JPH05326841A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05326841A
JPH05326841A JP4157466A JP15746692A JPH05326841A JP H05326841 A JPH05326841 A JP H05326841A JP 4157466 A JP4157466 A JP 4157466A JP 15746692 A JP15746692 A JP 15746692A JP H05326841 A JPH05326841 A JP H05326841A
Authority
JP
Japan
Prior art keywords
film
oxide film
capacitor
gate oxide
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4157466A
Other languages
Japanese (ja)
Inventor
Seiichi Takahashi
誠一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4157466A priority Critical patent/JPH05326841A/en
Publication of JPH05326841A publication Critical patent/JPH05326841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent an increase in the number of photolithography processes and to improve the accuracy of the manufacture of a film thickness by a method wherein the formation of an N-type high-concentration region and a selective oxidation of a capacitor film are performed by the photolithography process of one time using a nitride film. CONSTITUTION:An oxide film 105 is formed and thereafter, a silicon nitride film 106 is grown. After that, the film 106 located at a capacitor formation region is etched using a photoresist 107 as a mask. Subsequently, an N-type high-concentration region 108 is formed at the capacitor formation region. Moreover, the gate oxide film 105 located at the capacitor formation region is etched. Then, after the photoresist is removed, a capacitor oxide film 109 is formed. At this time, as the film 106 works as a masking material for oxidation resistance, the film thickness of the gate oxide film 105 of a CMOS transistor part is not changed. Then, a gate electrode 110, a capacitor upper electrode 110' and N<+> and P<+> source and drain regions 11 and 112 are formed. Lastly, an inter-layer insulating film 113 is formed and metallic wirings 114 are annexed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、特にMOS型コンデンサを混載するCMOSお
よびBi−CMOS集積回路の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a CMOS and Bi-CMOS integrated circuit on which MOS capacitors are mounted together.

【0002】[0002]

【従来の技術】従来のBi−CMOS集積回路(IC)
中にMOS型コンデンサを混載する場合には、ゲート酸
化膜を容量膜として用いることにより、工程の増加を伴
うことなく、コンデンサを形成することができていた。
2. Description of the Related Art A conventional Bi-CMOS integrated circuit (IC)
In the case where a MOS type capacitor is mixedly mounted therein, by using the gate oxide film as a capacitance film, the capacitor could be formed without increasing the number of steps.

【0003】一方、ICの高集積化が進むにつれ、スケ
ーリング則に基いてゲート酸化膜は薄化してきており、
CMOS回路の電源電圧は5Vから3.3Vへ下がろう
としている。例えば、Bi−CMOS ICではCMO
S部は5V系、バイポーラ部は9V系あるいは12V系
といったように使用されることがあり、バイポーラ部に
MOS型コンデンサを用いる場合には、その電源電圧に
見合った絶縁耐圧および信頼性を保障する必要がある。
On the other hand, as the integration of ICs has increased, the gate oxide film has become thinner based on the scaling law.
The power supply voltage of the CMOS circuit is about to drop from 5V to 3.3V. For example, in Bi-CMOS IC, CMO
The S part may be used as a 5V system and the bipolar part may be used as a 9V system or a 12V system. When a MOS type capacitor is used for the bipolar part, the dielectric strength and reliability corresponding to the power supply voltage are guaranteed. There is a need.

【0004】ゲート酸化膜が200Å以下と薄くなって
くると、これを容量膜とした場合、9V系や12V系で
は5MV/cm以上の電界がかかることになり、信頼性
を保障できなくなってしまう。そこで、容量膜をゲート
絶縁膜と別形成で厚くする必要が生じる。
If the gate oxide film becomes thinner than 200 Å, if it is used as a capacitance film, an electric field of 5 MV / cm or more will be applied to 9 V type and 12 V type, and the reliability cannot be guaranteed. .. Therefore, it is necessary to form the capacitor film separately from the gate insulating film to increase the thickness.

【0005】図5〜図9により容量膜を厚くする従来の
技術をCMOS集積回路の製造方法に則って説明する。
A conventional technique for thickening a capacitance film will be described with reference to FIGS. 5 to 9 in accordance with a method for manufacturing a CMOS integrated circuit.

【0006】まず図5に示すようにP- 型シリコン基板
201を用意し、N型ウェル領域202およびP型ウェ
ル領域203を形成した後、素子間分離酸化膜204を
形成する。さらに素子形成領域表面を約3000Å擬牲
酸化する。
First, as shown in FIG. 5, a P -- type silicon substrate 201 is prepared, an N-type well region 202 and a P-type well region 203 are formed, and then an element isolation oxide film 204 is formed. Further, the surface of the element forming region is pseudo-oxidized by about 3000 liters.

【0007】次に図6に示すようにMOSコンデンサの
容量値のバイアス電圧依存性を低減する目的でフォトレ
ジスト206をマスクとしてコンデンサ形成領域に加速
エネルギー70keV,ドーズ量1×1014cm-2程度
のリンのイオン注入を行ってN型高濃度層207を形成
する。
Next, as shown in FIG. 6, for the purpose of reducing the bias voltage dependence of the capacitance value of the MOS capacitor, the photoresist 206 is used as a mask in the capacitor formation region at an acceleration energy of 70 keV and a dose amount of about 1 × 10 14 cm -2. Then, phosphorus is ion-implanted to form the N-type high concentration layer 207.

【0008】次に図7に示すように、フォトレジスト2
06を除去し、擬牲酸化膜205をエッチングした後、
{(所望の容量酸化膜厚)−(ゲート酸化膜厚)}の厚
さをもつ酸化膜208を熱酸化により形成する。
Next, as shown in FIG.
After removing 06 and etching the pseudo oxide film 205,
An oxide film 208 having a thickness of {(desired capacitance oxide film thickness) − (gate oxide film thickness)} is formed by thermal oxidation.

【0009】さらにフォトレジスト209をマスクとし
てCMOSトランジスタ部の酸化膜208を稀フッ酸に
てエッチング除去する。最後にフォトレジスト208を
除去した後、再び熱酸化してCMOSトランジスタ部に
所望の膜厚(例えば150Å)のゲート酸化膜210を
形成する。このときコンデンサ部の酸化膜208はさら
に酸化が進行して所望の膜厚になっている(図8)。
Further, using the photoresist 209 as a mask, the oxide film 208 in the CMOS transistor portion is removed by etching with diluted hydrofluoric acid. Finally, after removing the photoresist 208, thermal oxidation is performed again to form a gate oxide film 210 having a desired film thickness (for example, 150Å) on the CMOS transistor portion. At this time, the oxide film 208 of the capacitor portion is further oxidized and has a desired film thickness (FIG. 8).

【0010】最後に図9に示すようにCMOSトランジ
スタのゲート電極211およびコンデンサの上部電極2
11′を多結晶シリコン層で形成し、さらにN+ 型およ
びP+ 型ソースドレイン領域212,213を形成し
て、薄いゲート酸化膜のCMOSトランジスタとゲート
酸化膜より膜厚の厚い容量膜のコンデンサを得ていた。
Finally, as shown in FIG. 9, the gate electrode 211 of the CMOS transistor and the upper electrode 2 of the capacitor.
11 'is formed of a polycrystalline silicon layer, and N + type and P + type source / drain regions 212 and 213 are further formed, and a CMOS transistor having a thin gate oxide film and a capacitor having a capacitance film thicker than the gate oxide film are formed. Was getting.

【0011】[0011]

【発明が解決しようとする課題】従来のゲート酸化膜よ
り膜厚の厚い容量膜を形成する方法では、予め所望の容
量膜厚からゲート酸化膜厚を差し引いた膜厚の酸化膜を
形成しておき、CMOSトランジスタ部のみ選択的にこ
の酸化膜を除去した後、ゲート酸化膜厚の分だけさらに
熱酸化するという方法をとっており、酸化膜の選択除去
のためフォトリソグラフィ工程が一回分増加している。
また、2度の酸化工程により容量膜の膜厚が決まるた
め、製造の精度が悪い。
In the conventional method of forming a capacitance film having a thickness larger than that of the gate oxide film, an oxide film having a thickness obtained by subtracting the gate oxide film thickness from a desired capacitance film thickness is formed in advance. After that, the oxide film is selectively removed only in the CMOS transistor portion, and then the film is further thermally oxidized by the gate oxide film thickness, and the photolithography process is increased by one time for the selective removal of the oxide film. ing.
Further, since the thickness of the capacitance film is determined by the two oxidation processes, the manufacturing accuracy is poor.

【0012】本発明の目的は、フォトリソグラフィ工程
の増加を伴わず、かつ膜厚の製造精度を向上させる半導
体装置の製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a semiconductor device, which does not increase the number of photolithography steps and improves the manufacturing accuracy of the film thickness.

【0013】[0013]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る半導体装置の製造方法は、同一基板上
に膜厚の異なるゲート酸化膜と容量酸化膜とを形成する
CMOSあるいはBi−CMOS集積回路の製造方法に
おいて、ゲート酸化膜を形成した後、窒化膜を形成する
工程と、フォトリソグラフィ工程によりコンデンサ形成
領域の窒化膜を除去し、さらにその部分のゲート酸化膜
を除去する工程と、前記窒化膜を耐酸化用のマスクとし
て用い、コンデンサ形成領域のみ所望の厚さの酸化膜を
形成する工程と、前記窒化膜を除去する工程とを有する
ものである。
In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention is a CMOS or Bi-type in which a gate oxide film and a capacitive oxide film having different thicknesses are formed on the same substrate. In the method for manufacturing a CMOS integrated circuit, a step of forming a nitride film after forming a gate oxide film, and a step of removing the nitride film in the capacitor formation region by a photolithography process and further removing the gate oxide film in that portion Using the nitride film as an oxidation resistant mask, a step of forming an oxide film having a desired thickness only in a capacitor formation region and a step of removing the nitride film are included.

【0014】[0014]

【作用】同一基板上に膜厚の異なるゲート酸化膜と容量
酸化膜を形成するCMOSあるいはBi−CMOS集積
回路の製造方法において、ゲート酸化膜を形成した後、
窒化膜を形成し、フォトリソグラフィ工程によりコンデ
ンサ形成領域の窒化膜を除去し、さらにその部分のゲー
ト酸化膜を除去し、前記窒化膜を耐酸化用のマスクとし
て用い、コンデンサ形成領域のみ所望の厚さの酸化膜を
形成し、前記窒化膜を除去する。
In a method of manufacturing a CMOS or Bi-CMOS integrated circuit in which a gate oxide film and a capacitive oxide film having different thicknesses are formed on the same substrate, after forming the gate oxide film,
A nitride film is formed, the nitride film in the capacitor formation region is removed by a photolithography process, the gate oxide film in that region is further removed, and the nitride film is used as an oxidation-resistant mask so that only the capacitor formation region has a desired thickness. Oxide film is formed, and the nitride film is removed.

【0015】[0015]

【実施例】次に、本発明について図面を参照して説明す
る。図1〜図4は、本発明の一実施例を示す工程断面図
である。図において、本実施例では、薄いゲート酸化膜
のCMOSトランジスタと厚い容量酸化膜のコンデンサ
とを同じシリコン基板上に形成する場合について説明
し、バイポーラトランジスタの形成工程については割愛
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. 1 to 4 are process sectional views showing an embodiment of the present invention. In the drawings, in this embodiment, a case where a CMOS transistor having a thin gate oxide film and a capacitor having a thick capacitance oxide film are formed on the same silicon substrate will be described, and the forming process of a bipolar transistor will be omitted.

【0016】まず図1に示すようにP- 型シリコン基板
101を用意し、N型ウェル領域102、P型ウェル領
域103を形成した後、選択酸化を行って素子間分離酸
化膜104を形成する。
First, as shown in FIG. 1, a P type silicon substrate 101 is prepared, an N type well region 102 and a P type well region 103 are formed, and then selective oxidation is performed to form an element isolation oxide film 104. ..

【0017】さらに素子形成領域表面を300Å程度擬
牲酸化した後、稀フッ酸でこれを除去してから、所望の
膜厚、例えば150Å程度のゲート酸化膜105を熱酸
化により形成する。
Further, after the surface of the element forming region is pseudo-oxidized by about 300Å, it is removed by dilute hydrofluoric acid, and then a gate oxide film 105 having a desired film thickness, for example, about 150Å is formed by thermal oxidation.

【0018】次に図2に示すように基板表面に窒化シリ
コン膜106を成長した後、フォトレジスト107をマ
スクにし、コンデンサ形成領域の窒化膜106をエッチ
ングする。続いて加速エネルギー70keV、ドーズ量
1×1014cm-2程度のリンのイオン注入を行ってコン
デンサ形成領域にN型高濃度領域108を形成する。こ
のN型高濃度領域108を設けるのは、従来技術で説明
したとおりコンデンサの容量値のバイアス電圧依存性を
低減するためである。さらに、稀フッ酸を用いてコンデ
ンサ形成領域のゲート酸化膜105をエッチングする。
Next, as shown in FIG. 2, after the silicon nitride film 106 is grown on the substrate surface, the nitride film 106 in the capacitor formation region is etched using the photoresist 107 as a mask. Subsequently, phosphorus ions are implanted with an acceleration energy of 70 keV and a dose of about 1 × 10 14 cm −2 to form an N-type high concentration region 108 in the capacitor formation region. The reason why the N-type high concentration region 108 is provided is to reduce the bias voltage dependency of the capacitance value of the capacitor as described in the prior art. Further, the gate oxide film 105 in the capacitor formation region is etched using dilute hydrofluoric acid.

【0019】次に図3に示すように、フォトレジスト1
07を除去した後、所望の膜厚、例えば280Åの容量
酸化膜109を熱酸化により形成する。このとき、窒化
膜106が耐酸化用のマスク材として働くために、CM
OSトランジスタ部のゲート酸化膜105の膜厚は変わ
らず、コンデンサ領域のみ厚い酸化膜を形成することが
可能である。
Next, as shown in FIG.
After removing 07, a capacitive oxide film 109 having a desired film thickness, for example, 280 Å is formed by thermal oxidation. At this time, since the nitride film 106 acts as an oxidation-resistant mask material, CM
The thickness of the gate oxide film 105 in the OS transistor portion does not change, and it is possible to form a thick oxide film only in the capacitor region.

【0020】次に図4に示すように、CMOSトランジ
スタのゲート電極110およびコンデンサの上部電極1
10′を多結晶シリコンで形成し、さらにN+ 型および
+型ソースドレイン領域111,112をイオン注入
によって形成する。最後に層間絶縁膜113を形成し、
金属配線114を付設して素子を完成する。
Next, as shown in FIG. 4, the gate electrode 110 of the CMOS transistor and the upper electrode 1 of the capacitor.
10 'is formed of polycrystalline silicon, and N + type and P + type source / drain regions 111 and 112 are formed by ion implantation. Finally, the interlayer insulating film 113 is formed,
The metal wiring 114 is attached to complete the device.

【0021】本実施例では容量酸化膜をゲート酸化膜よ
り厚く形成する場合について述べたが、逆に薄い容量膜
を形成する場合にも本発明が適用できることは明白であ
る。このときの製造方法は上記の製造方法と同じで、容
量酸化膜の膜厚が違うだけである。
In this embodiment, the case where the capacitive oxide film is formed thicker than the gate oxide film has been described, but it is clear that the present invention can be applied to the case where a thin capacitive film is formed. The manufacturing method at this time is the same as the above manufacturing method, and only the thickness of the capacitive oxide film is different.

【0022】[0022]

【発明の効果】以上説明したように本発明は、CMOS
トランジスタのゲート酸化膜の膜厚とMOS型コンデン
サの容量膜の膜厚とを違えて形成することが可能であ
り、容量膜厚を厚くすればコンデンサに高い電圧が加わ
ったとしても信頼性を保障することが可能である。
As described above, according to the present invention, the CMOS
The thickness of the gate oxide film of the transistor and the thickness of the capacitance film of the MOS type capacitor can be made different, and the reliability can be guaranteed even if a high voltage is applied to the capacitor by increasing the thickness of the capacitance film. It is possible to

【0023】半導体プロセスではフォトリソグラフィ工
程数が製造工期,製造原価を決定する重要な因子のひと
つであるが、本発明では窒化膜を用いることによりN型
高濃度領域の形成と容量膜の選択酸化を1回のフォトリ
ソグラフィ工程で行っているため、従来技術に比べ、工
期短縮,原価低減がなされている。
In the semiconductor process, the number of photolithography steps is one of the important factors that determine the manufacturing period and the manufacturing cost. In the present invention, the use of the nitride film forms the N-type high concentration region and selectively oxidizes the capacitive film. Since the photolithography process is performed once, the work period is shortened and the cost is reduced as compared with the conventional technique.

【0024】また、従来技術では容量酸化膜の膜厚は、
ゲート酸化膜形成前の酸化工程とゲート酸化との二度の
酸化によって決まるため、所望の膜厚からはずれたり、
ばらつきが大きかったりしてコンデンサの精度を下げる
可能性があるが、本発明ではゲート酸化膜と容量酸化膜
の形成は独立して行われるため精度が低下するという心
配はない。
In the prior art, the thickness of the capacitive oxide film is
Since it is decided by the oxidation process before the gate oxide film is formed and the gate oxidation, the film thickness deviates from the desired film thickness.
Although there is a possibility that the accuracy of the capacitor may be lowered due to a large variation, there is no concern that the accuracy is lowered because the gate oxide film and the capacitive oxide film are formed independently in the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す工程断面図である。FIG. 1 is a process sectional view showing an embodiment of the present invention.

【図2】本発明の一実施例を示す工程断面図である。FIG. 2 is a process sectional view showing an embodiment of the present invention.

【図3】本発明の一実施例を示す工程断面図である。FIG. 3 is a process sectional view showing an embodiment of the present invention.

【図4】本発明の一実施例を示す工程断面図である。FIG. 4 is a process sectional view showing an embodiment of the present invention.

【図5】従来技術を示す工程断面図である。FIG. 5 is a process sectional view showing a conventional technique.

【図6】従来技術を示す工程断面図である。FIG. 6 is a process sectional view showing a conventional technique.

【図7】従来技術を示す工程断面図である。FIG. 7 is a process sectional view showing a conventional technique.

【図8】従来技術を示す工程断面図である。FIG. 8 is a process sectional view showing a conventional technique.

【図9】従来技術を示す工程断面図である。FIG. 9 is a process sectional view showing a conventional technique.

【符号の説明】[Explanation of symbols]

101,201 P- 型シリコン基板 102,202 N型ウェル領域 103,203 P型ウェル領域 104,204 素子間分離酸化膜 105,210 ゲート酸化膜 106 窒化シリコン膜 107,206,209 フォトレジスト 108,207 N型高濃度領域 109 容量酸化膜 110,211 ゲート電極 110′,211′ コンデンサ上部電極 111,212 N+ 型ソースドレイン領域 112,213 P+ 型ソースドレイン領域 113 層間絶縁膜 114 金属配線 205 擬牲酸化膜 208 酸化膜101,201 P - type silicon substrate 102,202 N-type well region 103,203 P-type well region 104,204 Element isolation oxide film 105,210 Gate oxide film 106 Silicon nitride film 107,206,209 Photoresist 108,207 N-type high concentration region 109 Capacitive oxide film 110, 211 Gate electrode 110 ', 211' Capacitor upper electrode 111, 212 N + type source / drain region 112, 213 P + type source / drain region 113 Inter-layer insulation film 114 Metal wiring 205 Pseudo-type Oxide film 208 Oxide film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同一基板上に膜厚の異なるゲート酸化膜
と容量酸化膜とを形成するCMOSあるいはBi−CM
OS集積回路の製造方法において、 ゲート酸化膜を形成した後、窒化膜を形成する工程と、 フォトリソグラフィ工程によりコンデンサ形成領域の窒
化膜を除去し、さらにその部分のゲート酸化膜を除去す
る工程と、 前記窒化膜を耐酸化用のマスクとして用い、コンデンサ
形成領域のみ所望の厚さの酸化膜を形成する工程と、 前記窒化膜を除去する工程とを有することを特徴とする
半導体装置の製造方法。
1. A CMOS or Bi-CM in which a gate oxide film and a capacitive oxide film having different thicknesses are formed on the same substrate.
In the method of manufacturing an OS integrated circuit, a step of forming a nitride film after forming a gate oxide film, and a step of removing the nitride film in the capacitor formation region by a photolithography process and further removing the gate oxide film in that portion A method for manufacturing a semiconductor device, comprising: a step of forming an oxide film having a desired thickness only in a capacitor formation region by using the nitride film as a mask for oxidation resistance; and a step of removing the nitride film. ..
JP4157466A 1992-05-25 1992-05-25 Manufacture of semiconductor device Pending JPH05326841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4157466A JPH05326841A (en) 1992-05-25 1992-05-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4157466A JPH05326841A (en) 1992-05-25 1992-05-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05326841A true JPH05326841A (en) 1993-12-10

Family

ID=15650290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4157466A Pending JPH05326841A (en) 1992-05-25 1992-05-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05326841A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294771A (en) * 2004-04-06 2005-10-20 Fujitsu Ltd Method for manufacturing semiconductor device
JP2005537652A (en) * 2002-09-02 2005-12-08 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor device having field effect transistor and passive capacitor with reduced leakage current and improved capacitance per unit area
JP2007235168A (en) * 2007-05-10 2007-09-13 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
JP2011091437A (en) * 2011-01-24 2011-05-06 Renesas Electronics Corp Semiconductor integrated circuit device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537652A (en) * 2002-09-02 2005-12-08 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor device having field effect transistor and passive capacitor with reduced leakage current and improved capacitance per unit area
JP2005294771A (en) * 2004-04-06 2005-10-20 Fujitsu Ltd Method for manufacturing semiconductor device
JP4656854B2 (en) * 2004-04-06 2011-03-23 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
JP2007235168A (en) * 2007-05-10 2007-09-13 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
JP4708388B2 (en) * 2007-05-10 2011-06-22 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor integrated circuit device
JP2011091437A (en) * 2011-01-24 2011-05-06 Renesas Electronics Corp Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US6057572A (en) Semiconductor integrated circuit device with MOS transistor and MOS capacitor and method for manufacturing the same
GB2053565A (en) Production of integrated mos circuits
JP3348997B2 (en) Method for manufacturing semiconductor device
JPS60100469A (en) Semiconductor device
JPH09289323A (en) Manufacture of semiconductor device
JPS5843912B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH05326841A (en) Manufacture of semiconductor device
JPH0629317A (en) Semiconductor device and manufacture thereof
JPS60169163A (en) Semiconductor device
JPH06333944A (en) Semiconductor device
JPS61182267A (en) Manufacture of semiconductor device
JP2827246B2 (en) Method for manufacturing semiconductor device
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JP3275274B2 (en) Field effect transistor
JPH06252345A (en) Manufacture of semiconductor integrated circuit
US6858489B2 (en) Semiconductor device manufacturing method
JPH0621369A (en) Manufacture of mos integrated circuit
JPS62224077A (en) Semiconductor integrated circuit device
JPH06232394A (en) Manufacture of semiconductor device
JPH0113230B2 (en)
JPH07321218A (en) Manufacture of semiconductor device
JPS59167063A (en) Manufacture of semiconductor device
JPH02215152A (en) Manufacture of semiconductor device
JPH04242934A (en) Manufacture of semiconductor device
JPH06291077A (en) Semiconductor device and manufacture thereof