JPS5879773A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPS5879773A
JPS5879773A JP17875981A JP17875981A JPS5879773A JP S5879773 A JPS5879773 A JP S5879773A JP 17875981 A JP17875981 A JP 17875981A JP 17875981 A JP17875981 A JP 17875981A JP S5879773 A JPS5879773 A JP S5879773A
Authority
JP
Japan
Prior art keywords
region
layer
substrate
active layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17875981A
Other languages
Japanese (ja)
Other versions
JPS6236400B2 (en
Inventor
Yasutaka Hirachi
康剛 平地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17875981A priority Critical patent/JPS5879773A/en
Publication of JPS5879773A publication Critical patent/JPS5879773A/en
Publication of JPS6236400B2 publication Critical patent/JPS6236400B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To eliminate the danger of the generation of undesirable etching by forming a high-concentration region to the source region of an active layer and directly connecting the high-concentation region and an electrode formed to the back of a substrate by a metallic connecting conductor. CONSTITUTION:A concave section 14 reaching the N<+> region 12 of the back of the semi-insulating substrate 1 is shaped at a position corresponding to the N<+> region 12, and an evaporation layer 7, onto which an AuGe alloy layer and an Au layer are laminated, and an Au plated layer 8 are formed onto the back of the substrate 1 containing the bottom 15 and inner wall surface of the concave section 14. Since the source region 12 is shaped as a high concentration region, the region 12 may directly be connected to the back electrode 9, and etching from the back of the substrate for forming the conducting path may be executed up to the region 12, thus resulting in no generation of undesirable etching which has been seen in conventional structure.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は電界効果トランジスタに関し、特にソース電極
の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a field effect transistor, and particularly to the structure of a source electrode.

(2)従来技術と問題点 GaAsよりなる超高周波用シロソトキバリを型電界効
果トランジスタ等においては、ソース電極として従来第
1°図に示すような構造が既に提唱されている。即ち、
半絶縁性基板1表面に形成されたn型のGaAsからな
る能動層2上に、能動層2とショットキ接触をなすゲー
ト電極3と、能動層2とオーミック接触をなすソース電
極4及びドレイン電極5を有し、−万事絶縁性基板lの
背面には前記ソース電極4形成部に半絶縁性基板1及び
能動層2を貫通する貫通孔6が開孔され、この貫通孔6
の内壁面を含む半絶縁性基板1の背面上にAuGe合金
層と金(^U)層が積層された蒸着層7とその上にAu
のメッキ層8とからなる背面電極9を介して外部に接続
されている。
(2) Prior Art and Problems In ultra-high frequency field effect transistors made of GaAs, a structure as shown in FIG. 1 has already been proposed as a source electrode. That is,
On an active layer 2 made of n-type GaAs formed on the surface of a semi-insulating substrate 1, a gate electrode 3 making Schottky contact with the active layer 2, and a source electrode 4 and a drain electrode 5 making ohmic contact with the active layer 2 are provided. - A through hole 6 penetrating through the semi-insulating substrate 1 and the active layer 2 is formed in the source electrode 4 forming part on the back side of the completely insulating substrate l, and this through hole 6
On the back side of the semi-insulating substrate 1, including the inner wall surface of the evaporated layer 7, in which an AuGe alloy layer and a gold (^U) layer are laminated, and an Au
It is connected to the outside via a back electrode 9 consisting of a plating layer 8.

上記従来の構造では厚いAuメッキ層8(凡そ35〜5
0(μm)の厚さ)がヒートシンクとして働き放熱特性
が良好となる。その反面、□貫通孔6を開孔するに際し
ては、ソース電極4の裏面が露出するまでエツチングを
行わなければならないが、工ッチングはソース電極4の
裏面に到達するとソース電極4と能動層2の界面に沿っ
て急速に進行するので、ソース電極4の剥離を生じやす
い。従ってエツチング量を厳密に制御せねばならないが
この制御は実際には困難で、そのため常に上述の如く望
ましくないエツチングが進行するという危険にさらされ
る。
In the above conventional structure, the thick Au plating layer 8 (approximately 35 to 5
0 (μm) thickness) acts as a heat sink and has good heat dissipation characteristics. On the other hand, when opening the through hole 6, it is necessary to perform etching until the back surface of the source electrode 4 is exposed, but when the etching reaches the back surface of the source electrode 4, the source electrode 4 and active layer 2 are Since it progresses rapidly along the interface, the source electrode 4 is likely to peel off. Therefore, the amount of etching must be strictly controlled, but this control is difficult in practice, and therefore there is always a risk that undesirable etching will proceed as described above.

(3)発明の目的 本発明の目的は上記問題点を解消して前記望ましくない
エツチングを生じる危険がなく、しがも製作容易な構造
を有する電界効果トランジスタを提供することにある。
(3) Object of the Invention An object of the present invention is to solve the above-mentioned problems and provide a field effect transistor having a structure which is free from the risk of causing the undesirable etching and which is easy to manufacture.

(4)発明の構成 本発明の特徴は、能動層のソース領域に高濃度領域を設
け、該高濃度領域と基板背面に形成された背面電極とを
金属からなる接続導体により直接接続する構造としたこ
とにある。
(4) Structure of the Invention The present invention is characterized by a structure in which a high concentration region is provided in the source region of the active layer, and the high concentration region and the back electrode formed on the back surface of the substrate are directly connected by a connecting conductor made of metal. It's what I did.

以下本発明の一実施例として本発明により製作したGa
Asにりなる超高周波電界効果トランジスタを図面によ
り接続する。
As an example of the present invention, Ga manufactured according to the present invention will be described below.
Ultra high frequency field effect transistors made of As are connected according to the drawing.

第2図は上記一実施例を示す要部断面図で、第1図と同
一部分は同一符号で示しである。
FIG. 2 is a sectional view of a main part showing the above embodiment, and the same parts as in FIG. 1 are designated by the same reference numerals.

同図において、lはクロム(Cr)をドープされたGa
Asよりなる半絶縁性基板、2はn型のGaAsよりな
る能動層で、ゲート電極3の直下部11はイオン注入法
によりシリコン(St) 、硫黄(S)等のn型不純物
が注入された濃度凡そ0.5〜3 X 10′″(cs
+−3)のn型領域、該n型領域11を挾んで両側にシ
リコン(St)を2 X 10”(c mす) 以上(
’)i1度に注入されたnG51域12及び13の三つ
の領域からなる。
In the figure, l is Ga doped with chromium (Cr).
A semi-insulating substrate made of As, 2 an active layer made of n-type GaAs, and a portion 11 directly below the gate electrode 3 into which n-type impurities such as silicon (St) and sulfur (S) were implanted by ion implantation. Concentration approximately 0.5~3 x 10''' (cs
+-3) n-type region, silicon (St) is placed on both sides of the n-type region 11 in an area of 2×10” (cm) or more (
') Consists of three regions, nG51 regions 12 and 13, implanted at i1 degree.

上記♂領域13はドレイン領域であって、その表面には
n型GaAsとオーミック接触を形成する金属カラナル
ドレイン電極5が設けられる。このドレイン電極5は例
えば厚さ凡そ400 (人〕のAuGe合金層とその上
に凡そ4000 (人]の厚さのAu層を積層したもの
を用い得る。
The male region 13 is a drain region, and a metal calanal drain electrode 5 is provided on its surface to form ohmic contact with n-type GaAs. This drain electrode 5 may be made of, for example, an AuGe alloy layer having a thickness of approximately 400 mm and an Au layer having a thickness of approximately 4000 mm laminated thereon.

今一つのn”l 11112はソース領域であって、本
発明においてはこのn+領域12上には従来例に見られ
るソース電極を省くことが出来る。即ち本実施例は半絶
縁性基板l背面の前記n1領域12に対応する位置に、
n”*域12に達する凹部14が設けられ、該凹部14
の底面15及び内壁面を含む半絶縁性基板lの背面上に
AuGe合金層(厚さ凡そ400〔人〕)とAu層(厚
さ凡そ4000 C人〕)が積層された蒸着層7と、A
uメッキ層8 (厚さ凡そ35〜50 (,17m) 
)が形成されてなる。
Another n"l 11112 is a source region, and in the present invention, the source electrode seen in the conventional example can be omitted on this n+ region 12. That is, in this embodiment, the source electrode on the back surface of the semi-insulating substrate l can be omitted. At a position corresponding to n1 area 12,
A recess 14 reaching the n''* area 12 is provided, and the recess 14
A vapor deposited layer 7 in which an AuGe alloy layer (thickness of about 400 cm) and an Au layer (thickness of about 4000 cm) are laminated on the back surface of a semi-insulating substrate l including the bottom surface 15 and inner wall surface of the semi-insulating substrate l; A
U plating layer 8 (thickness approximately 35~50 (,17m)
) is formed.

上記構造とすることにより本実施例は、凹部−j4の底
面15においてn+型GaAsが露呈され、またAuG
e合金はn+型GaAsとオーミック接触を形成する材
料であるので、上記n領域12即ちソース領域はその底
部において背面電極9と直接接続される。そして本実施
例の装置においては動作時にキャリアは背面電極9より
直接n“領域12に供給され、ゲート電極3の電位によ
り制御されてドレイン領域13に流入し、ドレイン電極
5より外部へ送出されるのであるが、n“領域12は電
気抵抗が低いので従来例の如く表面に電極を設ける必要
がない。
With the above structure, in this embodiment, n+ type GaAs is exposed on the bottom surface 15 of recess -j4, and AuG
Since the e-alloy is a material that forms ohmic contact with n+ type GaAs, the n region 12, ie, the source region, is directly connected to the back electrode 9 at its bottom. In the device of this embodiment, during operation, carriers are directly supplied to the n'' region 12 from the back electrode 9, flow into the drain region 13 under control of the potential of the gate electrode 3, and are sent out from the drain electrode 5. However, since the n'' region 12 has a low electrical resistance, there is no need to provide an electrode on the surface as in the conventional example.

以上述べた如く本実施例はソース領域を高濃度領域(n
領域12)としたことにより、このn+領域12を背面
電極9と直接接続すればよいこととなり、この導電路形
成のための基板背面からのエツチングはn”領域12に
到達するまで行なえばよく、従って従来構造に見られた
望ましくないエツチングを生じることがない、従って製
造工程が安定し、装置の製造歩留及び信頼度が向上する
As described above, in this embodiment, the source region is a high concentration region (n
By forming the n+ region 12), it is sufficient to directly connect the n+ region 12 to the back electrode 9, and etching from the back surface of the substrate for forming the conductive path only needs to be performed until the n'' region 12 is reached. Therefore, the undesirable etching seen in conventional structures does not occur, thereby stabilizing the manufacturing process and improving the manufacturing yield and reliability of the device.

更に本実施例は能動層2表面にソース電極を設ける必要
がないため、ゲート電極のパターンの乱れが発生せず、
そのためゲート電極とソース電極の間隅を任意に選択し
得るという大きな利点を有する。
Furthermore, in this embodiment, since there is no need to provide a source electrode on the surface of the active layer 2, the pattern of the gate electrode is not disturbed.
Therefore, it has the great advantage that the corner between the gate electrode and the source electrode can be arbitrarily selected.

即ちゲート電極はソース領域に出来るだけ近づけること
が望ましいが、ソース電極が存在する場合にはゲート電
極をパターニングするためのホトレジスト験のゲート電
極パターン近傍に段差を生じ、この段差およびソース電
極の段差における光の乱反射によりゲート電極パターン
の乱れが生じる。そのためゲート電極とソース電極との
間を少なくとも1〜2〔μm〕あける必要があった。
In other words, it is desirable that the gate electrode be placed as close as possible to the source region, but if the source electrode is present, a step will occur near the gate electrode pattern in the photoresist test for patterning the gate electrode, and this step and the step of the source electrode will Diffuse reflection of light causes disturbances in the gate electrode pattern. Therefore, it was necessary to leave a gap of at least 1 to 2 [μm] between the gate electrode and the source electrode.

本実施例ではかかる問題も除去され、設計上ではゲート
電極の配設位置を任意に選択可能となり、製造工程上で
はゲート電極のパターニング精度が向上し、且つ作業が
容易となる。そのため電界効果トランジスタの電気的特
性及び製造歩留が向上する。    ′ なお上記一実施例においてはプレーナ構造を掲げて説明
したが、製作する装置が能動層をメサ状とした構造であ
っても、またゲート電極形成部を凹部としたリセス構造
であっても、本発明を実施し得る。
In this embodiment, this problem is also eliminated, the placement position of the gate electrode can be arbitrarily selected in the design, and the patterning accuracy of the gate electrode is improved in the manufacturing process, and the work is facilitated. Therefore, the electrical characteristics and manufacturing yield of the field effect transistor are improved. 'Although the above embodiment has been explained using a planar structure, even if the device to be manufactured has a structure in which the active layer is in a mesa shape, or a recessed structure in which the gate electrode forming part is a recessed part, The invention may be practiced.

また本発明はGaAs以外の半導体よりなる電界効果ト
ランジスタにおいても実施し得るものである。
Furthermore, the present invention can also be implemented in field effect transistors made of semiconductors other than GaAs.

更に本発明を実施するための製造方法及び各部の材料も
特に限定される必要のないことは宣うまでもない。例え
ば高濃度領域12に対するオーミック接触は、AuGe
合金層に変えて例えばチタン−白金−金(Ti−Pt−
Au)層を形成することによっても得られる。また高濃
度領域12と背面電極9とを直接接続する接続導体は、
前記一実施例の如く背面電極9と同一材料を用い同一工
程で一体化して形成するのが実用的であるが、この両者
は別個のものとしても差し支えない。
Furthermore, it goes without saying that there are no particular limitations on the manufacturing method and materials for each part for carrying out the present invention. For example, the ohmic contact to the high concentration region 12 is made of AuGe.
For example, titanium-platinum-gold (Ti-Pt-
It can also be obtained by forming an Au) layer. In addition, the connection conductor that directly connects the high concentration region 12 and the back electrode 9 is
Although it is practical to form them integrally in the same process using the same material as the back electrode 9 as in the above-mentioned embodiment, the two may be formed separately.

また前記一実施例ではソース電極を除去した例を示した
が、これは何らかの理由によりソース領域上にソース電
極を設けることを妨げるものではない。例えば本発明を
用いて製作する集積回路装置等において、ソース領域と
他の領域とを接続するための電極を表両に設けても差支
えない。
Further, although the above-mentioned embodiment shows an example in which the source electrode is removed, this does not prevent the source electrode from being provided on the source region for some reason. For example, in an integrated circuit device manufactured using the present invention, electrodes for connecting the source region and other regions may be provided on both sides.

以上説明した如く本発明によれば電界効果トランジスタ
の製作が容易となり製造歩留が向上し、しかも電気的特
性及び信頼度が改善される。
As explained above, according to the present invention, it is easy to manufacture a field effect transistor, the manufacturing yield is improved, and the electrical characteristics and reliability are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電界効果トランジスタの説明に供するた
めの要部断面図、第2図は本発明の一実施例を示す要部
断面図である。 図において1は半絶縁性もしくは絶縁性基板、2は能動
層、3はゲート電極、9は背面Ill、 +1は能動層
のゲート直下部、12は高濃度領域、14は凹部、15
は凹部底面を示す。
FIG. 1 is a sectional view of a main part for explaining a conventional field effect transistor, and FIG. 2 is a sectional view of a main part showing an embodiment of the present invention. In the figure, 1 is a semi-insulating or insulating substrate, 2 is an active layer, 3 is a gate electrode, 9 is a rear surface Ill, +1 is directly below the gate of the active layer, 12 is a high concentration region, 14 is a recessed part, 15
indicates the bottom of the recess.

Claims (1)

【特許請求の範囲】[Claims] 絶縁性または半絶縁性基板表面に形成された一導電型を
有する半導体よりなる能動層と、前記能動層上に配設さ
れ前記能動層との間にショットキ接触を生ずるゲート電
極と、前記能動層の前記ゲート電極直下部を挾んで対向
する区域に前記ゲート電極直下部より不純物濃度が大な
る高濃度領域とを有する電界効果トランジスタにおいて
、前記高濃度領域の一方と前記絶縁性または半絶縁性基
板の背面に配設される背面電極とが前記絶縁性または半
絶縁性基板を貫通して配設された接続導体により接続さ
れてなることを特徴とする電界効果トランジスタ。
an active layer made of a semiconductor having one conductivity type formed on the surface of an insulating or semi-insulating substrate; a gate electrode disposed on the active layer and forming a Schottky contact with the active layer; and the active layer. A field effect transistor having a high concentration region having a higher impurity concentration than directly below the gate electrode in opposing regions sandwiching the region directly below the gate electrode, wherein one of the high concentration regions and the insulating or semi-insulating substrate. A field effect transistor, characterized in that the field effect transistor is connected to a back electrode provided on the back surface of the substrate by a connecting conductor provided through the insulating or semi-insulating substrate.
JP17875981A 1981-11-06 1981-11-06 Field-effect transistor Granted JPS5879773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17875981A JPS5879773A (en) 1981-11-06 1981-11-06 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17875981A JPS5879773A (en) 1981-11-06 1981-11-06 Field-effect transistor

Publications (2)

Publication Number Publication Date
JPS5879773A true JPS5879773A (en) 1983-05-13
JPS6236400B2 JPS6236400B2 (en) 1987-08-06

Family

ID=16054099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17875981A Granted JPS5879773A (en) 1981-11-06 1981-11-06 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPS5879773A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161651A (en) * 1984-02-02 1985-08-23 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS629636A (en) * 1985-07-08 1987-01-17 Hitachi Ltd Method for formation of through-hole on semiconductor integral circuit substrate
US5236854A (en) * 1989-12-11 1993-08-17 Yukio Higaki Compound semiconductor device and method for fabrication thereof
JPH06232180A (en) * 1993-02-05 1994-08-19 Nec Corp Semiconductor device
JP2004530289A (en) * 2001-02-23 2004-09-30 ニトロネックス・コーポレーション Gallium nitride material devices and methods including backside vias
WO2008096521A1 (en) * 2007-02-07 2008-08-14 Nec Corporation Semiconductor device
JP5383652B2 (en) * 2008-03-04 2014-01-08 ルネサスエレクトロニクス株式会社 Field effect transistor and manufacturing method thereof
US10700023B2 (en) 2016-05-18 2020-06-30 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US11367674B2 (en) 2016-08-10 2022-06-21 Macom Technology Solutions Holdings, Inc. High power transistors

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580822B2 (en) * 1984-02-02 1993-11-10 Mitsubishi Electric Corp
JPS60161651A (en) * 1984-02-02 1985-08-23 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS629636A (en) * 1985-07-08 1987-01-17 Hitachi Ltd Method for formation of through-hole on semiconductor integral circuit substrate
US5236854A (en) * 1989-12-11 1993-08-17 Yukio Higaki Compound semiconductor device and method for fabrication thereof
JPH06232180A (en) * 1993-02-05 1994-08-19 Nec Corp Semiconductor device
JP4792558B2 (en) * 2001-02-23 2011-10-12 インターナショナル・レクティファイアー・コーポレーション Gallium nitride material devices and methods including backside vias
JP2004530289A (en) * 2001-02-23 2004-09-30 ニトロネックス・コーポレーション Gallium nitride material devices and methods including backside vias
WO2008096521A1 (en) * 2007-02-07 2008-08-14 Nec Corporation Semiconductor device
JP5386987B2 (en) * 2007-02-07 2014-01-15 日本電気株式会社 Semiconductor device
JP5383652B2 (en) * 2008-03-04 2014-01-08 ルネサスエレクトロニクス株式会社 Field effect transistor and manufacturing method thereof
US10700023B2 (en) 2016-05-18 2020-06-30 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US11367674B2 (en) 2016-08-10 2022-06-21 Macom Technology Solutions Holdings, Inc. High power transistors
US11862536B2 (en) 2016-08-10 2024-01-02 Macom Technology Solutions Holdings, Inc. High power transistors

Also Published As

Publication number Publication date
JPS6236400B2 (en) 1987-08-06

Similar Documents

Publication Publication Date Title
US4788156A (en) Subchannel doping to reduce short-gate effects in field effect transistors
US5236854A (en) Compound semiconductor device and method for fabrication thereof
JP2551203B2 (en) Semiconductor device
JPS5879773A (en) Field-effect transistor
EP0080058B1 (en) Intermediate structure for use in the manufacture of semiconductor devices, method of making field effect transistors and transistors
GB1530145A (en) Method of manufacturing field-effect transistors designed for operation at very high frequencies using integrated techniques
US20030173584A1 (en) Semiconductor integrated circuit device and method of fabricating the same
GB2252874A (en) Field effect transistor and manufacturing method therefor
JPS5914906B2 (en) Method for manufacturing field effect transistors
EP0432948A2 (en) Compound semiconductor device and production method thereof
US5483089A (en) Electrically isolated MESFET
US4727404A (en) Field effect transistor of the MESFET type for high frequency applications and method of manufacturing such a transistor
JPH04302149A (en) Field-effect transistor
US4665416A (en) Semiconductor device having a protection breakdown diode on a semi-insulative substrate
GB2151078A (en) Semiconductor devices
JPS5931073A (en) Manufacture of field effect transistor
JPH0529357A (en) Field-effect transistor
JPH02253659A (en) Semiconductor device
JPS6129555B2 (en)
JPS6159782A (en) Semiconductor device
JPS63160280A (en) Gallium arsenioe semiconductor device
JPS5935188B2 (en) Manufacturing method of shotgun barrier diode
JPS6161549B2 (en)
JPS5946109B2 (en) Method for manufacturing insulated gate field effect transistor
JPH05275456A (en) Semiconductor device and its manufacture