof
JPH07297379A (en) Field effect type semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees