JP2709200B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2709200B2
JP2709200B2 JP8274891A JP8274891A JP2709200B2 JP 2709200 B2 JP2709200 B2 JP 2709200B2 JP 8274891 A JP8274891 A JP 8274891A JP 8274891 A JP8274891 A JP 8274891A JP 2709200 B2 JP2709200 B2 JP 2709200B2
Authority
JP
Japan
Prior art keywords
silicon substrate
semiconductor device
gate electrode
region
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8274891A
Other languages
Japanese (ja)
Other versions
JPH04316331A (en
Inventor
雅裕 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8274891A priority Critical patent/JP2709200B2/en
Publication of JPH04316331A publication Critical patent/JPH04316331A/en
Application granted granted Critical
Publication of JP2709200B2 publication Critical patent/JP2709200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66606Lateral single gate silicon transistors with final source and drain contacts formation strictly before final or dummy gate formation, e.g. contact first technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、半導体装置の微細化
構造の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a miniaturized structure of a semiconductor device.

【0002】[0002]

【従来の技術】近年、半導体装置の分野においては、よ
り高度な需要の拡大に伴い半導体装置の高集積化と高速
化を目指した技術開発が進められている。両者は互いに
相反する一面を有しており、半導体装置の高集積化を進
めることにより逆に高速化を阻害する場合もある。した
がって、これらの両者を共に実現できる技術が非常に重
要になる。
2. Description of the Related Art In recent years, in the field of semiconductor devices, technological development has been promoted for higher integration and higher speed of semiconductor devices with the expansion of higher demand. Both of these have opposite aspects, and there is a case where a high integration of a semiconductor device may hinder a high speed operation. Therefore, a technology that can realize both of these is very important.

【0003】半導体装置の高集積化は、半導体装置の微
小化または半導体装置を構成する個々の半導体素子の構
造の微細化を必然的に伴う。
[0003] High integration of a semiconductor device necessarily involves miniaturization of the semiconductor device or miniaturization of the structure of individual semiconductor elements constituting the semiconductor device.

【0004】図4は、MOS(Metal Oxide Semiconduc
tor)型半導体装置において、特に素子構造の微細化を
意図した従来例としての特開昭61−16573号公報に開
示されたMOSFET(電界効果トランジスタ)を示す
断面図である。
FIG . 4 shows a MOS (Metal Oxide Semiconductor) .
FIG. 1 is a cross-sectional view showing a MOSFET (field effect transistor) disclosed in Japanese Patent Application Laid-Open No. 61-16573 as a conventional example intended for miniaturization of an element structure in a tor) type semiconductor device.

【0005】図において、1はMOSFET、2はシリ
コン基板、3はこのシリコン基板2の上に形成された薄
いゲート酸化膜、4はこの薄いゲート酸化膜3の上に形
成されて多結晶シリコンからなるゲート電極である。
5,6はシリコン基板2の表面近傍で互いに間隔をあけ
て形成され、不純物が拡散されたソース領域とドレイン
領域であり、これらのソース領域5とドレイン領域6の
間のシリコン基板2の表面領域はMOSFETのチャネ
ル領域を形成している。7,8はソース領域5およびド
レイン領域6の表面にそれぞれ形成され、多結晶シリコ
ンからなる電極用導電層である。9は素子分離用フィー
ルド酸化膜であり、10は層間絶縁膜、11はアルミニ
ウム配線層である。電極用導電層7,8はソース領域5
およびドレイン領域6の表面上から素子分離用フィール
ド酸化膜9の上面まで延在して形成されている。更に、
電極用導電層7,8はフィールド酸化膜9の上部で層間
絶縁膜10に開孔されたコンタクト孔を通してアルミニ
ウム配線層11と接続されている。
In FIG. 1, 1 is a MOSFET, 2 is a silicon substrate, 3 is a thin gate oxide film formed on the silicon substrate 2 and 4 is a polycrystalline silicon formed on the thin gate oxide film 3. Gate electrode.
Reference numerals 5 and 6 denote a source region and a drain region which are formed in the vicinity of the surface of the silicon substrate 2 at an interval from each other and in which impurities are diffused, and a surface region of the silicon substrate 2 between the source region 5 and the drain region 6. Form the channel region of the MOSFET. Reference numerals 7 and 8 are electrode conductive layers formed on the surfaces of the source region 5 and the drain region 6, respectively, and made of polycrystalline silicon. 9 is a field oxide film for element isolation, 10 is an interlayer insulating film, and 11 is an aluminum wiring layer. The electrode conductive layers 7 and 8 are formed in the source region 5.
And is formed to extend from the surface of drain region 6 to the upper surface of field oxide film 9 for element isolation. Furthermore,
Electrode conductive layers 7 and 8 are connected to aluminum wiring layer 11 through contact holes formed in interlayer insulating film 10 above field oxide film 9.

【0006】この従来例を構造の微細化の観点から見る
と次のような特徴がある。 (1) ゲート電極4の形状が、その下部と上部とで異
なるゲート電極幅を与えるように形成されている。即
ち、ゲート電極4の下部はその幅が狭く形成されている
ので、このゲート電極幅によって規定されるMOSFE
Tのチャネル幅も狭くすることができる。また、ゲート
電極4の上部はその幅が広く形成されているので、ゲー
ト電極4の断面領域の面積の低減が抑制される。このよ
うにゲート電極4の断面積の減少を抑制することによ
り、ゲート電極4の配線抵抗の増加が抑制される。 (2) ソース領域5およびドレイン領域6とアルミニ
ウム配線層11とのコンタクトが電極用導電層7,8を
介してフィールド酸化膜9の上部で行われている。従っ
て、ソース領域5およびドレイン領域6はアルミニウム
配線層11と直接コンタクトするためのスペースを確保
する必要がなくなる。これにより、ソース領域5および
ドレイン領域6の不純物の拡散幅を縮小することができ
る。
The conventional example has the following features from the viewpoint of miniaturization of the structure. (1) The shape of the gate electrode 4 is formed so as to give different gate electrode widths at the lower part and the upper part. That is, since the lower part of the gate electrode 4 is formed to have a small width, the MOSFE defined by this gate electrode width is formed.
The channel width of T can also be reduced. Further, since the upper portion of the gate electrode 4 is formed to have a large width, a reduction in the area of the cross-sectional area of the gate electrode 4 is suppressed. By suppressing the decrease in the cross-sectional area of the gate electrode 4 as described above, the increase in the wiring resistance of the gate electrode 4 is suppressed. (2) The contact between the source region 5 and the drain region 6 and the aluminum wiring layer 11 is made above the field oxide film 9 via the electrode conductive layers 7 and 8. Therefore, it is not necessary to secure a space for the source region 5 and the drain region 6 to directly contact the aluminum wiring layer 11. Thereby, the diffusion width of the impurities in source region 5 and drain region 6 can be reduced.

【0007】[0007]

【発明が解決しようとする課題】ところで、従来の半導
体装置の製造方法では、チャネル領域を形成するために
チャネル領域上にあった多結晶シリコン層(電極用導電
層7,8の一部)をエッチング除去する必要がある。し
かしながら、この多結晶シリコン層はシリコン基板2上
に直接形成されていたものであるので、この領域をエッ
チング除去する際に多結晶シリコン層の数百Å程度の凹
凸がシリコン基板2に反映されることになる。このよう
に、シリコン基板表面に凹凸があると、特に、熱酸化に
よりゲート酸化膜を形成した場合、表面の凹凸がより鋭
角になり、ゲート耐圧が劣化するという問題点があっ
た。
In the conventional method of manufacturing a semiconductor device, a polycrystalline silicon layer (a part of the conductive layers 7 and 8 for electrodes) on the channel region for forming the channel region is removed. It is necessary to remove by etching. However, since this polycrystalline silicon layer has been formed directly on the silicon substrate 2, when this region is etched away, irregularities of about several hundred square meters of the polycrystalline silicon layer are reflected on the silicon substrate 2. Will be. As described above, if the silicon substrate surface has irregularities, particularly when a gate oxide film is formed by thermal oxidation, the surface irregularities become sharper and the gate breakdown voltage deteriorates.

【0008】この発明は、このような問題点を解決する
ためになされたもので、シリコン基板のチャネル領域が
平坦な半導体装置を製造するための方法を得ることを目
的とする。
The present invention has been made to solve such a problem, and has as its object to provide a method for manufacturing a semiconductor device having a flat channel region of a silicon substrate.

【0009】[0009]

【課題を解決するための手段】この発明による半導体装
置の製造方法は、シリコン基板の上に形成された導電層
を剛体研磨する工程を含んだものである。
A method for manufacturing a semiconductor device according to the present invention includes a step of rigidly polishing a conductive layer formed on a silicon substrate.

【0010】[0010]

【作用】この発明では、多結晶シリコンの導電層を剛体
研磨して平坦にした後、チャネル領域を形成するように
したため、シリコン基板上の凹凸が数Å以下に抑制さ
れ、ゲート絶縁層の信頼度が向上される。
According to the present invention, since the channel region is formed after the conductive layer of polycrystalline silicon is rigidly polished and flattened, irregularities on the silicon substrate are suppressed to several tens of mm or less, and the reliability of the gate insulating layer is reduced. The degree is improved.

【0011】[0011]

【実施例】以下、この発明による半導体装置の製造方法
の一実施例を図について説明する。図1乃至図3はこの
発明の一実施例を説明するための断面図である。図1の
Aに示したように、シリコン基板2に溝を形成した後こ
こに酸化膜などの絶縁膜を埋設したいわゆるトレンチ分
離領域2を形成する。図1のBに示したように、シリコ
ン基板2およびトレンチ分離領域12上に、多結晶シリ
コンから成る電極用導電層7(または8)を例えばCV
D法により5000Å堆積させる。このときの多結晶シ
リコンの電極用導電層7表面の凹凸は数百Å程度であ
る。この電極用導電層7を剛体研磨して2000Å程度
の厚さまで薄くする。このときの電極用導電層7表面の
凹凸は数Å程度である。その後、図1のCに示したよう
に、電極用導電層7上にCVD法などにより、厚さ20
00Å程度の絶縁層例えば酸化膜13を形成する。更
に、図2のAに示したように、チャネル領域となるシリ
コン基板2上の絶縁層13および電極用導電層7をエッ
チングしてその一部を除去した後、これらの側壁に例え
ば酸化膜のサイドウオール14を形成する。その後、図
2のBに示したように、ゲート絶縁膜としてのゲート酸
化膜3とゲート電極4を順次形成する。更に、図2のC
に示したように、ゲート電極4と絶縁層13を所望のパ
ターンにエッチングした後、例えばNチャネルMOSト
ランジスタの場合はヒ素やリンなど、またPチャネルM
OSトランジスタの場合はボロンやBF2などの不純物
を注入しかつ、熱処理を施してソース領域5およびドレ
イン領域6を形成する。次に、図3のAに示したよう
に、例えばチタンシリサイド膜15をゲート電極4とソ
ース5およびドレイン領域6上の電極用導電層7および
8との上に自己整合的に形成して電極や配線の低抵抗化
を図る。更に、図3のBに示したように、例えばBPS
G膜などからなる層間絶縁膜10を形成し、所定の個所
にコンタクトホールを設け、ソース領域5およびドレイ
ン領域6にチタンシリサイド膜15およびそれぞれ電極
用導電層7,8を介して接続されるアルミニウム合金な
どからなるアルミニウム配線層11を形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a semiconductor device according to the present invention will be described below with reference to the drawings. 1 to 3 are cross-sectional views for explaining one embodiment of the present invention. As shown in FIG. 1A, after forming a groove in the silicon substrate 2, a so-called trench isolation region 2 in which an insulating film such as an oxide film is buried is formed. As shown in FIG. 1B, an electrode conductive layer 7 (or 8) made of polycrystalline silicon is formed on the silicon substrate 2 and the trench isolation region 12 by, for example, CV.
Deposit 5000 ° by Method D. At this time, the irregularities on the surface of the polycrystalline silicon electrode conductive layer 7 are about several hundreds of square meters. The electrode conductive layer 7 is rigidly polished to a thickness of about 2000 °. At this time, the unevenness on the surface of the electrode conductive layer 7 is about several Å. Thereafter, as shown in FIG. 1C, a thickness of 20 μm is formed on the conductive layer 7 for electrodes by a CVD method or the like.
An insulating layer, for example, an oxide film 13 of about 00 ° is formed. Further, as shown in FIG. 2A, after the insulating layer 13 and the electrode conductive layer 7 on the silicon substrate 2 serving as the channel region are etched to remove a part thereof, for example, an oxide film The sidewall 14 is formed. Thereafter, as shown in FIG. 2B, a gate oxide film 3 as a gate insulating film and a gate electrode 4 are sequentially formed. Further, C in FIG.
After the gate electrode 4 and the insulating layer 13 are etched into a desired pattern, as shown in FIG.
In the case of an OS transistor, the source region 5 and the drain region 6 are formed by implanting impurities such as boron and BF 2 and performing heat treatment. Next, as shown in FIG. 3A, for example, a titanium silicide film 15 is formed on the gate electrode 4 and the electrode conductive layers 7 and 8 on the source 5 and the drain region 6 in a self-aligned manner. And to reduce the resistance of the wiring. Further, as shown in FIG.
An interlayer insulating film 10 made of a G film or the like is formed, contact holes are provided at predetermined locations, and a source region 5 and a drain region 6 are connected to a titanium silicide film 15 and aluminum connected to the electrode conductive layers 7 and 8 respectively. An aluminum wiring layer 11 made of an alloy or the like is formed.

【0012】なお、上記実施例では分離方法としてトレ
ンチ分離を用いたが、シリコン基板表面からの高さが1
000Å程度以下の分離方法ならば他の方法であっても
よい。
Although the trench isolation is used as the isolation method in the above embodiment, the height from the surface of the silicon substrate is one.
Other methods may be used as long as the separation method is about 000 ° or less.

【0013】また、上記実施例では電極用導電層7,8
上の絶縁層13として酸化膜を使用した例を示したが、
窒化膜などの他の絶縁膜やそれらの複合膜であってもよ
い。
In the above embodiment, the conductive layers 7, 8 for electrodes are used.
Although an example in which an oxide film is used as the upper insulating layer 13 is shown,
Another insulating film such as a nitride film or a composite film thereof may be used.

【0014】更に、上記実施例ではソース領域5および
ドレイン領域をゲート電極4の形成後に形成する例を示
したが、ゲート電極形成前に形成してもよく、またゲー
ト電極形成前後の両者において形成してもよい。
Further, in the above embodiment, the example in which the source region 5 and the drain region are formed after the formation of the gate electrode 4 has been described. However, the source region 5 and the drain region may be formed before the formation of the gate electrode. May be.

【0015】[0015]

【発明の効果】以上のように、この発明によれば、チャ
ネル領域となるシリコン基板上の多結晶シリコンの導電
層を剛体研磨して平坦にした後、これをエッチング除去
してシリコン基板を露出させるようにしたので、従来の
ようにシリコン基板に凹凸が生じることは殆んどなくな
り、従って、ゲート絶縁層が劣化することがなくなり、
装置の信頼性を向上させることができる効果がある。
As described above, according to the present invention, a conductive layer of polycrystalline silicon on a silicon substrate to be a channel region is flattened by rigid polishing and then removed by etching to expose the silicon substrate. As a result, the silicon substrate hardly has irregularities as in the prior art, so that the gate insulating layer does not deteriorate,
There is an effect that the reliability of the device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例の一部を説明する断面図で
ある。
FIG. 1 is a sectional view illustrating a part of an embodiment of the present invention.

【図2】一実施例の他の一部を説明する断面図である。FIG. 2 is a cross-sectional view illustrating another part of the embodiment.

【図3】一実施例の残りの部分を説明する断面図であ
る。
FIG. 3 is a cross-sectional view illustrating a remaining part of the embodiment.

【図4】従来の半導体装置を示す断面図である。FIG. 4 is a sectional view showing a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

2 シリコン基板 3 ゲート絶縁層 4 ゲート電極 7,8 多結晶シリコンの電極用導電層 2 Silicon substrate 3 Gate insulating layer 4 Gate electrode 7, 8 Conductive layer for polycrystalline silicon electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコン基板の上に導電層を形成する工
程と、この導電層を剛体研磨する工程と、この剛体研磨
された導電層の一部をエッチング除去する工程と、この
エッチング除去部分にゲート絶縁層を形成する工程と、
このゲート絶縁層の上にゲート電極を形成する工程とを
含んでいることを特徴とする半導体装置の製造方法。
A step of forming a conductive layer on a silicon substrate; a step of rigidly polishing the conductive layer; a step of etching and removing a part of the rigidly polished conductive layer; Forming a gate insulating layer;
Forming a gate electrode on the gate insulating layer.
JP8274891A 1991-04-16 1991-04-16 Method for manufacturing semiconductor device Expired - Fee Related JP2709200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8274891A JP2709200B2 (en) 1991-04-16 1991-04-16 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8274891A JP2709200B2 (en) 1991-04-16 1991-04-16 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04316331A JPH04316331A (en) 1992-11-06
JP2709200B2 true JP2709200B2 (en) 1998-02-04

Family

ID=13783050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8274891A Expired - Fee Related JP2709200B2 (en) 1991-04-16 1991-04-16 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2709200B2 (en)

Also Published As

Publication number Publication date
JPH04316331A (en) 1992-11-06

Similar Documents

Publication Publication Date Title
JPS61198780A (en) Manufacture of semiconductor device
JPS6144470A (en) Method of producing integrated circuit chip
JPH05206451A (en) Mosfet and its manufacture
JP2780162B2 (en) Method for manufacturing semiconductor device
JPH0521338B2 (en)
JPH09321239A (en) Manufacturing semiconductor integrated circuit device
US5677210A (en) Method of producing a fully planarized concave transistor
JP2734961B2 (en) Field effect transistor and manufacturing method thereof
US20040094802A1 (en) Semiconductor device and method of forming the same
JPH11121621A (en) Method of forming self-aligned contact hole
JP2709200B2 (en) Method for manufacturing semiconductor device
JPH04275436A (en) Soimos transistor
US5620911A (en) Method for fabricating a metal field effect transistor having a recessed gate
JP2966647B2 (en) Semiconductor device and manufacturing method thereof
JP3001588B2 (en) Semiconductor device and manufacturing method thereof
JPH1197529A (en) Manufacture of semiconductor device
JPH11111843A (en) Semiconductor integrated circuit device and its manufacture
US6239478B1 (en) Semiconductor structure for a MOS transistor
US6221778B1 (en) Method of fabricating a semiconductor device
JPH05226466A (en) Manufacture of semiconductor device
JPS62224077A (en) Semiconductor integrated circuit device
JP4299380B2 (en) Semiconductor device and manufacturing method thereof
JP2621607B2 (en) Method for manufacturing semiconductor device
JP2004537160A (en) Method for reducing mask process for manufacturing MOS gate semiconductor device
JPH0582637A (en) Semiconductor device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees