JPS5823745B2 - MOS - Google Patents

MOS

Info

Publication number
JPS5823745B2
JPS5823745B2 JP49119079A JP11907974A JPS5823745B2 JP S5823745 B2 JPS5823745 B2 JP S5823745B2 JP 49119079 A JP49119079 A JP 49119079A JP 11907974 A JP11907974 A JP 11907974A JP S5823745 B2 JPS5823745 B2 JP S5823745B2
Authority
JP
Japan
Prior art keywords
film
silicon
electrode wiring
polycrystalline silicon
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49119079A
Other languages
Japanese (ja)
Other versions
JPS5144486A (en
Inventor
大曾根隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP49119079A priority Critical patent/JPS5823745B2/en
Publication of JPS5144486A publication Critical patent/JPS5144486A/en
Publication of JPS5823745B2 publication Critical patent/JPS5823745B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 本発明はMO8型集積回路装置の製造方法に関し、高密
度で製造歩留りの高いMO8型集積回路装置を提供する
ことを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an MO8 type integrated circuit device, and an object of the present invention is to provide a MO8 type integrated circuit device with high density and high manufacturing yield.

第1図に従来のMO8型集積回路の製造方法を示す。FIG. 1 shows a conventional method of manufacturing an MO8 type integrated circuit.

まず一方の導電型を有するシリコン半導体基体11の主
平面上に島状にシリコン窒化膜12を形成しa1シリコ
ン半導体基体11のシリコン窒化膜12で覆われていな
い部分13を選択的に酸化せしめシリコン酸化膜14と
し、上記シリコン窒化膜12を除去するす。
First, a silicon nitride film 12 is formed in an island shape on the main plane of a silicon semiconductor substrate 11 having one conductivity type, and a portion 13 of the a1 silicon semiconductor substrate 11 that is not covered with the silicon nitride film 12 is selectively oxidized to make silicon An oxide film 14 is formed, and the silicon nitride film 12 is removed.

次に、シリコン半導体基体11と反対導伝型の不純物を
含む多結晶シリコン膜15 、15’を島状に形成しc
0上記多結晶シリコン膜15.15’Aびシリコン半導
体基体11の表面を全面酸化せしめてシリコン酸化膜1
6を形成するとともに、多結晶シリコン膜15を不純物
拡散源としてMOS)ランジスタの゛イース、ドレイン
領域17を形成するd。
Next, polycrystalline silicon films 15 and 15' containing impurities of conductivity type opposite to that of the silicon semiconductor substrate 11 are formed in the form of islands.
0 The surfaces of the polycrystalline silicon film 15.15'A and the silicon semiconductor substrate 11 are entirely oxidized to form a silicon oxide film 1.
At the same time, the ease and drain regions 17 of a MOS transistor are formed using the polycrystalline silicon film 15 as an impurity diffusion source.

シリコン酸化膜16を選択的にエツチング除去して配線
金属19と配線層となる多結晶シリコン膜15 、15
’とを接続するためのコンタクト孔18を形成し、所定
の配線金属19を形成するe。
The silicon oxide film 16 is selectively etched to remove the wiring metal 19 and the polycrystalline silicon films 15, 15 that will become the wiring layer.
'A contact hole 18 is formed for connection with the metal 19, and a predetermined wiring metal 19 is formed.e.

第1図の製造方法においてはソース、ドレイン領域17
?のコンタクトを兼ねる多結晶シリコン膜15、及び第
1層目の配線として使われる多結晶シリコン膜15b相
互の絶縁は集積回路製造上の写真彫刻技術によって制限
される第1図dに示す間隔20によってなされており、
通常5μ以上必要である。
In the manufacturing method shown in FIG.
? The insulation between the polycrystalline silicon film 15, which also serves as a contact, and the polycrystalline silicon film 15b, which is used as the first layer wiring, is maintained by the distance 20 shown in FIG. has been done,
Usually 5μ or more is required.

従って大規模なMO3型集積回路にオイテはチップ面積
が大となるとともに製造コストが高くなった。
Therefore, in the case of a large-scale MO3 type integrated circuit, the chip area becomes large and the manufacturing cost becomes high.

又、第1図eよりも明らかなように配線金属19は凹凸
の大きい断面を横断して配線されるので、断線が生じ易
く、MO8型集積回路の製造歩留りの点において大きな
問題となった。
Further, as is clear from FIG. 1e, since the wiring metal 19 is wired across a highly uneven cross section, disconnection is likely to occur, which poses a major problem in terms of manufacturing yield of MO8 type integrated circuits.

そこで、本発明はMO8型集積回路の高集積密度化を実
現し、さらに金属配線の断線を防止するため集積回路の
表面の凹凸を小さくするとともに、MO8型集積回路の
製造歩留り向上及び製造コストの低減を図るものである
Therefore, the present invention realizes high integration density of MO8 type integrated circuits, reduces the unevenness on the surface of the integrated circuits to prevent disconnection of metal wiring, improves the manufacturing yield of MO8 type integrated circuits, and reduces manufacturing costs. The aim is to reduce this.

以下本発明の一実施例を図面とともに説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図に本発明によるMO8型集積回路の製造方法の一
実施例を示す。
FIG. 2 shows an embodiment of the method for manufacturing an MO8 type integrated circuit according to the present invention.

一方の導電型を有するシリコン半導体基体21の主平面
上に島状にシリコン窒化膜22を形成しA1シリコン半
導体基体21のシリコン窒化膜22で覆われていない部
分23を選択的に酸化せしめシリコン酸化膜24とし、
上記シリコン窒化膜22を除去する80次に、2リコン
半導体基体21と反対導伝型不純物を含む多結晶シリコ
ン膜25、シリコン窒化膜26及びアルミナ膜27から
なる3層膜を形成しC1化学的エツチング法又は物理的
エツチング法を用いて島状領域28.29を形成するD
oここで島状領域28直下の基体21にはMOSトラン
ジスタのソース、ドレイン領域が形成され、島状領域2
9の多結晶シリコン膜25の部分は第1層の配線として
使用される。
A silicon nitride film 22 is formed in an island shape on the main plane of a silicon semiconductor substrate 21 having one conductivity type, and a portion 23 of the A1 silicon semiconductor substrate 21 that is not covered with the silicon nitride film 22 is selectively oxidized to oxidize silicon. A membrane 24,
The silicon nitride film 22 is removed 80. Next, a three-layer film consisting of the silicon semiconductor substrate 21, a polycrystalline silicon film 25 containing impurities of opposite conductivity type, a silicon nitride film 26, and an alumina film 27 is formed. D forming island-like regions 28 and 29 using an etching method or a physical etching method
oHere, the source and drain regions of the MOS transistor are formed in the base body 21 directly below the island region 28, and the island region 2
The polycrystalline silicon film 25 portion 9 is used as the first layer wiring.

次にシリコン半導体基体21及び多結晶シリコン膜25
の露出している部分を加熱酸化法を用いて酸化し、シリ
コン酸化膜30を形成するとともに、多結晶シリコン膜
25とシリコン半導体基体21の接している部分に多結
晶シリコン膜25に含まれている不純物を拡散せしめM
OSトランジスタのソース、ドレイン領域31を形成す
るEoその後、第2の多結晶シリコン膜32.33を蒸
着法によって全面に設置するが、図のようにこの多結晶
シリコン膜は側面34に被着しないか、又は被着しても
極く薄い膜厚になるFo こうしたのち、シリコン窒化膜26及びシリコン酸化膜
30を侵さないアルミナ膜27のエツチング液(例えば
苛性ソーダ)でアルミナ膜27を除去すると、そのアル
ミナ膜27の上に形成された第2の多結晶シリコン膜3
2が除去される。
Next, the silicon semiconductor substrate 21 and the polycrystalline silicon film 25
The exposed portions of the polycrystalline silicon film 25 are oxidized using a thermal oxidation method to form a silicon oxide film 30, and the portions where the polycrystalline silicon film 25 and the silicon semiconductor substrate 21 are in contact with each other are oxidized using the thermal oxidation method. Diffusion of impurities
After forming the source and drain regions 31 of the OS transistor, a second polycrystalline silicon film 32 and 33 is deposited over the entire surface by vapor deposition, but as shown in the figure, this polycrystalline silicon film does not adhere to the side surfaces 34. Or, even if Fo is deposited, the film thickness will be extremely thin. After this, if the alumina film 27 is removed using an etching solution for the alumina film 27 (for example, caustic soda) that does not attack the silicon nitride film 26 and the silicon oxide film 30, the alumina film 27 will be removed. Second polycrystalline silicon film 3 formed on alumina film 27
2 is removed.

更に、除去されずに残った第2の多結晶シリコン膜33
を加熱酸化法を用いて酸化し、シリコン酸化膜34を形
成するG。
Furthermore, the second polycrystalline silicon film 33 remaining without being removed
G is oxidized using a thermal oxidation method to form a silicon oxide film 34.

この状態でGに示す如く、シリコン窒化膜26とシリコ
ン酸化膜34とが交互に配置された凹凸のない平滑な面
が形成され、夫々の酸化膜26.34の下に多結晶シリ
コン膜25.33で形成されたソース、ドレイン領域と
配線に用いられる領域が形成される。
In this state, as shown in G, a smooth surface with no irregularities is formed in which silicon nitride films 26 and silicon oxide films 34 are alternately arranged, and polycrystalline silicon films 25, 34 are formed under the respective oxide films 26, 34. The source and drain regions formed in step 33 and a region used for wiring are formed.

その後、上記のシリコン窒化膜26とシリコン酸化膜3
3を選択的に相互に侵さないようなエツチング液(例え
ばシリコン窒化膜26に対しては熱リン酸、シリコン酸
化膜34に対してはフッ酸)でエツチング除去すれば、
自己整合的にコンタクト孔35が形成される。
After that, the silicon nitride film 26 and the silicon oxide film 3 described above are
3 selectively with an etching solution that does not attack each other (for example, hot phosphoric acid for the silicon nitride film 26 and hydrofluoric acid for the silicon oxide film 34),
Contact holes 35 are formed in a self-aligned manner.

すなわち酸化膜341.窒化膜26の巾にてコンタクト
窓が決定されこのエツチングに用いるフォトレジストに
よらない。
That is, the oxide film 341. The contact window is determined by the width of the nitride film 26 and is not dependent on the photoresist used for this etching.

次に金属膜36を選択的に配線せしめてMOS型集積回
路装置が完成するHo 第2図Iは完成断面図Rの上面図で、■はHのn−mm
切断線を示し、Hと同一のものには同一番号を付してい
る。
Next, the metal film 36 is selectively wired to complete the MOS type integrated circuit device. Figure 2 I is a top view of the completed sectional view R, and ■ is the n-mm of H.
The cutting lines are shown, and the same numbers as H are given the same numbers.

第2図Iにおいて、囚の部分はシリコン酸化膜34又は
シリコン窒化膜26に形成した金属膜36と多結晶シリ
コン膜25あるいは31とのコンタクト孔35を示す。
In FIG. 2I, the outer part shows a contact hole 35 between the metal film 36 formed on the silicon oxide film 34 or the silicon nitride film 26 and the polycrystalline silicon film 25 or 31.

40〜43はMOSトランジスタ形成領域を示す。40 to 43 indicate MOS transistor formation regions.

本発明は第2図の説明に用いた材料に限られることなく
、例えば、多結晶シリコン膜25 、33の代りに不純
物を含むW、Ta、Mo、Ti等の高融点金属膜を形成
し、加熱シリコン酸化膜30.34の代りに陽極酸化法
によって上記金属膜の表面に絶縁膜を形成してもよい。
The present invention is not limited to the materials used in the explanation of FIG. 2; for example, instead of the polycrystalline silicon films 25 and 33, a film of a high melting point metal such as W, Ta, Mo, or Ti containing impurities may be formed. Instead of the heated silicon oxide films 30 and 34, an insulating film may be formed on the surface of the metal film by anodic oxidation.

又、アルミナ膜27に代って、W2MO等の高融点金属
を用いることも可能である。
Further, instead of the alumina film 27, it is also possible to use a high melting point metal such as W2MO.

又、第2図においてはMOS )ランジスタのソース、
ドレイン領域31の形成に、不純物を含む多結晶シリコ
ン膜25を用いたが、Mo 、W+TitAu、AA等
の金属膜−シリコン半導体基体間のショットキ、バリヤ
・ダイオードを形成して、MOSトランジスタのソース
、ドレインとすることも可能である。
In addition, in Fig. 2, the source of the MOS) transistor,
Although the polycrystalline silicon film 25 containing impurities was used to form the drain region 31, a Schottky barrier diode between a metal film such as Mo, W+TitAu, or AA and the silicon semiconductor substrate was formed to form the source of the MOS transistor. It is also possible to use it as a drain.

本発明を用いれば、第2図■からも明らかな如く、シリ
コン半導体基体の主平面上の大部分がMOS)ランジス
タ又は配線領域として利用されておりチップ面積が有効
利用される。
By using the present invention, as is clear from FIG. 2 (2), most of the main plane of the silicon semiconductor substrate is used as a MOS transistor or wiring area, and the chip area is effectively utilized.

又、多結晶シリコン膜同士の絶縁は極めて薄い(100
0人〜5000人)シリコン酸化膜でなされており、従
来の5μに比べて著るしく高密度化することができる。
In addition, the insulation between polycrystalline silicon films is extremely thin (100
(0 to 5,000 people) It is made of silicon oxide film and can be significantly higher in density than the conventional 5μ.

又、第2図Hからも明らかな如く、配線に用いる金属膜
は凹凸のない面上に形成されるので従来に存在する凹凸
部での金属膜の断線がないため製造歩留りが向上し、上
述したチップ面積の減少とあいまって製造コストの大巾
低減が可能である。
Furthermore, as is clear from FIG. 2H, since the metal film used for the wiring is formed on a surface with no unevenness, there is no disconnection of the metal film at the uneven portions that exist in the past, and the manufacturing yield is improved. Combined with the reduction in chip area, it is possible to significantly reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a−eは従来のMOS型集積回路装置の製造の工
程断面図、第2図A−Hは本発明の一実施例にかかるM
OS型半導体装置の製造工程断面図、第2図■は完成さ
れた装置の要部平面構造図であって上記Hはn−mV断
面図である。 21・・・・・・シリコン半導体基体、24.30・3
4・・・・・・シリコン酸化膜、26・・・・・・シリ
コン窒化膜、25,32,33・・・・・・多結晶シリ
コン膜、27・・・・・・アルミナ膜、36・・・・・
・金属膜。
1A to 1E are cross-sectional views of the manufacturing process of a conventional MOS type integrated circuit device, and FIGS.
FIG. 2 (2) is a cross-sectional view of the manufacturing process of an OS type semiconductor device, and FIG. 21... Silicon semiconductor substrate, 24.30.3
4... Silicon oxide film, 26... Silicon nitride film, 25, 32, 33... Polycrystalline silicon film, 27... Alumina film, 36...・・・・・・
・Metal film.

Claims (1)

【特許請求の範囲】[Claims] 1 シリコン半導体基体の一生面上に第1の電極配線、
第1の絶縁膜及びリフトオフ層を共にパターンニングし
、露出した前記基体及び前記第1の電極配線側面を酸化
して第2の絶縁膜を形成する工程と、第2の電極配線と
なる層を全面に形成し、前記リフトオフ層を用いて前記
第2の電極配線となる層を選択的にリフトオフし、第2
の電極配線を前記第1の電極配線に隣接して形成する工
程と、前記第2の電極配線を酸化することにより前記第
1の絶縁膜とエツチング選択性のある第3の絶縁膜を前
記第2の電極配線上に形成する工程と、前記第1.第3
の絶縁膜のエツチング選択性を用いて前記第1、第2の
電極配線に自己整合的にコンタクトホールを形成する工
程とを備えたことを特徴とするMO8型集積回路装置の
製造方法。
1. A first electrode wiring on the whole surface of the silicon semiconductor substrate,
A step of forming a second insulating film by patterning both the first insulating film and the lift-off layer and oxidizing the exposed base and the side surface of the first electrode wiring; The layer that will become the second electrode wiring is selectively lifted off using the lift-off layer.
forming an electrode wiring adjacent to the first electrode wiring; and forming a third insulating film having etching selectivity with respect to the first insulating film by oxidizing the second electrode wiring. a step of forming the first electrode wiring on the second electrode wiring; Third
forming a contact hole in a self-aligned manner in the first and second electrode wirings using the etching selectivity of the insulating film.
JP49119079A 1974-10-14 1974-10-14 MOS Expired JPS5823745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49119079A JPS5823745B2 (en) 1974-10-14 1974-10-14 MOS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49119079A JPS5823745B2 (en) 1974-10-14 1974-10-14 MOS

Publications (2)

Publication Number Publication Date
JPS5144486A JPS5144486A (en) 1976-04-16
JPS5823745B2 true JPS5823745B2 (en) 1983-05-17

Family

ID=14752345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49119079A Expired JPS5823745B2 (en) 1974-10-14 1974-10-14 MOS

Country Status (1)

Country Link
JP (1) JPS5823745B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176769A (en) * 1981-04-21 1982-10-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof
JPH07120705B2 (en) * 1987-11-17 1995-12-20 三菱電機株式会社 Method for manufacturing semiconductor device having element isolation region
JP2571585B2 (en) * 1987-12-10 1997-01-16 株式会社神戸製鋼所 Manufacturing method of hot-dip galvanized steel sheet for processing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877775A (en) * 1972-01-17 1973-10-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877775A (en) * 1972-01-17 1973-10-19

Also Published As

Publication number Publication date
JPS5144486A (en) 1976-04-16

Similar Documents

Publication Publication Date Title
JPS5823745B2 (en) MOS
JPS598065B2 (en) MOS integrated circuit manufacturing method
JPH0786595A (en) Semiconductor device and manufacture thereof
JPH0511668B2 (en)
KR960006339B1 (en) Fabricating method of semiconductor device
JP2709200B2 (en) Method for manufacturing semiconductor device
JPS63197365A (en) Manufacture of semiconductor device
JPS62219961A (en) Manufacture of thin film mos structure semiconductor device
JPH07321290A (en) Manufacture of bipolar integrated circuit device
JP2504239B2 (en) Method for manufacturing semiconductor device
JPS58194356A (en) Semiconductor integrated circuit device
JP2581542B2 (en) Semiconductor nonvolatile memory and method of manufacturing the same
JPS60785B2 (en) Manufacturing method of MOS type semiconductor device
JPS58169929A (en) Manufacture of semiconductor device
JPH0216019B2 (en)
JPS6181665A (en) Formation of semiconductor region
JPS6150385B2 (en)
JPH038339A (en) Semiconductor device and manufacture thereof
JPS5994437A (en) Semiconductor device
JPH0438876A (en) Manufacture method of semiconductor device
JPS62281469A (en) Semiconductor device
JPS59130445A (en) Manufacture of semiconductor integrated circuit device
JPS5946108B2 (en) Manufacturing method of semiconductor device
JPS63252483A (en) Manufacture of semiconductor device
JPS62131572A (en) Manufacture of semiconductor device