JPS59145357A - Fuel control device for internal-combustion engine - Google Patents

Fuel control device for internal-combustion engine

Info

Publication number
JPS59145357A
JPS59145357A JP58016150A JP1615083A JPS59145357A JP S59145357 A JPS59145357 A JP S59145357A JP 58016150 A JP58016150 A JP 58016150A JP 1615083 A JP1615083 A JP 1615083A JP S59145357 A JPS59145357 A JP S59145357A
Authority
JP
Japan
Prior art keywords
fuel
amount
air
signal
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58016150A
Other languages
Japanese (ja)
Other versions
JPH0413543B2 (en
Inventor
Toshimi Anpo
安保 敏巳
Takashi Ueno
植野 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58016150A priority Critical patent/JPS59145357A/en
Priority to US06/576,474 priority patent/US4562814A/en
Priority to EP84101131A priority patent/EP0115868B1/en
Priority to DE8484101131T priority patent/DE3483653D1/en
Publication of JPS59145357A publication Critical patent/JPS59145357A/en
Publication of JPH0413543B2 publication Critical patent/JPH0413543B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow

Abstract

PURPOSE:To reduce the deviation in air fuel ratio from the target value even at the time of transient condition by controlling the quantity of air and the quantity of fuel actually sucked into a cylinder based on the previously measured and stored dynamic characteristic of the air system and the fuel system. CONSTITUTION:A suction air quantity operating section 10 calculates the actual suction air quantity from an air quantity signal S1 provided from an air flow meter 4 and the dynamic characteristic of an air system which is previously obtained by an experiment and stored, and outputs a suction air quantity signal S4 corresponding to the calculated value. A fuel operating section 11 calculates from this signal the required quantity of fuel at the time, and calculates the quantity of fuel from this value and the dynamic characteristic of a fuel system previously obtained by an experiment, outputting a fuel feed signal S5. Thereby a fuel injection valve 5 can be controlled enabling a control in line with the actual suction air quantity and fuel quantity at the time of transient condition, and thereby, the air fuel ratio can be maintained at the target value.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は内燃機関の燃料制御装置に関し、特に空気糸お
よび燃料系の動特性に起因する吸入空気;−と燃ネ・]
供給Jilとの不均蜘を補正する技術に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a fuel control device for an internal combustion engine, and in particular to a fuel control device for an internal combustion engine, and in particular to a fuel control device for an internal combustion engine.
The present invention relates to a technique for correcting unevenness in supply Jil.

C従来技術) 従来の燃料制御装置としては、例えば第1図に小才ごと
きものがある(特開昭53−102416、同55−3
5165.同55−134718等)。
C) Prior art) As an example of a conventional fuel control device, there is one shown in FIG.
5165. 55-134718, etc.).

第11図において、■はエアクリーナ、2は吸気管、3
は絞り弁、4は吸気管2を通過する空気量に対応した空
気品信号S1を出力するエアフローメータ、5は後述の
燃料噴射量信号S3に応じた袖の燃料を噴射する燃料噴
射弁、6はシリンダ、7はクランク軸の回転に同期した
回転信号S2を出力する回転センサ、8は主として空気
着信号S1と回転信号S2からそのときの運転状態に対
応した燃料噴射量を算出し、その結果に応じた燃料噴射
量信号S3を出力する演算装置であり1例えffcPU
、RAM、ROM、Ilo等からA−ルマイクロコンピ
ュータで構成されている。
In Fig. 11, ■ is the air cleaner, 2 is the intake pipe, and 3 is the air cleaner.
4 is a throttle valve, 4 is an air flow meter that outputs an air quality signal S1 corresponding to the amount of air passing through the intake pipe 2, 5 is a fuel injection valve that injects fuel according to a fuel injection amount signal S3, which will be described later, 6 7 is a cylinder, 7 is a rotation sensor that outputs a rotation signal S2 synchronized with the rotation of the crankshaft, and 8 is a rotation sensor that calculates the fuel injection amount corresponding to the operating state at that time mainly from the air arrival signal S1 and rotation signal S2, and the result is It is an arithmetic unit that outputs a fuel injection amount signal S3 according to
, RAM, ROM, Ilo, etc., and consists of an A-le microcomputer.

1−記の装置における燃料噴射間の演算は次のようにし
て行なわれる。
Calculations between fuel injections in the device 1- are performed as follows.

すなわちエアフローメータ4で計測した空気着信号Sl
によって得られる吸入空気ωをQ、回転信号S2から得
られる内燃機関の回転速度をN、係数をKとした場合に
、燃料噴射量(燃料噴射パルス幅)Tpはt°記(L)
式によって算出されるTI)よに−−−−(1) なお上記の係数には、内燃機関の温度等に応じた補正を
封部するための係数である。
In other words, the air arrival signal Sl measured by the air flow meter 4
When the intake air ω obtained by
TI calculated by the formula (1) Note that the above coefficient is a coefficient for sealing correction according to the temperature of the internal combustion engine, etc.

に記(1)式に示すように、燃料噴射量は主として吸入
空気量と回転速度とに応じて設定され、それに温度や排
気ガス成分濃度等による補正を付加したものが実際の燃
料噴射量とな4゜しかし従来の装置においては、エアフ
ローメータの空気着信号Slをそのまま吸入空気量を示
す信号として用い、また噴射した燃料は時間遅れなしに
全てシリンダに吸入されるものとして制御している。
As shown in equation (1), the fuel injection amount is set mainly according to the intake air amount and rotational speed, and the actual fuel injection amount is the one that is corrected by temperature, exhaust gas component concentration, etc. However, in the conventional device, the air arrival signal Sl of the air flow meter is used as it is as a signal indicating the amount of intake air, and the control is performed so that all the injected fuel is taken into the cylinder without any time delay.

すなわち従来の装置においては、空気量はエアフローメ
ータの7111 :(1:’値そのものであり、燃料量
は吸気管に噴射する燃料であって実際にシリンダに吸入
される空気量や燃料量について制御しているものではな
かった。
In other words, in conventional devices, the air amount is the 7111:(1:' value itself) of the air flow meter, and the fuel amount is the fuel injected into the intake pipe, and the amount of air and fuel actually taken into the cylinder is controlled. It wasn't something I was doing.

そのため定常状態では正確な制御が可能であるが、過渡
状態時には空気系と燃料系の動特性に起因する誤差が生
じ、そのため空燃比が目標値からずれてしまい、燃費性
能、排気浄化性能、運転性能等に悪影偉を及ぼすという
問題があった。
Therefore, accurate control is possible in a steady state, but in a transient state, errors occur due to the dynamic characteristics of the air system and fuel system, which causes the air-fuel ratio to deviate from the target value, resulting in poor fuel efficiency, exhaust purification performance, and operational performance. There was a problem in that it had a negative impact on performance, etc.

(発明の目的) 本発明は上記の問題を解決するためになされたものであ
り、シリンダにおける実際の吸入空気量(以ド、栄に吸
入空気量と記す)と燃料供給量とに良く対応した正確な
制御を行な、うことの出来る燃料制御装置を提供するこ
とを目的とする。
(Purpose of the Invention) The present invention has been made to solve the above problem, and is a method that corresponds well to the actual amount of intake air in the cylinder (hereinafter referred to as intake air amount) and the amount of fuel supplied. The object of the present invention is to provide a fuel control device that can perform accurate control.

(発明の概要) 上記の目的を達成するため本発明においては、予め測定
して記憶しておいた空気系の動特性とエアフローメータ
の空気着信号S1から吸入空気量を演算で算出し、その
値から内燃機関の要求燃料量を算出し、さらに燃料系の
動特性とに記の要求燃料量から実際に供給すべき燃料量
を算出するように構成している。
(Summary of the Invention) In order to achieve the above object, the present invention calculates the intake air amount from the dynamic characteristics of the air system that have been measured and stored in advance and the air arrival signal S1 of the air flow meter. The fuel amount required by the internal combustion engine is calculated from the value, and the amount of fuel to be actually supplied is calculated from the required fuel amount described in the dynamic characteristics of the fuel system.

更に本発明においては、今回の演算における吸入空気量
の値の他に次回の値を予測し、今回と次回との両刀の値
から内燃機関の要求燃料量を算出し、さらに燃料系の動
特性と上記の要求燃料量から実際に供給すべき燃料量を
算出するように構成している。
Furthermore, in the present invention, in addition to the value of the intake air amount in the current calculation, the next value is predicted, the required fuel amount of the internal combustion engine is calculated from both the current and next values, and the dynamic characteristics of the fuel system are calculated. The fuel amount to be actually supplied is calculated from the above-mentioned required fuel amount.

(発明の実施例) 以下、実施例に基づいて本発明の詳細な説明する。(Example of the invention) Hereinafter, the present invention will be described in detail based on Examples.

まず第2図に基づいて空気系と燃料系の動特性について
詳細に説IJII t ル。
First, we will explain in detail the dynamic characteristics of the air system and fuel system based on Figure 2.

例えば、絞り弁を第2図の(A)のよう番こ開閉した場
合に、フラップ式の空気流量計(エアフローツタ等)は
、(B)に示すような信号を出力する。
For example, when a throttle valve is opened and closed as shown in FIG. 2(A), a flap-type air flow meter (such as an airflow meter) outputs a signal as shown in FIG. 2(B).

この時、吸込空気績は、(C)の破VJcIのように変
化する。
At this time, the suction air temperature changes as shown in (C), VJcI.

一方、燃料は空気IJi、縫針の信号(B)に応じて、
はぼ無視できる遅れ時間で噴射される。しかし噴射され
た燃料は、空気とは異った動特性をもっているため、シ
リンダに実際に吸入される燃料量は実線C2のようにな
り、吸入空気量の変化とは一致しなくなる。
On the other hand, the fuel is air IJi, depending on the sewing needle signal (B),
It is injected with a negligible delay time. However, since the injected fuel has dynamic characteristics different from those of air, the amount of fuel actually drawn into the cylinder is as shown by the solid line C2, which does not match the change in the amount of intake air.

そのため空燃比は、(D)に示すようになり。Therefore, the air-fuel ratio becomes as shown in (D).

目標値(例えば理論空燃比)からずれてしまう。It deviates from the target value (for example, the stoichiometric air-fuel ratio).

第3図は上記の動特性を示す系統図である。第3図にお
いて、エア70−メータの出力A a(r+)に対して
吸入空気ti A c(n)は、空気系の動特性を記述
する伝達関数G a(z)を用いて。
FIG. 3 is a system diagram showing the above dynamic characteristics. In FIG. 3, the intake air ti A c (n) is expressed with respect to the air 70-meter output A a (r+) using a transfer function G a (z) that describes the dynamic characteristics of the air system.

A C(2)= G a(z)A a(2) ・ 拳 
@  (2)と表わすことが出来る。ただしく2)式に
おいて、(n)は制御周期を示し、nは今1a+l、n
−1は前回、n+1は次回の制御周期を示す。またA 
c(z)。
A C (2) = G a (z) A a (2) ・ Fist
It can be expressed as @ (2). However, in equation 2), (n) indicates the control period, and n is now 1a+l, n
-1 indicates the previous control cycle, and n+1 indicates the next control cycle. Also A
c(z).

Aa(z)はそれぞれA c(n)、Aa(n)の2変
換であるまた固定のアル」リヌムT p = K A 
a 、/ Nで計算された噴射パルス幅Tpによって噴
射された燃ネ41A F f(n)に対するシリンダの
実際の吸入燃料11:F c(n)は、燃料系の動特性
を記述する伝達関数Gf(z)を用いて、 F c(z)= G f(z)F f(z)e@−(3
)と表わすことが出来る。ただしF c(z)、F f
(z)はそれぞれFc(n)、Ff(n )’(7) 
Z変換である。
Aa(z) is two transformations of A c(n) and Aa(n), respectively, and is also a fixed alinum T p = K A
The actual intake fuel 11:Fc(n) of the cylinder for the fuel 41AFf(n) injected with the injection pulse width Tp calculated by a,/N is a transfer function that describes the dynamic characteristics of the fuel system. Using Gf(z), F c(z) = G f(z)F f(z)e@-(3
) can be expressed as However, F c(z), F f
(z) are respectively Fc(n) and Ff(n)'(7)
This is Z transformation.

上記の(2)、(3)式において、G a(z)とG 
f(z)とが同一・でない場合は、過渡状j9において
シリンダ内における吸入空気量と燃料量との割合が変化
して空燃比がV)標値からずれることになる本発明は上
記の問題を解決したものであり、以下詳細に説明する。
In the above equations (2) and (3), G a(z) and G
If f(z) is not the same or different, the ratio between the amount of intake air and the amount of fuel in the cylinder will change in the transient state j9, and the air-fuel ratio will deviate from the target value.The present invention solves the above problem. This will be explained in detail below.

第4図は本発明の一実施例図であり、第1図と回n号は
同 物を示す。
FIG. 4 is a diagram showing one embodiment of the present invention, and FIG. 1 and No. n show the same thing.

第4図において、9は演算装置であり、吸入空気埴演算
部10、燃ネ4演算部11.記憶部12.13から構成
さねている。なおこの構成は演算装置9の内容を機能別
に示したものであり、実際には、例えばマイクロコンピ
ュータで構成する。
In FIG. 4, reference numeral 9 denotes a calculation device, including an intake air calculation unit 10, a combustion engine 4 calculation unit 11. It consists of storage units 12 and 13. Note that this configuration shows the contents of the arithmetic unit 9 by function, and in reality, it is configured by, for example, a microcomputer.

吸入空気量演算部10は、エアフローメータ4からq−
えられる空気撤信号Stと予め実験で求めて記憶部12
に記憶しておいた空気系の動特性から実際の吸入空気量
を算出し、その値に対応した吸入空気着信&tS4を出
力する。
The intake air amount calculating section 10 calculates the amount of air from the air flow meter 4 to q-
The obtained air withdrawal signal St is determined in advance through an experiment and stored in the storage unit 12.
The actual amount of intake air is calculated from the dynamic characteristics of the air system stored in the memory, and the intake air arrival &tS4 corresponding to the calculated value is output.

燃料演算部11は、上記の吸入空気が信号S4からその
時の要求燃料量を算出し、更にその要求燃料量と予め実
験で求めて記憶部13に記憶しておいた燃料系の動特性
から実際に噴射すべき燃料ωを算出し7、その値に対応
した燃料供給量信号S5を出力する。
The fuel calculation unit 11 calculates the required fuel amount at that time from the above-mentioned intake air signal S4, and further calculates the actual amount from the required fuel amount and the dynamic characteristics of the fuel system that have been determined in advance through experiments and stored in the storage unit 13. The fuel ω to be injected is calculated 7, and a fuel supply amount signal S5 corresponding to the calculated value is output.

この燃料供給量信号S5によって燃料噴射弁5を制御す
れば、過渡状態時においてもシリンダの実際の吸入空気
量と燃料酸とに対応した制御を打なうことが出来るので
、常に空気量と燃料酸との均衡を保ち、空燃比を目標値
に維持することが出来る。
By controlling the fuel injection valve 5 using this fuel supply amount signal S5, it is possible to perform control corresponding to the actual intake air amount and fuel acid of the cylinder even during a transient state, so that the air amount and fuel can be controlled at all times. It is possible to maintain a balance with the acid and maintain the air-fuel ratio at the target value.

次に演算装置9内の演貢について1第5 INのフロー
チャー1・に基づいて詳細に説明する。
Next, the operation in the arithmetic unit 9 will be explained in detail based on the flowchart 1 of the 1st and 5th IN.

第5図において、まずPIにおいては、エアフローメー
タ4の空気槍信号Slを読込み、その(dをAa(n−
1)とする。なおn−1は1回前の制御周期における値
であることを示す。
In FIG. 5, the PI first reads the air lance signal Sl of the air flow meter 4, and converts its (d to Aa(n-
1). Note that n-1 indicates a value in the previous control cycle.

次にP2で、今回の制御周期における吸入空気に1の値
Ac(n)を演算する。この演算は次のようにして行な
う。
Next, in P2, a value Ac(n) of 1 is calculated for the intake air in the current control cycle. This calculation is performed as follows.

内燃機関の吸気系(エアフローメータ、吸気管等)にお
ける空気系の動特性は、例えば2次のパルス伝達関数 で良く記述することが出来る。
The dynamic characteristics of the air system in the intake system (air flow meter, intake pipe, etc.) of an internal combustion engine can be well described by, for example, a second-order pulse transfer function.

そして−1−記のA a(n−])、  2回前のit
 A a、(n−2)、吸入空気量の1回前および2回
前の値A c(n−1)、A c(n−2)と1:記(
4)式から今回の吸入空気μのイ17iAc(n)は、
ド記の(5)式のようになる。
And A a(n-]) in -1-, it 2 times ago
A a, (n-2), the values of the intake air amount A c (n-1), A c (n-2), and 1: (
From formula 4), the current intake air μ is i17iAc(n),
It becomes as shown in equation (5) below.

A c(n)= dIA a(nl)+ eIA a(
n−2)−bIA c(n−1) −c、A c(n−
2)・・・ (5) したかつて1−記の係数b1.c1.d1.e、を予め
実験で求めておけば、A c(n)を演算で求めること
が出来る。
A c(n)=dIA a(nl)+eIA a(
n-2)-bIA c(n-1)-c, A c(n-
2)... (5) The coefficient b1. c1. d1. If e is determined in advance through experiments, A c(n) can be determined by calculation.

次にP3においては、次回の吸入空気量の値A c(n
+1)記予測演算する。
Next, in P3, the next intake air amount value A c(n
+1) Perform the prediction calculation.

このイ1r4は、例えば外挿式を用いて、今回と前回の
吸入空気量の値から A c(n+1.l= 2 A c(n) −A c(
n−1)と求めることが出来る。なおA c(n+1)
の予測演算が必要な理由については後述する。
This A1r4 can be calculated by using, for example, an extrapolation formula and calculating A c(n+1.l=2 A c(n) - A c(
n-1). Note that A c(n+1)
The reason why the predictive calculation of is necessary will be described later.

次にP4において、P2で求めた吸入空気量A c(n
)を用いて、下記(6)式から今回の要求燃本(値F 
c(n)を演算する。
Next, in P4, the intake air amount A c(n
), the current required fuel consumption (value F
Compute c(n).

A c(n) F c(n)= K□ ・・・(6) F記の要求燃料量F c(n)は実際の吸入空気量に対
比して実際にシリンダ内で必要とされる燃料φである。
A c(n) F c(n) = K□ ... (6) The required fuel amount F c(n) in F is the fuel actually required in the cylinder compared to the actual intake air amount. It is φ.

次にP5で、P3で求めたA c(n+1)を用いて、
次回の要求燃料1QFc(n+1)を下記(7)式から
1’J出する。
Next, in P5, using A c (n+1) obtained in P3,
The next required fuel 1QFc(n+1) is obtained by 1'J from the following equation (7).

A c(n+]) F c(n+1)=K      □ ・(7)炊飯こ
P6では、−)二記の安来燃料!−をシリンダに(J4
給するために実際に噴射すべき燃料1j−Ff(n)を
9出する。
A c(n+]) F c(n+1)=K □ ・(7) In rice cooking P6, -) Yasugi fuel mentioned in 2! - to cylinder (J4
9 of the fuel 1j-Ff(n) to be actually injected to supply the fuel.

例えば燃料系の動特性Gf(z)を とすれば、今回の噴射すべき燃料にF f(n)はF記
(9)式のようになる。
For example, if the dynamic characteristic of the fuel system is Gf(z), then the fuel to be injected this time is Ff(n) as shown in equation (9) below.

+ c2F c(n−1)−e2F f(n l)]1
・ (9) したがって上記の係数b2.C2,d2. e2  を
予め実験で求めておけば、F f(n)を演算で求める
ことか出来る。
+ c2F c(n-1)-e2F f(n l)]1
(9) Therefore, the above coefficient b2. C2, d2. If e2 is determined in advance by experiment, F f (n) can be determined by calculation.

次にP7で、−[、記のようにして求めた実際に噴射す
べき燃料種F f(n)に応じて燃料噴射弁5を駆動し
て燃料噴射を行なう。
Next, at P7, fuel injection is performed by driving the fuel injection valve 5 in accordance with the fuel type F f (n) to be actually injected, which is determined as described below.

−1−記のように制御すれば、常にシリンダ内の吸入空
気量と燃料量との均衡を保つことが出来るので、過渡状
態時においても空燃比を常に目標値に維持することが出
来る。
By controlling as described in -1-, it is possible to always maintain a balance between the amount of intake air and the amount of fuel in the cylinder, so that the air-fuel ratio can always be maintained at the target value even during a transient state.

なおP3において、A c(n+1)を予測演算したの
は、P5でF c(n+1)を演算するためであり、ま
たF c(n+1)はP6でF、f(n)を求めるため
に必要になったものである。
The reason why A c (n+1) was predictively calculated in P3 is to calculate F c (n+1) in P5, and F c (n+1) is necessary to calculate F and f (n) in P6. It has become.

また本実施例では、燃料系の動特性を(8)式のように
記述しているので、J二記P3の予測演算が必要となる
が、空気系や燃料系の動特性がより簡単な式で表示でき
るような場合、例えば(8)式において分母がb2z 
 + c2z−2のみになるよう1 な場合には、(9)式のFc(n+j)が不要になり、
したがってA c(r++I)の予測演算も不要となる
In addition, in this example, the dynamic characteristics of the fuel system are described as in equation (8), so the predictive calculation of P3 of J2 is required. In cases where it can be expressed as a formula, for example, in formula (8), the denominator is b2z
1 so that only +c2z-2, Fc(n+j) in equation (9) becomes unnecessary,
Therefore, prediction calculation of A c (r++I) is also unnecessary.

また必要に応して更に先の予測演算も可能なことは言う
までもない。
It goes without saying that prediction calculations further ahead are also possible if necessary.

また−1−記の実施例においては、吸入空気量を計測す
るセンサとしてエアフローメータを用いた場合を例示し
たが、5f変ベ一ン式、熱線式、カルマン渦式等の空気
波脣計を用いても良い。
In addition, in the embodiment described in -1-, an air flow meter was used as a sensor for measuring the amount of intake air, but air wave meters such as a 5f variable vane type, hot wire type, Karman vortex type, etc. May be used.

また直接に吸入空気量を測定せず、吸入負圧や絞り弁開
度等から吸入空気量を推定する方式の場合でも上記と同
様に本発明を適用することか出来る。
Furthermore, the present invention can be applied in the same manner as described above even in the case of a method in which the amount of intake air is estimated from the intake negative pressure, the opening degree of the throttle valve, etc., without directly measuring the amount of intake air.

なお空気系及び燃料系の動特性G a(z)、G f(
z)は、内燃機関の回転に同期した方式で記述する力か
実際的であり、したがって第5図の演算も回転同期で行
なう方が好ましい。
Note that the dynamic characteristics of the air system and fuel system G a (z), G f (
It is practical to describe the force z) in synchronization with the rotation of the internal combustion engine, and therefore it is preferable to perform the calculation in FIG. 5 in synchronization with the rotation.

またに記の動特性は、内燃機関や燃料供給系の形式によ
って異なり、更に内燃機関の匝転領域によっても異なる
場合があるので、必要に応じて複数個持つ方が望ましい
Furthermore, the dynamic characteristics described above vary depending on the type of internal combustion engine and fuel supply system, and may also vary depending on the rolling range of the internal combustion engine, so it is preferable to have a plurality of them as necessary.

(発明の効果) 以上説明したごとく本発明によれば、予め測定して記憶
しておいた空気系と燃料系の動特性を考慮してシリンダ
に実際に吸込される吸入空気量−と燃料量とを制御する
ように構成しているので、加減速時のような過渡状態時
においても空燃比の目標値からのずれを小さくすること
が出来、それによって排気浄化性能、燃費性能、運転性
能等を向ヒさせることが出来る。
(Effects of the Invention) As explained above, according to the present invention, the amount of intake air and the amount of fuel that are actually drawn into the cylinder are taken into account the dynamic characteristics of the air system and fuel system that have been measured and stored in advance. Since it is configured to control the air-fuel ratio, it is possible to reduce the deviation from the target value of the air-fuel ratio even during transient conditions such as during acceleration and deceleration, thereby improving exhaust purification performance, fuel efficiency, driving performance, etc. It can make you feel better.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の一例図、第2図は第1図の装置の特
性側図、第3図は動特性を示す系統図。 第4図は本発明の一実施例図、第5図は本発明の演算を
示すフローチャートの一実施例図である。 符()の説明 1−豐・エアクリーナ 2・・・吸気管 3・・・絞り弁 4・・・エアフローメータ 5・・・燃料噴射弁 61・シリンダ 7111回転センサ 8.9・・・演算装置 lO・・・吸入空気量演算部 11・・・燃料演算部 12.13−−拳記憶部 代理人弁理士  中村純之助
FIG. 1 is a diagram of an example of a conventional device, FIG. 2 is a characteristic side view of the device of FIG. 1, and FIG. 3 is a system diagram showing dynamic characteristics. FIG. 4 is a diagram showing an embodiment of the present invention, and FIG. 5 is a diagram showing an embodiment of a flowchart showing calculations of the present invention. Explanation of marks () 1 - Air cleaner 2... Intake pipe 3... Throttle valve 4... Air flow meter 5... Fuel injection valve 61/Cylinder 7111 Rotation sensor 8.9... Arithmetic unit lO ...Intake air amount calculation unit 11...Fuel calculation unit 12.13--Fist storage unit Patent attorney Junnosuke Nakamura

Claims (1)

【特許請求の範囲】 ■、内燃機関の吸入空気量に関連する空気量信号を出力
するセ、・すと、■−0記空気殖信号およびその他の機
関運転変数から内燃機関の要求燃料量を算出してそれに
対応した燃料信号を出力する演算り段と、1−記の燃料
4R号に応じた量の燃料を内燃機関に供給する燃料供給
手段とを備えた内燃機関の燃料制御装置6において、L
記空気某信号とシリ、/ダに実際に吸入される吸入空気
はとの間の動特性Gaを記憶しておき、上記空気量信号
と空気系の動特性Gaとから実際の吸入空気量を算出す
る演算手段と、I−記燃料信号とシリンダに実際に吸入
される燃料量との間の動特性Gfを記憶しておき、]二
記の演算で求めた吸入空気量を用いてそのときの内燃機
関の要求燃料量を算出し、その要求燃料量と燃料系の動
特性Gfとから供給すべき燃料φを算出し、その値に対
応した燃料供給量信号を出力する演算手段とを備え、■
−記燃料供給量信号によって−1ユ記燃料供給手段を制
御するように構成したこ、とを特徴とする顕熱装置。 2、内燃機関の吸入空気量に関連する空気績仏号を出力
するセンサと、上記空気量信号およびその他の機関運転
変数から内燃機関の要求燃料品−を算出してそれに対応
した燃料信号を出力する演算−L段と、上記の燃料信号
に応じた量の燃料を内燃機関に供給する燃料供給手段と
を備えた内燃機関の燃料制御装置において、上記空気酸
信号とシリ/′夕に実際に吸入される吸入空気量との間
の動特性Gaを記憶しておS 土、記空気Fl((rl
j ’多と空気系の動特性Gaとから今回の吸入′空気
量を算出し、さらに次回の吸入空気量を予測する演算手
段と、辷記燃料信号とシリングに実際に吸入される燃料
量との間の動特性Gfを記憶しておき、[−記の今回お
よび次回の吸入空気量を用いて内燃機関の要求燃料量を
算出し、その要求燃料量と燃料系の動特性Gfとから供
給すべき燃料量を算出し、その値に対応した燃料供給量
信号を出力する演算手段とを備え、1−記燃料供給量信
号によって一ヒ記燃料供給手段を制御するように構成し
たことを特徴とする顕熱装置。
[Scope of Claims] ■, a unit that outputs an air amount signal related to the intake air amount of the internal combustion engine; In a fuel control device 6 for an internal combustion engine, the fuel control device 6 includes a calculation stage that calculates and outputs a fuel signal corresponding to the calculation, and a fuel supply means that supplies the internal combustion engine with an amount of fuel corresponding to the fuel No. 4R described in 1-. , L
The dynamic characteristic Ga between the air quantity signal and the intake air actually taken into the cylinder/da is memorized, and the actual intake air quantity is calculated from the air quantity signal and the dynamic characteristic Ga of the air system. The calculation means calculates the dynamic characteristic Gf between the fuel signal written in I and the amount of fuel actually taken into the cylinder, and then calculates the amount of intake air obtained by the calculation in [2] at that time. calculation means for calculating the required fuel amount of the internal combustion engine, calculating the fuel φ to be supplied from the required fuel amount and the dynamic characteristic Gf of the fuel system, and outputting a fuel supply amount signal corresponding to the calculated value. , ■
A sensible heat device characterized in that the fuel supply means (1) is controlled by the fuel supply amount signal (1). 2. A sensor that outputs an air pressure signal related to the intake air amount of the internal combustion engine, and calculates the required fuel product of the internal combustion engine from the air amount signal and other engine operating variables and outputs a corresponding fuel signal. In a fuel control device for an internal combustion engine, which is equipped with an L stage and a fuel supply means for supplying an amount of fuel to the internal combustion engine according to the above fuel signal, the air acid signal and the Memorize the dynamic characteristic Ga between the amount of intake air inhaled and the air Fl ((rl
Calculating means for calculating the current intake air amount from the air flow rate and the dynamic characteristics Ga of the air system, and further predicting the next intake air amount, and calculating means for calculating the current intake air amount from the air system dynamic characteristic Ga Calculate the required fuel amount of the internal combustion engine using the current and next intake air amounts in [-], and calculate the fuel supply amount from the required fuel amount and the fuel system dynamic characteristics Gf. and calculation means for calculating the amount of fuel to be supplied and outputting a fuel supply amount signal corresponding to the value, and the fuel supply means is configured to be controlled by the fuel supply amount signal. Sensible heat equipment.
JP58016150A 1983-02-04 1983-02-04 Fuel control device for internal-combustion engine Granted JPS59145357A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58016150A JPS59145357A (en) 1983-02-04 1983-02-04 Fuel control device for internal-combustion engine
US06/576,474 US4562814A (en) 1983-02-04 1984-02-02 System and method for controlling fuel supply to an internal combustion engine
EP84101131A EP0115868B1 (en) 1983-02-04 1984-02-03 System and method for contolling fuel supply to an internal combustion engine
DE8484101131T DE3483653D1 (en) 1983-02-04 1984-02-03 METHOD AND SYSTEM FOR CONTROLLING THE FUEL SUPPLY IN AN INTERNAL COMBUSTION ENGINE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016150A JPS59145357A (en) 1983-02-04 1983-02-04 Fuel control device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS59145357A true JPS59145357A (en) 1984-08-20
JPH0413543B2 JPH0413543B2 (en) 1992-03-10

Family

ID=11908472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016150A Granted JPS59145357A (en) 1983-02-04 1983-02-04 Fuel control device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59145357A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155641A (en) * 1984-12-27 1986-07-15 Nissan Motor Co Ltd Fuel injection amount control device
JPS6220648A (en) * 1985-07-18 1987-01-29 Mitsubishi Motors Corp Fuel controller for internal-combustion engine
JPS62253932A (en) * 1986-04-28 1987-11-05 Mazda Motor Corp Air-fuel ratio control device for engine
JPS6320020U (en) * 1986-07-24 1988-02-09
JPS63314339A (en) * 1987-06-17 1988-12-22 Hitachi Ltd Air-fuel ratio controller
JPS6435038A (en) * 1987-07-29 1989-02-06 Toyota Motor Corp Fuel injection quantity controller for internal combustion engine
JPS6435037A (en) * 1987-07-29 1989-02-06 Toyota Motor Corp Fuel injection quantity controller for internal combustion engine
WO2022176909A1 (en) * 2021-02-18 2022-08-25 いすゞ自動車株式会社 Fresh air amount calculation device and fresh air amount calculation method for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614836A (en) * 1979-07-13 1981-02-13 Hitachi Ltd Controlling device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614836A (en) * 1979-07-13 1981-02-13 Hitachi Ltd Controlling device for internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155641A (en) * 1984-12-27 1986-07-15 Nissan Motor Co Ltd Fuel injection amount control device
JPS6220648A (en) * 1985-07-18 1987-01-29 Mitsubishi Motors Corp Fuel controller for internal-combustion engine
JPS62253932A (en) * 1986-04-28 1987-11-05 Mazda Motor Corp Air-fuel ratio control device for engine
JPS6320020U (en) * 1986-07-24 1988-02-09
JPS63314339A (en) * 1987-06-17 1988-12-22 Hitachi Ltd Air-fuel ratio controller
JPH0573908B2 (en) * 1987-06-17 1993-10-15 Hitachi Ltd
JPS6435038A (en) * 1987-07-29 1989-02-06 Toyota Motor Corp Fuel injection quantity controller for internal combustion engine
JPS6435037A (en) * 1987-07-29 1989-02-06 Toyota Motor Corp Fuel injection quantity controller for internal combustion engine
WO2022176909A1 (en) * 2021-02-18 2022-08-25 いすゞ自動車株式会社 Fresh air amount calculation device and fresh air amount calculation method for internal combustion engine

Also Published As

Publication number Publication date
JPH0413543B2 (en) 1992-03-10

Similar Documents

Publication Publication Date Title
CN104011356B (en) The control gear of internal-combustion engine
JPH02104930A (en) Device for controlling fuel injection of internal combustion engine
JPS63176643A (en) Air-fuel ratio controller
JPS59145357A (en) Fuel control device for internal-combustion engine
JPS61152935A (en) Air-fuel ratio controlling device
JPS58150057A (en) Study control method of air-fuel ratio in internal-combustion engine
EP0339603B1 (en) Fuel supply control system for internal combustion engine
JPS5932671A (en) Ignition timing control device for internal-combustion engine
US20200109673A1 (en) Control device
US5394856A (en) System for and method of controlling air-fuel ratio in internal combustion engine
JP3843492B2 (en) Engine intake control device
JPS5937245A (en) Air-fuel ratio controlling apparatus for engine
JPH0523815Y2 (en)
JPS61223244A (en) Air-fuel ratio controller for car equiped with automatic transmission
JP2002227683A (en) Fuel injection amount controller for internal combustion engine
JPS6045753A (en) Fuel controller of internal-combustion engine
JPS6090949A (en) Air-fuel ratio controlling apparatus
JPS62265449A (en) Engine controller
JPS5841231A (en) Method of electronic controlling for fuel injection
JPS6062639A (en) Fuel injection device of engine
JPS61112760A (en) Method of controlling air-fuel ratio of internal combustion engine through learning
JPH01125536A (en) Fuel injection controller for internal combustion engine
JP2767345B2 (en) Fuel supply control device for internal combustion engine
JPH05231248A (en) Fuel steam detecting device for internal combustion engine
JPS60101240A (en) Electronic control device in internal-combustion engine