JP2767345B2 - Fuel supply control device for internal combustion engine - Google Patents

Fuel supply control device for internal combustion engine

Info

Publication number
JP2767345B2
JP2767345B2 JP22438092A JP22438092A JP2767345B2 JP 2767345 B2 JP2767345 B2 JP 2767345B2 JP 22438092 A JP22438092 A JP 22438092A JP 22438092 A JP22438092 A JP 22438092A JP 2767345 B2 JP2767345 B2 JP 2767345B2
Authority
JP
Japan
Prior art keywords
air
fuel
fuel ratio
engine
fuel supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22438092A
Other languages
Japanese (ja)
Other versions
JPH0674073A (en
Inventor
渡邊  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP22438092A priority Critical patent/JP2767345B2/en
Publication of JPH0674073A publication Critical patent/JPH0674073A/en
Application granted granted Critical
Publication of JP2767345B2 publication Critical patent/JP2767345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の燃料供給制
御装置に関し、特に、蒸発燃料を吸着するキャニスタ内
部から、吸着された蒸発燃料をエンジンの吸気系にパー
ジするようにした内燃機関における燃料供給制御技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel supply control device for an internal combustion engine, and more particularly, to an internal combustion engine in which the adsorbed fuel vapor is purged from the interior of a canister for adsorbing fuel vapor into an intake system of the engine. It relates to fuel supply control technology.

【0002】[0002]

【従来の技術】従来、内燃機関において、燃料タンクか
らのガソリン等の蒸発燃料を吸着するキャニスタ内部か
ら、吸着された蒸発燃料をエンジンの吸気系にパージす
るようにした蒸発燃料パージシステム(エバポパージシ
ステム)が知られている。かかる技術は、具体的には、
キャニスタ内部を通過してエンジンの吸気系に至るパー
ジ通路を設け、該パージ通路に蒸発燃料のパージ量を制
御するパージバルブを介装した構成となっている。
2. Description of the Related Art Conventionally, in an internal combustion engine, an evaporative fuel purging system (evaporation purge system) for purging adsorbed evaporative fuel into an intake system of an engine from inside a canister for adsorbing evaporative fuel such as gasoline from a fuel tank. System) is known. Such techniques are specifically
A purge passage that passes through the interior of the canister and reaches the intake system of the engine is provided, and a purge valve that controls the amount of fuel vapor purge is provided in the purge passage.

【0003】そして、吸着された蒸発燃料をキャニスタ
内の活性炭等に吸着させた上、機関の所定運転状態で吸
着させた蒸発燃料を吸気系に還流させるようになってい
る。即ち、キャニスタ内の活性炭に吸着された蒸発燃料
は、活性炭から離脱して吸気系の吸入負圧作用により通
常の燃料噴射経路とは別系統で吸気通路にパージされ、
燃焼に供される。
[0003] The adsorbed evaporative fuel is adsorbed on activated carbon or the like in a canister, and the adsorbed evaporative fuel is returned to an intake system in a predetermined operation state of the engine. That is, the evaporated fuel adsorbed on the activated carbon in the canister is separated from the activated carbon and is purged into the intake passage in a separate system from the normal fuel injection path by the suction negative pressure effect of the intake system,
Provided for combustion.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、以上の
ような従来の蒸発燃料パージシステムを備えた内燃機関
にあっては、従来、蒸発燃料のパージ量を勘案して燃料
噴射量を制御する構成は採用されておらず、蒸発燃料の
パージによって空燃比がリッチ化し、運転性及びエミッ
ションの悪化を生じる。
However, in an internal combustion engine provided with the above-described conventional fuel vapor purge system, the structure for controlling the fuel injection amount in consideration of the purge amount of the fuel vapor is conventionally known. It is not adopted, and the air-fuel ratio is enriched by the purge of the evaporated fuel, resulting in deterioration of drivability and emission.

【0005】しかも、今後、法改正によって蒸発燃料の
パージ量を増加させる必要が余儀無くされるため、従来
の燃料供給量のオープンループ制御では対応できなくな
り、上記運転性及びエミッションの悪化が顕著になると
いう問題点を有している。そこで、本発明は以上のよう
な従来の問題点に鑑み、燃料供給制御の改良により、蒸
発燃料のパージによる空燃比がリッチ化を防止し、運転
性及びエミッションを改善することを目的とする。
Further, in the future, it is necessary to increase the purge amount of the evaporated fuel due to the revision of the law, so that the conventional open-loop control of the fuel supply amount cannot cope with the problem, and the above-mentioned operability and emission deteriorate. There is a problem that. In view of the above-mentioned conventional problems, an object of the present invention is to improve the fuel supply control, thereby preventing the air-fuel ratio from being enriched by purging the evaporated fuel, and improving the drivability and emission.

【0006】[0006]

【課題を解決するための手段】このため、本発明の内燃
機関の燃料供給制御装置は、図1に示すように、燃料タ
ンクからの蒸発燃料を吸着するキャニスタ内部を通過し
てエンジンの吸気系に至るパージ通路を設け、該パージ
通路に蒸発燃料のパージ量を制御するパージバルブを介
装してなる内燃機関において、機関運転状態を検出する
機関運転状態検出手段と、該機関運転状態に基づいて機
関への燃料供給量を制御する燃料供給量制御手段と、前
記機関運転状態検出手段により所定の運転状態が検出さ
れた際に前記燃料供給量に応じて空燃比を算出する空燃
比算出手段と、所定の運転状態が検出された際に燃焼圧
力を検出し、該燃焼圧力に応じて空燃比を計測する第1
の空燃比計測手段と、所定の運転状態が検出された際に
前記パージバルブを一定時間開放するパージバルブ制御
手段と、該パージバルブ開放後の燃焼圧力を検出し、該
燃焼圧力に応じて空燃比を計測する第2の空燃比計測手
段と、前記空燃比算出手段により算出された空燃比と第
1及び第2の空燃比計測手段により夫々計測された空燃
比との比較結果に応じて前記燃料供給量制御手段により
制御された燃料供給量を減量補正する燃料供給量減量補
正手段と、を含んで構成した。
Therefore, a fuel supply control device for an internal combustion engine according to the present invention, as shown in FIG. 1, passes through an interior of a canister that adsorbs fuel vapor from a fuel tank and an intake system of the engine. An engine operating state detecting means for detecting an engine operating state in an internal combustion engine provided with a purge passage for controlling an amount of evaporative fuel purged in the purge passage. Fuel supply amount control means for controlling the fuel supply amount to the engine; air-fuel ratio calculation means for calculating an air-fuel ratio according to the fuel supply amount when a predetermined operating state is detected by the engine operation state detection means; Detecting a combustion pressure when a predetermined operating state is detected, and measuring an air-fuel ratio according to the combustion pressure.
Air-fuel ratio measuring means, purge valve control means for opening the purge valve for a predetermined time when a predetermined operating state is detected, detecting the combustion pressure after opening the purge valve, and measuring the air-fuel ratio according to the combustion pressure A second air-fuel ratio measuring unit that performs the fuel supply amount according to a comparison result between the air-fuel ratio calculated by the air-fuel ratio calculating unit and the air-fuel ratio measured by the first and second air-fuel ratio measuring units. And a fuel supply amount reduction correcting means for reducing the fuel supply amount controlled by the control means.

【0007】[0007]

【作用】かかる構成において、パージバルブ閉時と開時
の燃焼圧力から夫々計測される空燃比と、パージ前の実
際の燃料供給量から導かれる算出空燃比との比較結果に
基づいて最終的な燃料供給を減量補正制御する。従っ
て、蒸発燃料のパージによる空燃比のリッチ化を防止し
て、適正な空燃比に制御でき、運転性及びエミッション
の改善を図ることができる。
In this configuration, the final fuel is determined based on the comparison result between the air-fuel ratio measured from the combustion pressure when the purge valve is closed and the combustion pressure when the purge valve is opened and the calculated air-fuel ratio derived from the actual fuel supply amount before the purge. The supply is reduced and controlled. Therefore, it is possible to prevent the air-fuel ratio from being enriched by purging the evaporated fuel, to control the air-fuel ratio to an appropriate value, and to improve the drivability and the emission.

【0008】[0008]

【実施例】以下、添付された図面を参照して本発明を詳
述する。本発明の一実施例のシステム構成を示す図2に
おいて、内燃機関(以下、エンジンと言う)1には、エ
アクリーナ2から吸気ダクト3,スロットル弁4及び吸
気マニホールド5を介して空気が吸入される。吸気マニ
ホールド5のブランチ部には、各気筒毎に燃料噴射弁6
が設けられている。この燃料噴射弁6は、ソレノイドに
通電されて開弁し、通電停止されて閉弁する電磁式燃料
噴射弁であって、後述するコントロールユニット12か
らの駆動パルス信号により通電されて開弁し、図示しな
い燃料ポンプから圧送されプレッシャレギュレータによ
り所定圧力に調整された燃料を噴射供給する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the accompanying drawings. In FIG. 2 showing a system configuration of an embodiment of the present invention, air is sucked into an internal combustion engine (hereinafter referred to as an engine) 1 from an air cleaner 2 through an intake duct 3, a throttle valve 4 and an intake manifold 5. . In the branch section of the intake manifold 5, a fuel injection valve 6 is provided for each cylinder.
Is provided. The fuel injection valve 6 is an electromagnetic fuel injection valve that is energized by a solenoid and opens, and is deenergized and closed by being energized by a drive pulse signal from a control unit 12 described later. Fuel which is pressure-fed from a fuel pump (not shown) and adjusted to a predetermined pressure by a pressure regulator is injected and supplied.

【0009】エンジン1の各燃焼室には点火栓7が設け
られていて、吸気バルブ21の開弁により該燃焼室に流
入した混合気に火花点火して、該混合気を着火燃焼させ
る。そして、エンジン1からは、図示しない排気バル
ブ、排気マニホールド8、排気ダクト9等を介して排気
が排出される。コントロールユニット12は、CPU,
ROM,RAM,A/D変換器及び入出力インタフェイ
ス等を含んで構成されるマイクロコンピュータを備え、
各種のセンサからの検出信号を受け、後述の如く演算処
理して、燃料噴射弁の作動等を制御する。
An ignition plug 7 is provided in each combustion chamber of the engine 1, and the air-fuel mixture flowing into the combustion chamber is spark-ignited by opening the intake valve 21 to ignite and burn the air-fuel mixture. Then, exhaust gas is discharged from the engine 1 through an exhaust valve (not shown), an exhaust manifold 8, an exhaust duct 9, and the like. The control unit 12 includes a CPU,
A microcomputer including a ROM, a RAM, an A / D converter, an input / output interface, and the like;
It receives detection signals from various sensors and performs arithmetic processing as described later to control the operation of the fuel injection valve and the like.

【0010】前記各種のセンサとしては、吸気ダクト3
中に熱線式等のエアフローメータ13が設けられてい
て、エンジンの吸入空気流量Qに応じた信号を出力す
る。又、クランク角センサ14が設けられていて、基準
信号と単位角度信号とを出力する。ここで、前記基準信
号の周期、或いは、所定時間内における単位角度信号の
発生数を計測することにより、エンジン回転速度Nを検
出可能である。
The various sensors include an intake duct 3
An air flow meter 13 of a hot wire type or the like is provided therein, and outputs a signal corresponding to the intake air flow rate Q of the engine. Further, a crank angle sensor 14 is provided, and outputs a reference signal and a unit angle signal. Here, the engine rotation speed N can be detected by measuring the cycle of the reference signal or the number of unit angle signals generated within a predetermined time.

【0011】更に、エンジン1の冷却水温度Twを検出
する水温センサ15等が設けられている。更に、スロッ
トル弁4の開度TVOを検出するポテンショメータ式の
スロットル弁開度センサ17が設けられている。一方、
本発明に係る構成として、燃料タンク22からのガソリ
ン等の蒸発燃料を吸着するキャニスタ23が設けられ、
このキャニスタ23内部を通過してエンジン1の吸気
系、即ち、スロットル弁4と燃料噴射弁6との間の吸気
通路に至る吸着蒸発燃料のパージ通路25が設けられ、
該パージ通路25に蒸発燃料のパージ量を制御するパー
ジバルブ24が介装される。
Further, a water temperature sensor 15 for detecting a cooling water temperature Tw of the engine 1 and the like are provided. Further, a potentiometer type throttle valve opening sensor 17 for detecting the opening TVO of the throttle valve 4 is provided. on the other hand,
As a configuration according to the present invention, a canister 23 that adsorbs evaporated fuel such as gasoline from the fuel tank 22 is provided,
A purge passage 25 for adsorbed and evaporated fuel is provided which passes through the interior of the canister 23 and reaches an intake system of the engine 1, that is, an intake passage between the throttle valve 4 and the fuel injection valve 6.
The purge passage 25 is provided with a purge valve 24 for controlling the purge amount of the fuel vapor.

【0012】又、燃焼圧力を検出する圧力センサ26が
設けられている。ここで、本実施例においては、機関運
転状態検出手段としての各種センサにより所定の運転状
態(例えば、定常運転状態)が検出された際に、燃料供
給量、即ち、後述する最終的な燃料噴射量Ti (=Tp
×COEF+Ts )に応じて空燃比CAFを算出する空
燃比算出手段と、前記所定の運転状態が検出された際に
燃焼圧力を検出し、該燃焼圧力に応じて空燃比MAF1
を計測する第1の空燃比計測手段と、所定の運転状態が
検出された際に前記パージバルブ24を一定時間開放す
るパージバルブ制御手段と、該パージバルブ24開放後
の燃焼圧力を検出し、該燃焼圧力に応じて空燃比MAF
2 を計測する第2の空燃比計測手段と、前記空燃比算出
手段により算出された空燃比CAFと第1及び第2の空
燃比計測手段により夫々計測された空燃比MAF1 ,M
AF2 との比較結果に応じて前記燃料供給量制御手段に
より制御された燃料供給量を減量補正する燃料供給量減
量補正手段と、を設ける。
Further, a pressure sensor 26 for detecting the combustion pressure is provided. Here, in the present embodiment, when a predetermined operating state (for example, a steady operating state) is detected by various sensors as engine operating state detecting means, the fuel supply amount, that is, the final fuel injection described later Quantity T i (= T p
× COEF + T s) depending on the detected air-fuel ratio calculating means for calculating an air-fuel ratio CAF, the combustion pressure when said predetermined operating condition is detected, the air-fuel ratio MAF 1 in accordance with the combustion pressure
First air-fuel ratio measurement means for measuring the combustion pressure, purge valve control means for opening the purge valve 24 for a predetermined time when a predetermined operating state is detected, and detecting the combustion pressure after the purge valve 24 is opened, Air-fuel ratio MAF according to
2 , the air-fuel ratio CAF calculated by the air-fuel ratio calculating means, and the air-fuel ratios MAF 1 , M measured by the first and second air-fuel ratio measuring means, respectively.
Depending on the result of comparison between the AF 2 provided, and the fuel supply amount reduction correcting means for decreasing correction of the controlled fuel supply amount by said fuel supply amount control means.

【0013】前記コントロールユニット12に内蔵され
たマイクロコンピュータは、定時間毎に起動される図3
のフローチャートに従って演算処理等を行い、蒸発燃料
のパージ状況に対応する燃料噴射制御を行う。尚、本実
施例において、燃料供給量制御手段、空燃比算出手段、
第1の空燃比計測手段、第2の空燃比計測手段、パージ
バルブ制御手段、燃料供給量減量補正手段としての機能
は図3のフローチャートに示すようにソフトウェア的に
備えられている。
The microcomputer built in the control unit 12 is started at regular time intervals as shown in FIG.
Calculation processing and the like are performed in accordance with the flowchart of FIG. In this embodiment, the fuel supply amount control means, the air-fuel ratio calculation means,
The functions as the first air-fuel ratio measurement unit, the second air-fuel ratio measurement unit, the purge valve control unit, and the fuel supply amount decrease correction unit are provided by software as shown in the flowchart of FIG.

【0014】図3のフローチャートにおいて、ステップ
1(図中S1と記してある。以下同様)では、所定の運
転状態(例えば、定常運転状態)であるか否かを例えば
負荷等の条件から判定する。所定の運転状態であれば、
ステップ2に進み、所定の運転状態でなければ、制御を
終了する。ステップ2では、最終的な燃料噴射量T
i (=Tp ×COEF+Ts )に応じて空燃比CAFを
算出する。
In the flowchart of FIG. 3, in step 1 (indicated as S1 in the figure, the same applies hereinafter), it is determined from a condition such as a load whether or not a predetermined operating state (for example, a steady operating state). . If it is a predetermined driving state,
Proceeding to step 2, if not in the predetermined operating state, the control ends. In step 2, the final fuel injection amount T
The air-fuel ratio CAF is calculated according to i (= T p × COEF + T s ).

【0015】ここで、エアフローメータ13で検出され
た吸入空気流量Qと、クランク角センサ14からの出力
信号に基づいて算出したエンジン回転速度Nとに基づい
て、エンジン1の吸入空気流量に見合った基本燃料噴射
量(基本燃料供給量)Tp が以下の式に従って演算され
る。 Tp =K・Q/N そして、上記基本燃料噴射量Tp 、各種補正係数COE
F、燃料噴射弁の電源電圧変化による有効噴射時間の変
化を補正するための補正分Ts を用いて、最終的な燃料
噴射量Ti が演算される。
Here, the intake air flow rate of the engine 1 is matched with the intake air flow rate Q detected by the air flow meter 13 and the engine rotation speed N calculated based on the output signal from the crank angle sensor 14. basic fuel injection quantity (basic fuel supply quantity) T p is calculated according to the equation below. T p = K · Q / N Then, the basic fuel injection amount T p and various correction coefficients COE
F, change in the effective injection time by the power supply voltage variation of the fuel injection valve using a correction amount T s for correcting the final fuel injection amount T i is computed.

【0016】ここで、前記空燃比CAFは次式によって
算出される。 CAF=a×Ti (aは空燃比算出係数である。) ステップ3では、燃焼圧力を検出し、該燃焼圧力に応じ
て空燃比MAF1 を計測する。この場合、空燃比MAF
1 は次式によって表される。
Here, the air-fuel ratio CAF is calculated by the following equation. CAF = a × T i (a is an air-fuel ratio calculation coefficient) In step 3, the combustion pressure is detected, and the air-fuel ratio MAF 1 is measured according to the combustion pressure. In this case, the air-fuel ratio MAF
1 is represented by the following equation.

【0017】MAF1 =b×px ここで、pxは燃焼圧力より算出する燃焼温度によって
図4のように定められた燃焼空燃比指数であり、空燃比
14.7に対応してpxが1と設定される。又、bは空
燃比定数である。従って、ステップ3ではその時の燃焼
温度に対応するpxを読み取り、b×pxの演算を行っ
てMAF1 を計測する。
MAF 1 = b × px where px is a combustion air-fuel ratio index determined as shown in FIG. 4 by the combustion temperature calculated from the combustion pressure, and px is 1 when the air-fuel ratio is 14.7. Is set. B is an air-fuel ratio constant. Therefore, in step 3, px corresponding to the combustion temperature at that time is read, and b × px is calculated to measure MAF 1 .

【0018】ステップ4では、エンジン運転状態に変化
があるか否かを判定し、変化がなければ、ステップ5に
進み、変化があれば、制御を終了する。ステップ5で
は、パージバルブ24を制御して一定時間開く。ステッ
プ6では、パージバルブ開放後の燃焼圧力を検出し、該
燃焼圧力に応じて空燃比MAF2 を計測する。
In step 4, it is determined whether or not there is a change in the engine operating state. If there is no change, the process proceeds to step 5, and if there is, the control is terminated. In step 5, the purge valve 24 is controlled to be opened for a certain time. In step 6, to detect the combustion pressure after the purge valve open, to measure the air-fuel ratio MAF 2 in accordance with the combustion pressure.

【0019】この場合も、空燃比MAF2 は次式によっ
て表されるから、 MAF2 =b×px その時の燃焼温度に対応するpxを読み取り、b×px
の演算を行ってMAF 2 を計測する。ステップ7では、
燃焼圧力に応じた空燃比のパージバルブ24開放前と開
放後の値の変化量(MAF2 −MAF1 )と実際の燃料
噴射量Ti から算出される空燃比CAFの差SAFを次
式に従って求める。
Also in this case, the air-fuel ratio MAFTwoIs given by
MAFTwo= B × px Read the px corresponding to the combustion temperature at that time, and b × px
And calculate MAF TwoIs measured. In step 7,
Before and after opening the purge valve 24 of the air-fuel ratio according to the combustion pressure
Change in value after release (MAFTwo-MAF1) And the actual fuel
Injection amount TiThe difference SAF of the air-fuel ratio CAF calculated from
Determine according to the formula.

【0020】SAF=(MAF2 −MAF1 )−CAF このSAFは、パージバルブ24の開放に基づく蒸発燃
料の吸気通路へのパージによって変化した計測空燃比変
化量と、パージ前の実際の燃料噴射量から導かれる算出
空燃比との差であるから、ステップ8では、このSAF
を燃料噴射量のリッチ分補正量とし、前記各種補正係数
COEFから減算して、最終的な燃料噴射量Ti を次式
に基づいて算出する。
SAF = (MAF 2 −MAF 1 ) −CAF This SAF is based on a measured air-fuel ratio change amount caused by purging of the fuel vapor into the intake passage based on the opening of the purge valve 24 and an actual fuel injection amount before the purge. In step 8, this SAF is the difference from the calculated air-fuel ratio derived from
Was rich fraction correction amount of the fuel injection amount, the various correction is subtracted from the coefficients COEF, it is calculated based on the final fuel injection amount T i in the following equation.

【0021】Ti =Tp ×(COEF−SAF)+Ts 以上の燃料供給制御から明らかなように、パージバルブ
24閉時と開時、即ち、蒸発燃料パージ前と後の燃焼圧
力から夫々計測される空燃比と、パージ前の実際の燃料
噴射量から導かれる算出空燃比との比較結果に基づいて
最終的な燃料噴射量Ti を制御するようにしたから、蒸
発燃料のパージによる空燃比のリッチ化を防止して、適
正な空燃比に制御でき、運転性及びエミッションの改善
を図ることができる。
As is clear from the fuel supply control of T i = T p × (COEF-SAF) + T s or more, the fuel pressure is measured from the combustion pressure when the purge valve 24 is closed and when it is opened, ie, from the combustion pressure before and after the fuel vapor purge. The final fuel injection amount Ti is controlled based on a comparison result between the air-fuel ratio calculated from the actual fuel injection amount before the purge and the calculated air-fuel ratio derived from the actual fuel injection amount before the purge. The enrichment can be prevented, the air-fuel ratio can be controlled to an appropriate value, and the drivability and emission can be improved.

【0022】尚、以上のように、特定の実施例を参照し
て本発明を説明したが、本発明はこれに限定されるもの
ではなく、当該技術分野における熟練者等により、本発
明に添付された特許請求の範囲から逸脱することなく、
種々の変更及び修正が可能であるとの点に留意すべきで
ある。
As described above, the present invention has been described with reference to the specific embodiments. However, the present invention is not limited to these embodiments, and is attached to the present invention by a person skilled in the art. Without departing from the scope of the appended claims.
It should be noted that various changes and modifications are possible.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
所定の運転状態が検出された際に燃料供給量に応じて算
出された空燃比と、所定の運転状態が検出された際に燃
焼圧力に応じて計測された空燃比及びパージバルブ開放
後の燃焼圧力に応じて計測された空燃比との比較結果に
応じて燃料供給量を減量補正するように構成したから、
蒸発燃料のパージによる空燃比のリッチ化を防止して、
運転性及びエミッションの改善を図ることができ、蒸発
燃料の増加傾向にも容易に対応できる有用性大なるもの
である。
As described above, according to the present invention,
The air-fuel ratio calculated according to the fuel supply amount when the predetermined operation state is detected, the air-fuel ratio measured according to the combustion pressure when the predetermined operation state is detected, and the combustion pressure after opening the purge valve. Since the fuel supply amount is configured to be reduced according to the comparison result with the air-fuel ratio measured according to
Prevent enrichment of the air-fuel ratio by purging evaporated fuel,
Drivability and emission can be improved, and the usability can be easily coped with an increasing tendency of fuel vapor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る内燃機関の燃料供給制御装置の
ブロック図
FIG. 1 is a block diagram of a fuel supply control device for an internal combustion engine according to the present invention.

【図2】 同上の装置の一実施例を示すシステム図FIG. 2 is a system diagram showing an embodiment of the above device.

【図3】 同上実施例の制御内容を示すフローチャートFIG. 3 is a flowchart showing control contents of the embodiment.

【図4】 燃焼圧力により算出する燃焼温度は燃焼空燃
比指数との関係を表す特性図
FIG. 4 is a characteristic diagram showing a relationship between a combustion temperature calculated based on a combustion pressure and a combustion air-fuel ratio index.

【符号の説明】[Explanation of symbols]

1 エンジン 6 燃料噴射弁 12 コントロールユニット 22 燃料タンク 23 キャニスタ 24 パージバルブ 25 パージ通路 26 圧力センサ Reference Signs List 1 engine 6 fuel injection valve 12 control unit 22 fuel tank 23 canister 24 purge valve 25 purge passage 26 pressure sensor

フロントページの続き (56)参考文献 特開 昭58−131343(JP,A) 特開 昭63−41632(JP,A) 特開 昭63−55357(JP,A) 特開 昭63−57841(JP,A) 特開 昭63−131843(JP,A) 特開 昭63−253142(JP,A) 特開 昭63−253143(JP,A) 特開 平1−267338(JP,A) 特開 平2−130240(JP,A) 特開 平3−222841(JP,A) 特開 平5−288107(JP,A) 特開 平5−321772(JP,A) 実開 昭63−190541(JP,U) 実開 平1−145958(JP,U) 実開 平1−148043(JP,U) 実開 平2−85843(JP,U) (58)調査した分野(Int.Cl.6,DB名) F02D 41/14 310 F02D 41/02 330 F02D 45/00 368 F02M 25/08 301Continuation of the front page (56) References JP-A-58-131343 (JP, A) JP-A-63-41632 (JP, A) JP-A-63-55357 (JP, A) JP-A-63-57841 (JP, A) JP-A-63-131843 (JP, A) JP-A-63-253142 (JP, A) JP-A-63-253143 (JP, A) JP-A-1-267338 (JP, A) 2-130240 (JP, A) JP-A-3-222841 (JP, A) JP-A-5-288107 (JP, A) JP-A-5-321772 (JP, A) JP-A-63-190541 (JP, A) U) Japanese Utility Model 1-145958 (JP, U) Japanese Utility Model 1-148043 (JP, U) Japanese Utility Model 2-85843 (JP, U) (58) Fields surveyed (Int. Cl. 6 , DB name) ) F02D 41/14 310 F02D 41/02 330 F02D 45/00 368 F02M 25/08 301

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃料タンクからの蒸発燃料を吸着するキ
ャニスタ内部を通過してエンジンの吸気系に至るパージ
通路を設け、該パージ通路に蒸発燃料のパージ量を制御
するパージバルブを介装してなる内燃機関において、機
関運転状態を検出する機関運転状態検出手段と、該機関
運転状態に基づいて機関への燃料供給量を制御する燃料
供給量制御手段と、前記機関運転状態検出手段により所
定の運転状態が検出された際に前記燃料供給量に応じて
空燃比を算出する空燃比算出手段と、所定の運転状態が
検出された際に燃焼圧力を検出し、該燃焼圧力に応じて
空燃比を計測する第1の空燃比計測手段と、所定の運転
状態が検出された際に前記パージバルブを一定時間開放
するパージバルブ制御手段と、該パージバルブ開放後の
燃焼圧力を検出し、該燃焼圧力に応じて空燃比を計測す
る第2の空燃比計測手段と、前記空燃比算出手段により
算出された空燃比と第1及び第2の空燃比計測手段によ
り夫々計測された空燃比との比較結果に応じて前記燃料
供給量制御手段により制御された燃料供給量を減量補正
する燃料供給量減量補正手段と、を含んで構成したこと
を特徴とする内燃機関の燃料供給制御装置。
1. A purge passage which passes through the interior of a canister for adsorbing fuel vapor from a fuel tank and reaches an intake system of an engine is provided, and a purge valve for controlling a purge amount of the fuel vapor is provided in the purge passage. In an internal combustion engine, an engine operating state detecting means for detecting an engine operating state, a fuel supply amount controlling means for controlling a fuel supply amount to the engine based on the engine operating state, and a predetermined operation by the engine operating state detecting means. An air-fuel ratio calculating means for calculating an air-fuel ratio according to the fuel supply amount when a state is detected, and detecting a combustion pressure when a predetermined operating state is detected, and calculating an air-fuel ratio according to the combustion pressure. First air-fuel ratio measuring means for measuring, purge valve control means for opening the purge valve for a predetermined time when a predetermined operating state is detected, and detecting a combustion pressure after opening the purge valve, Second air-fuel ratio measuring means for measuring an air-fuel ratio in accordance with the combustion pressure; air-fuel ratio calculated by the air-fuel ratio calculating means; and air-fuel ratio respectively measured by the first and second air-fuel ratio measuring means. A fuel supply control device for an internal combustion engine, comprising: a fuel supply amount reduction correcting means for correcting the fuel supply amount controlled by the fuel supply amount control means in accordance with the comparison result.
JP22438092A 1992-08-24 1992-08-24 Fuel supply control device for internal combustion engine Expired - Lifetime JP2767345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22438092A JP2767345B2 (en) 1992-08-24 1992-08-24 Fuel supply control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22438092A JP2767345B2 (en) 1992-08-24 1992-08-24 Fuel supply control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0674073A JPH0674073A (en) 1994-03-15
JP2767345B2 true JP2767345B2 (en) 1998-06-18

Family

ID=16812849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22438092A Expired - Lifetime JP2767345B2 (en) 1992-08-24 1992-08-24 Fuel supply control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2767345B2 (en)

Also Published As

Publication number Publication date
JPH0674073A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
EP0478120B1 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
EP0476811B1 (en) Method and apparatus for controlling an internal combustion engine
JPH0533733A (en) Vapor fuel controller of internal combustion engine
JPH0518326A (en) Evaporated fuel controller for internal combustion engine
JPH04292542A (en) Device for measuring component of air-fuel mixture to be sucked by internal combustion engine and air/fuel ratio control device for internal combustion engine
JP3666460B2 (en) Evaporative fuel processing device for internal combustion engine
KR100306186B1 (en) Gasoline vapor purging system of interal combustion engine
JPH051632A (en) Evaporated fuel control device of internal combustion engine
JPH07151020A (en) Canister purge controller and control method thereof
JPH06146948A (en) Air/fuel ratio control device of internal combustion engine provided with evaporated fuel processing device
JP2544817Y2 (en) Evaporative fuel control system for internal combustion engine
JPH0861165A (en) Air-fuel ratio control device of multicylinder internal combustion engine
JP2767345B2 (en) Fuel supply control device for internal combustion engine
US5329909A (en) Evaporative fuel-purging control system for internal combustion engines
JP3061277B2 (en) Air-fuel ratio learning control method and device
JP2592432B2 (en) Evaporative fuel control system for internal combustion engine
JP3376172B2 (en) Air-fuel ratio control device for internal combustion engine
JPH03105042A (en) Fuel injection controller of diesel engine
JPS59192858A (en) Canister purge controlling apparatus
JP3024448B2 (en) Evaporative fuel control system for internal combustion engine
JPH0942022A (en) Fuel property estimating device and air fuel ratio controller of internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP3261893B2 (en) Control device for internal combustion engine equipped with evaporative fuel processing device
JP2841007B2 (en) Self-diagnosis device in fuel supply system of internal combustion engine
JPH05231248A (en) Fuel steam detecting device for internal combustion engine