JPS5914906B2 - Method for manufacturing field effect transistors - Google Patents

Method for manufacturing field effect transistors

Info

Publication number
JPS5914906B2
JPS5914906B2 JP13915479A JP13915479A JPS5914906B2 JP S5914906 B2 JPS5914906 B2 JP S5914906B2 JP 13915479 A JP13915479 A JP 13915479A JP 13915479 A JP13915479 A JP 13915479A JP S5914906 B2 JPS5914906 B2 JP S5914906B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
layer
forming
concave portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13915479A
Other languages
Japanese (ja)
Other versions
JPS5661170A (en
Inventor
武 鈴木
好伸 門脇
孝 石井
睦之 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13915479A priority Critical patent/JPS5914906B2/en
Publication of JPS5661170A publication Critical patent/JPS5661170A/en
Publication of JPS5914906B2 publication Critical patent/JPS5914906B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Die Bonding (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To eliminate the need for a wire for connecting electrodes of a field effect transistor and improve its radiating efficiency by making a concave portion for forming a main electrode in the upper surface of a semiconductor substrate and allowing the electrode provided in the concave portion to directly contact with a plated heat sink provided on the substrate lower surface. CONSTITUTION:A concave portion 9 is made in an N type layer 2 on a semiinsulative substrate 1, extending into the substrate 1. The layer 2 is etched so as to leave only a portion of it extending over one of the edges of the concave portion 9 and the central portion of the substrate 1. Then a source electrode 3 is formed covering the side walls and bottom of the concave portion 9 and extending on the end of the remaining layer 2, and a gate electrode 5 and a drain electrode 4 are provided on the layer 2. After that, with only the circumference left, the lower surface of the substrate 1 is etched to allow the electrode 3 at the bottom of the concave portion 9 to be exposed, and the whole lower surface of the substrate 1 is coated with a metal layer 10 so that it contacts with the electrode 3. Then a resist layer 11 is provided on the circumference of the substrate lower surface, and a plated heat sink 12 is secured through a plated layer 14 to the layer 10 surrounded with the resist layer 11. Thus, the sink is used also as an electrode material.

Description

【発明の詳細な説明】 この発明は電界効果トランジスタの製造方法に係り、特
にその主電極とヒートシンクが電気的に10接続した構
造の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a field effect transistor, and particularly to a method for forming a structure in which a main electrode and a heat sink are electrically connected.

以下ヒ化ガリウム(GaAs)を用いた電極効果トラン
ジスタ(以下「GaAsFET」と略称す匂を例にとつ
て説明する。GaAsFETはマイクロ波領域における
低雑音15増巾器、高出力増巾器、発振器などに利用さ
れている。
The following will explain an example of an electrode effect transistor (hereinafter abbreviated as "GaAsFET") using gallium arsenide (GaAs). It is used for such things.

そしてこの性能は主にゲート長を短くした微細パターン
構造及びソース電極抵抗等の寄生要素の低減により向上
させることができる。ゲート長を短くするために電子ビ
ーム露光、Xx線リングラフィなどの手法が用いられる
This performance can be improved mainly by a fine pattern structure with a shortened gate length and a reduction in parasitic elements such as source electrode resistance. Techniques such as electron beam exposure and X-ray phosphorography are used to shorten the gate length.

電極抵抗を低減するために電極の金属膜を厚くしたり、
イオン注入法によリソース電極部分にキャリア濃度の高
いN形層を設けオージク接触抵抗を低くする方法がある
。ソース電極からパッケージ電極部ク5 へのリード線
のインダクタンスを低減させるためにシートグランドの
方法がある。第1図は従来のGaAsFETの製造方法
を説明するための各工程段階を示す断面図、第2図は従
来のGaAsFETのワイヤボンディング方法を示す断
n 面図である。
In order to reduce electrode resistance, the metal film of the electrode can be made thicker,
There is a method of lowering the Ozark contact resistance by providing an N-type layer with high carrier concentration in the resource electrode portion by ion implantation. In order to reduce the inductance of the lead wire from the source electrode to the package electrode section 5, there is a sheet ground method. FIG. 1 is a cross-sectional view showing each process step for explaining a conventional GaAsFET manufacturing method, and FIG. 2 is a cross-sectional view showing a conventional GaAsFET wire bonding method.

まず、第1図aに示すように、半絶縁性基板1と、その
一主面に形成され不純物濃度が約1〜3×107/Cd
のN形層2とからなるGaAsウェハの上記N形層2の
表面上に写真製版とソフトオフ35法によつてソース電
極3及びドレイン電極4を形成する。
First, as shown in FIG.
A source electrode 3 and a drain electrode 4 are formed on the surface of the N-type layer 2 of the GaAs wafer by photolithography and the soft-off method.

つづいて1つのウェハ上に形成される複数のチップ(図
には1チップのみ示す。)の各チツプ間の絶縁を寄生容
量低減のために、第1図bに示すようにソース電極3、
ドレイン電極4及びゲート形成領域5″を除いた残余の
部分のN形層2をエツチング除去する。次にゲート形成
領域5″のうち真にゲート電極を形成する部分を除いて
全h面をレジストで覆つた上で、レジスト膜全面に金属
膜を蒸着させた後、リフトオフ法でグート電極5を形成
すると、第1図Cに示すような所望のGaAsFETが
得られる。第2図aは第1図の工程を経て得られた小信
号用GaAsFETのワイヤボンデイング方法を示した
ので、各電極からワイヤ8でバツケージへの電気的接続
を行つている。
Next, in order to reduce the parasitic capacitance of the insulation between the chips of a plurality of chips (only one chip is shown in the figure) formed on one wafer, as shown in FIG.
The remaining part of the N-type layer 2 except for the drain electrode 4 and the gate formation region 5'' is removed by etching. Next, the entire h-plane of the gate formation region 5'' except for the part where the gate electrode will be formed is etched with resist. A metal film is deposited on the entire surface of the resist film, and then a goat electrode 5 is formed by a lift-off method, thereby obtaining a desired GaAsFET as shown in FIG. 1C. FIG. 2a shows a wire bonding method for the small signal GaAsFET obtained through the process shown in FIG. 1, in which each electrode is electrically connected to the package by wire 8.

第2図bのものではソース電極はワイヤを使わずシート
グランド方式によつてバツケージ電極7に電気的接続を
行つている。図中、6はダイボンダ用ハンダである。第
2図cは第1図と同様な製造工程により作製された高出
力GaAsFETのワイヤボンデイング方法を示したも
のである。
In the case of FIG. 2b, the source electrode is electrically connected to the bagage electrode 7 by the sheet ground method without using wires. In the figure, 6 is solder for die bonder. FIG. 2c shows a wire bonding method for a high-power GaAsFET manufactured by the same manufacturing process as in FIG.

ところで、第1図cに示したような構造のFETはソー
ス電極3の電気的接続をワイヤで行うため周波数が高く
なるとリード線のインダクタンスの影響が大きくなり性
能を低下させる。
Incidentally, in the FET having the structure as shown in FIG. 1c, the source electrode 3 is electrically connected by a wire, and therefore, as the frequency increases, the influence of the inductance of the lead wire increases and the performance deteriorates.

特に高出力FETでは多数のワイヤを使用するためイン
ダクタンスの影響は大である。又、この様な構造では半
絶縁性基板1があるため熱放散が悪くなり、入力が大き
い高出力FETでは熱抵抗の低減が重要な問題となつて
いる。この発明はこのような点に鑑みてなされたもので
、半導体ウエ・・表面上に凹部を形成し、この凹部を通
して主電極と電気的に接続する様に半導体裏面に金属厚
膜(プレーテツドヒートシンク)を形成することによつ
て、主電極の電気的接続にワイヤを用いる必要がなくな
るとともに金属厚膜により放熱が改善され性能を大巾に
向上できるGaAsFET構造の製造力法を提供せんと
するものである。
Particularly in high-output FETs, since a large number of wires are used, the influence of inductance is large. Furthermore, in such a structure, heat dissipation is poor due to the presence of the semi-insulating substrate 1, and reduction of thermal resistance has become an important issue in high-output FETs with large inputs. This invention was made in view of these points. A recess is formed on the surface of the semiconductor wafer, and a thick metal film (plated metal film) is formed on the back surface of the semiconductor so as to be electrically connected to the main electrode through the recess. The present invention aims to provide a manufacturing method for a GaAsFET structure that eliminates the need to use wires for electrical connection of the main electrode by forming a heat sink (heat sink), improves heat dissipation by using a thick metal film, and greatly improves performance. It is something.

第3図はこの発明の方法の一実施例を説明するための各
工程段階を示し、第4図はこの発明に依り製造されたG
aAsFETのワイヤボンデング方法を示したものであ
る。
FIG. 3 shows each process step for explaining an embodiment of the method of the present invention, and FIG. 4 shows a G
This figure shows a wire bonding method for aAsFET.

まず、第3図aに示す様に半導体ウエハのN形層2側に
所望の深さの凹部aを形成し、しかる後第1図と同様の
製造工程でソース電極3、トレーノン電極4、及びグー
ト電極5を第3図bに示す様に形成する。
First, as shown in FIG. 3a, a recess a of a desired depth is formed on the N-type layer 2 side of a semiconductor wafer, and then a source electrode 3, a trenon electrode 4, and The goat electrode 5 is formed as shown in FIG. 3b.

それから第3図cに示すように半導体ウエハ裏面の半絶
縁性基板1を凹部9の底に到達するまでエツチング除去
した後蒸着により金属膜10を形成する。上記エツチン
グ除去された部分に金属膜10を用いて所定部分だけ第
3図dのように厚メツキしプレーテツドヒートシンク1
2を形成する。この後第3図eに示す様にプレーテツド
ヒートシンク12、N形層2を電導路に用いてソース電
極3をメツキし、さらにドレイン電極4を所望の厚さだ
けメツキしてメツキ部14を形成する。図中、13はレ
ジストである。そして第3図fの様なプレテツドヒート
シンク付きGaAsFETが得られる。第4図aはこの
発明より製造された小信号用GaAsFETのワイヤポ
ンデング方法を示したもので、ソース電極3の電気的接
続はプレーテイツドヒートシンク12を通してバツケー
ジ電極7へ行われる。
Then, as shown in FIG. 3c, the semi-insulating substrate 1 on the back surface of the semiconductor wafer is removed by etching until it reaches the bottom of the recess 9, and then a metal film 10 is formed by vapor deposition. The plated heat sink 1 is formed by thickly plating only a predetermined portion using the metal film 10 on the etched portion as shown in FIG. 3d.
form 2. Thereafter, as shown in FIG. 3e, the source electrode 3 is plated using the plated heat sink 12 and the N-type layer 2 as a conductive path, and the drain electrode 4 is plated to a desired thickness to form the plated part 14. Form. In the figure, 13 is a resist. Then, a GaAsFET with a pre-treaded heat sink as shown in FIG. 3f is obtained. FIG. 4a shows a wire bonding method for a small signal GaAsFET manufactured according to the present invention, in which the source electrode 3 is electrically connected to the bagage electrode 7 through the plated heat sink 12.

第4図bはこの発明により製造された高出力GaAsF
ETのワイヤボンデイング方法を示したものでソース電
極3の電気的接続は第4図aと同様な方法で行われてお
り、従来のソース電極3間をリード線で接続するという
工程が省略されている。
FIG. 4b shows a high-power GaAsF fabricated according to the present invention.
This figure shows the wire bonding method of ET, and the electrical connection of the source electrodes 3 is performed in the same manner as shown in Fig. 4a, and the conventional process of connecting the source electrodes 3 with lead wires is omitted. There is.

上記実施例ではGaAsを用いた場合について述べたが
、この発明はGaAsに限定されるものでなく、一般に
半導体に適用できることは自明である。また主電極、即
ちソース電極3とドレイン電極4とを入れ替えて使用し
ても同様の効果がある。以上詳述したように、この発明
の方法ではあらかじめ半導体表面に形成した凹部をブレ
ーテツトヒートシンクとを電気的に接続できるので主電
極のワイヤボンデイング工程が省略され作業時間が大巾
に減少する。更にリード線の配線がなくなつたこと、ブ
レーテイツドヒートシンクにより放熱が改善され、ソー
ス電極及びドレイン電極を厚メツキしたことによりシー
ト抵抗の低減がなされ、高周波領域での特性が大巾に改
善される。
Although the above embodiment describes the case where GaAs is used, it is obvious that the present invention is not limited to GaAs and can be applied to semiconductors in general. Further, the same effect can be obtained even if the main electrodes, that is, the source electrode 3 and the drain electrode 4 are used interchangeably. As described in detail above, in the method of the present invention, the concave portion previously formed on the semiconductor surface can be electrically connected to the plated heat sink, so the wire bonding process for the main electrode is omitted, and the working time is greatly reduced. Furthermore, the elimination of lead wires, improved heat dissipation with a bragged heat sink, and thick plating of the source and drain electrodes reduced sheet resistance, greatly improving characteristics in the high frequency range. Ru.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜第1図cは従来の製造方法を説明するための
各工程段階を示す断面図、第2図a−cは従来の力法で
製造されたGaAsFETのワイヤボンデイング方法を
示す断面図、第3図a−fはこの発明の一実施例を説明
するための各工程段階を示す断面図である。 第4図A,bはこの発明により製造されたGaAsFE
Tのワイヤボンデイング方法を説明するための断面図で
ある。図において、1は半絶縁性基板、2はN形層、3
はソース電極、4はドレイン電極、51はゲート形成領
域、5はゲート電極、6はダイボンダ用・・ンダ、7は
バツケージ電極、8はリード線、9は凹部、10は電導
路用金属膜、11,13はレジスト、12はブレーテツ
ドヒートシンクである。
Figures 1a to 1c are cross-sectional views showing each process step to explain the conventional manufacturing method, and Figures 2a to 2c are cross-sectional views showing the wire bonding method for GaAsFET manufactured by the conventional force method. 3A to 3F are cross-sectional views showing each process step for explaining an embodiment of the present invention. Figures 4A and 4b show GaAsFE manufactured according to the present invention.
FIG. 3 is a cross-sectional view for explaining the wire bonding method of T. In the figure, 1 is a semi-insulating substrate, 2 is an N-type layer, and 3 is a semi-insulating substrate.
1 is a source electrode, 4 is a drain electrode, 51 is a gate formation region, 5 is a gate electrode, 6 is a die bonder, 7 is a baggage electrode, 8 is a lead wire, 9 is a recessed portion, 10 is a metal film for a conductive path, 11 and 13 are resists, and 12 is a braided heat sink.

Claims (1)

【特許請求の範囲】[Claims] 1 半絶縁性基板とこの表面に形成された所定導電形の
半導体層とからなる半導体ウェハの表面から上記基板に
達する深さの凹部を形成する工程、上記凹部と上記半導
体層上に延在した主電極を形成する工程、上記主電極に
ゲート形成領域を介し対向するように上記半導体層上に
他の主電極を形成する工程、上記ゲート形成領域と上記
各主電極と接触する部分を除いた残余の上記半導体層を
エッチング除去する工程、上記ゲート形成領域にゲート
電極を形成する工程、上記半導体ウェハの裏面から上記
半基板を上記凹部の底に到達するまでエッチング除去す
る工程、上記エッチング除去された基板の残部裏面に蒸
着あるいはメッキにより薄い金属膜を形成する工程、上
記薄い金属膜上に厚メッキを形成する工程、及び上記各
主電極を厚メッキする工程を備えた電界効果トランジス
タの製造方法。
1. Forming a recess with a depth reaching the substrate from the surface of a semiconductor wafer consisting of a semi-insulating substrate and a semiconductor layer of a predetermined conductivity type formed on the surface, a step of forming a recess extending over the recess and the semiconductor layer. a step of forming a main electrode, a step of forming another main electrode on the semiconductor layer so as to face the main electrode with a gate formation region in between, and a step of forming another main electrode on the semiconductor layer, excluding the portions in contact with the gate formation region and each of the main electrodes. a step of etching away the remaining semiconductor layer; a step of forming a gate electrode in the gate formation region; a step of etching away the half-substrate from the back surface of the semiconductor wafer until it reaches the bottom of the recess; A method for manufacturing a field effect transistor comprising the steps of forming a thin metal film on the remaining back surface of the substrate by vapor deposition or plating, forming thick plating on the thin metal film, and thickly plating each of the main electrodes. .
JP13915479A 1979-10-25 1979-10-25 Method for manufacturing field effect transistors Expired JPS5914906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13915479A JPS5914906B2 (en) 1979-10-25 1979-10-25 Method for manufacturing field effect transistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13915479A JPS5914906B2 (en) 1979-10-25 1979-10-25 Method for manufacturing field effect transistors

Publications (2)

Publication Number Publication Date
JPS5661170A JPS5661170A (en) 1981-05-26
JPS5914906B2 true JPS5914906B2 (en) 1984-04-06

Family

ID=15238818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13915479A Expired JPS5914906B2 (en) 1979-10-25 1979-10-25 Method for manufacturing field effect transistors

Country Status (1)

Country Link
JP (1) JPS5914906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520561B2 (en) * 1985-06-28 1993-03-19 Cummins Engine Co Inc

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892277A (en) * 1981-11-28 1983-06-01 Mitsubishi Electric Corp Manufacture of field effect transistor
JPS59117171A (en) * 1982-12-23 1984-07-06 Nec Corp High-frequency high-output field-effect transistor
JPS59124750A (en) * 1982-12-29 1984-07-18 Fujitsu Ltd Semiconductor device
JPS6159753A (en) * 1984-08-30 1986-03-27 Mitsubishi Electric Corp Via hole type semiconductor device
JPS62222656A (en) * 1986-03-25 1987-09-30 Nec Corp Semiconductor device
JPS62252174A (en) * 1986-04-24 1987-11-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPH0821598B2 (en) * 1989-09-12 1996-03-04 三菱電機株式会社 Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520561B2 (en) * 1985-06-28 1993-03-19 Cummins Engine Co Inc

Also Published As

Publication number Publication date
JPS5661170A (en) 1981-05-26

Similar Documents

Publication Publication Date Title
JP7066778B2 (en) High Electron Mobility Transistor (HEMT)
US3986196A (en) Through-substrate source contact for microwave FET
US6790694B2 (en) High frequency semiconductor module, high frequency semiconductor device and manufacturing method for the same
JPS5914906B2 (en) Method for manufacturing field effect transistors
JPS5879773A (en) Field-effect transistor
TWI718300B (en) Semiconductor transistor and processing method thereof
JPH06326330A (en) Semiconductor device and its manufacture
JPS5892277A (en) Manufacture of field effect transistor
TW548845B (en) Schottky barrier diode and method for producing the same
JPS62211962A (en) Manufacture of high-frequency semiconductor device
JP7332130B2 (en) Semiconductor device manufacturing method, semiconductor device manufacturing method, semiconductor device, and semiconductor device
JPS62268147A (en) Manufacture of semiconductor device
JPH09223703A (en) Field effect transistor
JP2758888B2 (en) Semiconductor device
JPH0362930A (en) Manufacture of semiconductor device
JPH10214929A (en) Semiconductor device
TWM623644U (en) Semiconductor device
JPH104100A (en) Electronic part
JPS5950091B2 (en) Manufacturing method of semiconductor device
JPS61144072A (en) Manufacture of field-effect transistor
JP2003151979A (en) Method for forming via hole and semiconductor device
JPS6177369A (en) Manufacture of semiconductor device
JPS58178539A (en) Semiconducor device
JPH0491441A (en) Manufacture of field-effect transistor
JPS5832472A (en) Gallium arsenide field effect transistor