JPS6048904B2 - Method for manufacturing semiconductor integrated circuit device - Google Patents

Method for manufacturing semiconductor integrated circuit device

Info

Publication number
JPS6048904B2
JPS6048904B2 JP23405483A JP23405483A JPS6048904B2 JP S6048904 B2 JPS6048904 B2 JP S6048904B2 JP 23405483 A JP23405483 A JP 23405483A JP 23405483 A JP23405483 A JP 23405483A JP S6048904 B2 JPS6048904 B2 JP S6048904B2
Authority
JP
Japan
Prior art keywords
silicon
oxide film
integrated circuit
circuit device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23405483A
Other languages
Japanese (ja)
Other versions
JPS59130445A (en
Inventor
淳二 菅原
正典 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP23405483A priority Critical patent/JPS6048904B2/en
Publication of JPS59130445A publication Critical patent/JPS59130445A/en
Publication of JPS6048904B2 publication Critical patent/JPS6048904B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体集積回路装置の製造方法、特に多層配線
の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor integrated circuit device, and particularly to a method of forming multilayer wiring.

半導体集積回路装置ては、集積度の向上は大きな要請で
あり、その要請を満す方法の一つとして多層配線がある
In semiconductor integrated circuit devices, there is a great need to improve the degree of integration, and one way to meet this demand is to use multilayer wiring.

配線は通常多結晶シリコン層とアルミニウム層の2層構
造であるが、これら2層間にさらに1層以上の多結晶シ
リコン層を形成することによつて多層配線が実現できる
。第1図は従来の多層配線の半導体集積回路装置の1例
の断面図である。
Although wiring usually has a two-layer structure of a polycrystalline silicon layer and an aluminum layer, multilayer wiring can be realized by forming one or more polycrystalline silicon layers between these two layers. FIG. 1 is a cross-sectional view of an example of a conventional semiconductor integrated circuit device with multilayer wiring.

P型シリコン基板1にフィールド酸化膜2を設けた後、
開孔してゲート酸化膜3を設ける。
After providing a field oxide film 2 on a P-type silicon substrate 1,
A hole is opened and a gate oxide film 3 is provided.

第1の多結晶シリコン層4を前記酸化膜2、3の上に設
けた後、活性領域となるべき領域を開口し、リン拡散し
てN型領域5を形成する。再び酸化して酸化シリコン膜
6を形成し、その上に第2の多結晶シリコン層を設け、
写真食刻法で選択エッチングし、第2の多結晶シリコン
層7のパターンを形成する。この選択エッチングには通
常弗酸−硝酸系溶液が用いられるので、エッチングの際
同時に酸化シリコン膜6も侵され第2の多結晶シリコン
膜7の端の下部の酸化シリコン膜が除去される。この様
なアンダーカットのある状態で製造を進めると段差によ
りアルミニウム配線に断線を生じたり、アンダーカット
の所でシリコン基板1と多結晶シリコン7との間の絶縁
耐圧が低下し、あるいは著るしい場合はこの箇所て絶縁
破壊を起こして短絡する欠点があつた。またフィールド
酸化シリコン膜2も侵され、その上に配線されたアルミ
、ニウム9に対して、本来のフィールド酸化膜2の減小
によつて隣接する拡散層5、5間でリーク電流が流れる
いわゆる寄生MOS型電界効果トランジスタが発生する
欠点があつた。このためにシリコン酸化膜を周辺部に配
置させる方法も考えられフるがこの場合にはこのシリコ
ン窒化膜の端部下に凹部が形成され、このため多層配線
は断線の恐れがある。しかもこのシリコン窒化膜を周辺
部に設けるために余分のパターニング工程を必要とする
。5 本発明の目的は上記欠点を除き、段差による断線
のない多層配線の半導体集積回路装置の製造方法を提供
するものである。
After a first polycrystalline silicon layer 4 is provided on the oxide films 2 and 3, a region to become an active region is opened and phosphorus is diffused to form an N-type region 5. A silicon oxide film 6 is formed by oxidation again, and a second polycrystalline silicon layer is provided thereon.
Selective etching is performed using photolithography to form a pattern for the second polycrystalline silicon layer 7. Since a hydrofluoric acid-nitric acid solution is normally used for this selective etching, the silicon oxide film 6 is also attacked at the same time, and the silicon oxide film below the edge of the second polycrystalline silicon film 7 is removed. If manufacturing is continued with such an undercut, the aluminum wiring may break due to the step, the dielectric strength voltage between the silicon substrate 1 and the polycrystalline silicon 7 may decrease at the undercut, or there may be a significant In this case, there was a drawback that dielectric breakdown occurred at this point, resulting in a short circuit. In addition, the field silicon oxide film 2 is also attacked, and the so-called leakage current flows between the adjacent diffusion layers 5 due to the reduction of the original field oxide film 2 due to the reduction of the original field oxide film 2 to the aluminum and nium 9 wired on it. There was a drawback that a parasitic MOS type field effect transistor was generated. For this purpose, a method may be considered in which a silicon oxide film is disposed in the peripheral area, but in this case, a recess is formed under the end of the silicon nitride film, and there is a risk of disconnection of the multilayer wiring. Moreover, an extra patterning step is required to provide this silicon nitride film in the peripheral area. 5. An object of the present invention is to eliminate the above-mentioned drawbacks and provide a method for manufacturing a semiconductor integrated circuit device with multilayer interconnection without disconnection due to steps.

本発明の特徴は、絶縁物層を介して下層配線層とを積層
して形成する多層配線の半導体集積回路装置の製造方法
において、下層配線層上にシリコン酸化膜およびシリコ
ン窒化膜を積層し、該シリコン窒化膜上に上層配線層を
形状形成し、これにより露出した該シリコン窒化膜の部
分にリンを導入することによつて該膜の露出した部分を
リンガラスに変質せしめ、しかる後に該リンガラスを熱
処理により酸化シリコンとする半導体集積回路装置の製
造方法にある。
A feature of the present invention is that in a method for manufacturing a semiconductor integrated circuit device with multilayer wiring formed by laminating a lower wiring layer via an insulating material layer, a silicon oxide film and a silicon nitride film are laminated on the lower wiring layer, An upper wiring layer is formed on the silicon nitride film, and by introducing phosphorus into the exposed portion of the silicon nitride film, the exposed portion of the film is transformed into phosphorus glass. The present invention relates to a method of manufacturing a semiconductor integrated circuit device in which glass is heat-treated to form silicon oxide.

このような本発明ではシリコン酸化膜等の絶縁物層の全
ての部分において不所望の凹部が形成されないから配線
のレイアウトが自由に説定できる。
In the present invention, since no undesired recesses are formed in any part of the insulating layer such as a silicon oxide film, the wiring layout can be freely defined.

又、シリコン酸化膜等の選択エッチング工程が省略でき
るから製造工程が短絡できる。さらに多層配線がたがい
に立体交差する個所における各部分は一定の間隔であり
凹凸が生じないから好ましい多層構造となり、又、この
ように各部分は一定の間隔となつているから各配線間の
キャパシタは一定の値となりこれよりICが所定の値に
設定しやすくなる。次に、本発明を実施例により説明す
る。第2図乃至第6図は本発明の方法を3層Nチャンネ
ルシリコンゲートMOS型集積回路装置に実施した楊合
の工程断面図である。
In addition, the manufacturing process can be short-circuited because the selective etching process for silicon oxide films and the like can be omitted. Furthermore, the parts where the multilayer wiring intersects each other are at regular intervals, and no unevenness occurs, resulting in a preferable multilayer structure. Also, since each part is at regular intervals, the capacitors between each wiring can be reduced. becomes a constant value, which makes it easier for the IC to set the predetermined value. Next, the present invention will be explained by examples. FIGS. 2 through 6 are cross-sectional views of a process in which the method of the present invention is applied to a three-layer N-channel silicon gate MOS type integrated circuit device.

P型シリコン基板11の表面に厚さ約1μmの酸化膜を
設けた後、通常の写真食刻法によりトランジスタ等の活
性領域以外の領域のフィールド酸化膜12を残す(第2
図)。
After forming an oxide film with a thickness of approximately 1 μm on the surface of the P-type silicon substrate 11, the field oxide film 12 is left in areas other than the active regions of transistors etc. by ordinary photolithography.
figure).

続いて厚さ約1000Λのゲート酸化膜13を形成−し
た後、厚さ約5000Λの第1の多結晶シリコン層を気
相成長等で形成し、トランジスタのゲート電極部、配線
部14等を残す様に第1の多結晶のシリコン層をエッチ
ングする(第3図)。
Subsequently, after forming a gate oxide film 13 with a thickness of about 1000 Λ, a first polycrystalline silicon layer with a thickness of about 5000 Λ is formed by vapor phase growth, etc., leaving the gate electrode part, wiring part 14, etc. of the transistor. The first polycrystalline silicon layer is etched as shown in FIG.

続いて、基板11の拡散層を形成する部分のゲ三一ト酸
化膜13をエッチング除去した後、基板11と第1の多
結晶シリコン層14にリンを1000℃で拡散して基板
11にN型領域15を形成すると共に多結晶シリコン層
14をN型に、またフィールド酸化膜12をリンガラス
に変える。
Subsequently, after removing the gate oxide film 13 in the portion of the substrate 11 where the diffusion layer is to be formed by etching, phosphorus is diffused into the substrate 11 and the first polycrystalline silicon layer 14 at 1000° C. to inject N into the substrate 11. While forming the type region 15, the polycrystalline silicon layer 14 is changed to N type, and the field oxide film 12 is changed to phosphorous glass.

再び熱酸4化により厚さ約5000への酸化シリコン膜
16を設け、その上に保護として厚さ数百Aの窒化シリ
コン酸化膜17を被着する(第4図)。次に厚さ約50
00への第2の多結晶シリコン層18を形成し、このの
層18を写真食刻法を用い弗酸−硝酸系溶液でエッチン
グしたパターンを形成する。
A silicon oxide film 16 is again formed to a thickness of about 5,000 Å by thermal oxidation, and a silicon nitride oxide film 17 of several hundred Å thick is deposited thereon as a protection (FIG. 4). Next, the thickness is about 50
A second polycrystalline silicon layer 18 of 0.00 is formed, and a pattern is formed by etching this layer 18 with a hydrofluoric acid-nitric acid solution using photolithography.

窒化シリコン膜17は弗酸−硝酸系エッチング液に侵さ
れないからその下の酸化シリコン膜16を保護する。従
つて第1図に示したようなアンダーカットを生ずること
はない。続いて、第2の多結晶シリコン層18と窒化シ
リコン酸化膜17にリンを拡散する。リン拡散により窒
化シリコン膜17の露出部はリンガラス9に変質する。
従フつて窒化シリコン酸化膜17を除去する工程は不要
である(第5図)。再び熱酸化により酸化シリコン膜2
?を設ける。
Since the silicon nitride film 17 is not attacked by the hydrofluoric acid-nitric acid based etching solution, it protects the underlying silicon oxide film 16. Therefore, an undercut as shown in FIG. 1 does not occur. Subsequently, phosphorus is diffused into the second polycrystalline silicon layer 18 and the silicon nitride oxide film 17. The exposed portion of the silicon nitride film 17 changes into phosphorus glass 9 due to phosphorus diffusion.
Therefore, the step of removing the silicon nitride oxide film 17 is not necessary (FIG. 5). Silicon oxide film 2 is formed by thermal oxidation again.
? will be established.

このように窒化シリコン膜を不純物の導入で変質してあ
るから、熱酸化シリコンの形成が可能・となる。すなわ
ち窒化シリコン膜のままであるとこれは耐酸化性の膜で
あるから熱酸化によつて酸化シリコン膜20が形成され
ず、所定の厚い絶縁層が得られない。しかし、窒化シリ
コン膜をリンガラスに変質させており、このリンガラス
は耐酸化性の膜ではないから熱酸化によつて酸化シリコ
ン膜20が形成されこれにより所定の厚い絶縁層が得ら
れることとなる。写真食刻法により開孔し、アルミニウ
ム配線21を設けることにより3層NチャンネルMOS
型集積回路装置が完成する(第6図)。上記実施例の説
明は、金属配線層として多結晶シリコンと、保護膜とし
て窒化シリコンを用いた場合について説明したが、本発
明の方法は、シリコンと窒化シリコンに限らず、種々の
金属に対しても適用できる。
Since the silicon nitride film is altered in quality by introducing impurities in this way, it becomes possible to form thermally oxidized silicon. That is, if the silicon nitride film remains as it is, the silicon oxide film 20 will not be formed by thermal oxidation because it is an oxidation-resistant film, and a predetermined thick insulating layer will not be obtained. However, since the silicon nitride film is changed into phosphorus glass, and this phosphorus glass is not an oxidation-resistant film, a silicon oxide film 20 is formed by thermal oxidation, thereby obtaining a predetermined thick insulating layer. Become. A three-layer N-channel MOS is created by opening holes using photolithography and providing aluminum wiring 21.
The integrated circuit device is completed (Fig. 6). The above embodiment has been explained using polycrystalline silicon as the metal wiring layer and silicon nitride as the protective film, but the method of the present invention is applicable not only to silicon and silicon nitride but also to various metals. can also be applied.

例えば金属としてタンタルを用いた場合、保護膜として
窒化シリコンを用いると本発明の方法は実施できる。本
発明により段差による断線及び短絡、あるいは寄生MO
SFETの発生のない多層配線の半導体集積回路装置が
得られるのでその効果は大きい。
For example, when tantalum is used as the metal, the method of the present invention can be carried out using silicon nitride as the protective film. According to the present invention, disconnections and short circuits due to steps, or parasitic MO
The effect is great because a semiconductor integrated circuit device with multilayer wiring without the occurrence of SFET can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多層配線の半導体集積回路装置の1例の
断面図、第2図乃至第6図は本発明の方法を3層Nチャ
ンネルシリコンゲートMOS型集積回路装置に実施した
場合の工程断面図である。 1,11・・・・・・P型シリコン基板、2,12・・
・・・・フィールド酸化膜、3,13・・・・・・ゲー
ト酸化膜、4,14・・・・・・第1の多結晶シリコン
膜、5,15・・・・・・N型領域、6,16・・・・
・・酸化シリコン膜、7・・・・・・第2の多結晶シリ
コン膜、8 ・・・・・・酸化シリコン膜、9,21・
・・・・・アルミニウム配線、17・・・・・・窒化シ
リコン膜、18・・・・・・第2の多結晶シリコン9・
・・・・・リンガラス、20・・・・・・酸化シリコン
膜。
FIG. 1 is a cross-sectional view of an example of a conventional semiconductor integrated circuit device with multilayer interconnection, and FIGS. 2 to 6 show steps in the case where the method of the present invention is applied to a three-layer N-channel silicon gate MOS integrated circuit device. FIG. 1, 11... P-type silicon substrate, 2, 12...
...Field oxide film, 3,13...Gate oxide film, 4,14...First polycrystalline silicon film, 5,15...N type region , 6, 16...
...Silicon oxide film, 7...Second polycrystalline silicon film, 8...Silicon oxide film, 9, 21.
...Aluminum wiring, 17...Silicon nitride film, 18...Second polycrystalline silicon 9.
...phosphorus glass, 20 ... silicon oxide film.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁物層を介して下層配線層と上層配線層とを積層
して形成する多層配線の半導体集積回路装置の製造方法
において、下層配線層上にシリコン酸化膜およびシリコ
ン窒化膜を積層し、該シリコン窒化膜上に上層配線層を
形状形成し、これにより露出した該シリコン窒化膜の部
分にリンを導入することによつて該膜の露出した部分を
リンガラスに変質せしめ、しかる後に該リンガラスを熱
酸化により酸化シリコンとすることを特徴とする半導体
集積回路装置の製造方法。
1. In a method for manufacturing a semiconductor integrated circuit device with multilayer wiring formed by laminating a lower wiring layer and an upper wiring layer via an insulating material layer, a silicon oxide film and a silicon nitride film are laminated on the lower wiring layer, An upper wiring layer is formed on the silicon nitride film, and by introducing phosphorus into the exposed portion of the silicon nitride film, the exposed portion of the film is transformed into phosphorus glass. 1. A method for manufacturing a semiconductor integrated circuit device, which comprises converting silicon into silicon oxide by thermal oxidation.
JP23405483A 1983-12-12 1983-12-12 Method for manufacturing semiconductor integrated circuit device Expired JPS6048904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23405483A JPS6048904B2 (en) 1983-12-12 1983-12-12 Method for manufacturing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23405483A JPS6048904B2 (en) 1983-12-12 1983-12-12 Method for manufacturing semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7121483A Division JPS58194356A (en) 1983-04-22 1983-04-22 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS59130445A JPS59130445A (en) 1984-07-27
JPS6048904B2 true JPS6048904B2 (en) 1985-10-30

Family

ID=16964848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23405483A Expired JPS6048904B2 (en) 1983-12-12 1983-12-12 Method for manufacturing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6048904B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691084B2 (en) * 1985-04-26 1994-11-14 日本電装株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPS59130445A (en) 1984-07-27

Similar Documents

Publication Publication Date Title
JPS63233569A (en) Manufacture of semiconductor device
US20060202273A1 (en) Method of manufacturing semiconductor device
JP2000195950A (en) Semiconductor device and its production method
JPH0473938A (en) Semiconductor device
JPS6048904B2 (en) Method for manufacturing semiconductor integrated circuit device
KR100847089B1 (en) Semiconductor device and method of manufacturing the same
US6489234B1 (en) Method of making a semiconductor device
US5290728A (en) Method for producing a semiconductor device
JP2602848B2 (en) Method for manufacturing semiconductor device
JP2809172B2 (en) Semiconductor device
JPS62224077A (en) Semiconductor integrated circuit device
JPH10340953A (en) Semiconductor device
JP3447871B2 (en) Method of forming wiring and method of forming semiconductor element
JPH0621369A (en) Manufacture of mos integrated circuit
JPH05326841A (en) Manufacture of semiconductor device
JPH06334118A (en) Semiconductor device and its manufacture
JPS58194356A (en) Semiconductor integrated circuit device
JP2950620B2 (en) Semiconductor device
JP2722506B2 (en) Semiconductor device and manufacturing method thereof
JPS60160666A (en) Manufacture of semiconductor device
JPS5823745B2 (en) MOS
JPH03109736A (en) Manufacture of semiconductor device
JPH05136353A (en) Manufacture of mos semiconductor device
JPH0430572A (en) Manufacture of semiconductor memory
JPH08236608A (en) Fabrication of semiconductor device