JPS6062639A - Fuel injection device of engine - Google Patents

Fuel injection device of engine

Info

Publication number
JPS6062639A
JPS6062639A JP17190283A JP17190283A JPS6062639A JP S6062639 A JPS6062639 A JP S6062639A JP 17190283 A JP17190283 A JP 17190283A JP 17190283 A JP17190283 A JP 17190283A JP S6062639 A JPS6062639 A JP S6062639A
Authority
JP
Japan
Prior art keywords
fuel injection
engine
data
injection amount
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17190283A
Other languages
Japanese (ja)
Other versions
JPH0214985B2 (en
Inventor
Yoshiaki Sugano
菅野 佳明
Hirobumi Nishimura
博文 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Mitsubishi Electric Corp
Original Assignee
Mazda Motor Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Mitsubishi Electric Corp filed Critical Mazda Motor Corp
Priority to JP17190283A priority Critical patent/JPS6062639A/en
Publication of JPS6062639A publication Critical patent/JPS6062639A/en
Publication of JPH0214985B2 publication Critical patent/JPH0214985B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve interporation accuracy for a basic fuel injection amount with small storage capacity by evaluating the basic fuel injection amount based on a fuel injection amount in responce to intake air negative pressure in a standard operation state and data associated with deviation of filling efficiency. CONSTITUTION:A fuel injection device of an engine includes a pressure detecting means 15 for sensing intake air negative pressure in an air intake passage 5 downward a throttle valve 7, and a number-of-revolutions detecting means 18. It further includes an arithmetic operation means 21 for a reference fuel injection amount in an engine reference operation state, a storage means 20 having a data previously stored therein concerning a difference of filling efficiencies between the aforesaid engine reference operation state and that at a set number-of-engine revolutions, a data readout means 22 for reading out data corresponding to intake air negative pressure and the number of engine revolutions, and a correcting means 23 for correcting the reference fuel injection amount. A basic fuel injection amount is evaluated from the data concerning the difference of the filling efficiencies and the reference fuel injection amount. In case of no data read out in the above-described data, filling efficiency data are interporated to evaluate the basic fuel injection amount.

Description

【発明の詳細な説明】 く産業上の利用分野) 本発明はエンジンの燃料噴01装置、特に、吸気通路の
スロワ1〜ル弁下流の吸気負圧とエンジン回転数とに基
づいて吸入空気量に応じIC燃料@躬mを算出する、い
わゆるスピードデンシティ方式で燃料調量を行うように
したものの改良に関づる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a fuel injection device for an engine, and more particularly, to an engine fuel injection device, which calculates the amount of intake air based on the intake negative pressure downstream of the throat valves in the intake passage and the engine speed. The present invention relates to an improvement in the fuel metering method using the so-called speed density method, which calculates IC fuel@躬m according to the amount of fuel.

〈従来技術) 従来より、この種のエンジンの燃料噴射装置として、例
えば特開昭57−143135号公報に開示されるよう
に、予め、吸入空気′量に応じた基本燃料噴射時f!l
(噴射パルスのパルス幅)のデータを吸気負圧とエンジ
ン回転数とに対応して多数記憶してJ5き、エンジン運
転中にJ3いて、上記基本燃料噴射時間データから一刻
毎の吸入空気量に応じた基本燃料噴射時間を実際1県気
負圧およびエンジン回転数に基づいて読み出したのら、
この噴射パルスを燃料噴射弁に出力して、エンジンに供
給する燃料を調量するようにしたものが知られている。
(Prior Art) Conventionally, as disclosed in Japanese Patent Laid-Open No. 57-143135, for example, as a fuel injection device for this type of engine, a basic fuel injection f! l
(Pulse width of injection pulse) is stored in large numbers in correspondence with the intake negative pressure and engine speed, and when the engine is running, J3 is stored and the amount of intake air at each moment is determined from the basic fuel injection time data. After reading out the corresponding basic fuel injection time based on the actual prefectural air negative pressure and engine speed,
It is known that this injection pulse is output to a fuel injection valve to measure the amount of fuel to be supplied to the engine.

ところで、上記の如きエンジンの燃料噴射装置において
は、基本燃料噴射時間アーク中において実際吸気負圧と
エンジン回転数とに対応するデータが予め記憶されてい
ない場合には、その近傍に位置ターる4個の基本燃料噴
射時間データに基づいて読み出すべき基本燃料噴射11
.1間を補間韓出するにうになされている。
By the way, in the fuel injection device for an engine as described above, if data corresponding to the actual intake negative pressure and engine speed during the basic fuel injection time arc is not stored in advance, the Basic fuel injection 11 to be read based on basic fuel injection time data
.. It is designed to interpolate one interval.

しかしながら、上記従来のものでは、桔本燃料1!?’
−1!JJ時間時間データ相隣るデータ相互間の差が大
きい、つまり吸気負圧おJ:びエンジン回転数をそれぞ
れX、Y軸として3次元的に描いた基本燃利噴Q’1時
間曲線での傾きが大ぎいために、読み出すべさデータが
記憶されていない場合には、補間算出の際に、その近傍
に位置するデータ相互間を複数分解づる分解能が低下し
て基本燃料噴射時間の補間粘度が低下し、燃料調量制御
を正確に行い得ないという欠点があった。
However, in the above-mentioned conventional type, Kimoto fuel only 1! ? '
-1! JJ time data There is a large difference between adjacent data, that is, in the basic fuel injection Q'1 time curve drawn three-dimensionally with intake negative pressure and engine speed as the X and Y axes, respectively. If the data to be read out is not stored because the slope is too large, the resolution of multiple resolutions between data located in the vicinity during interpolation calculation will be reduced and the interpolated viscosity of the basic fuel injection time will be reduced. This has the disadvantage that fuel metering control cannot be performed accurately.

そこで、例えば、予め記憶する基本燃料噴射時間データ
mを可及的に多くして相隣るデータ相互間の差を小さく
して相隣るデータ間の分解能を高くし、よって基本燃料
噴射時間の補間精度を向上さUることが考えられるが、
この考えのらのでは、データ記憶容量が著しく増大する
という欠点がある。
Therefore, for example, the basic fuel injection time data m stored in advance is increased as much as possible to reduce the difference between adjacent data and increase the resolution between adjacent data. It is possible to improve the interpolation accuracy, but
This approach has the disadvantage of significantly increasing data storage capacity.

(発明の目的) 本発明の目的は、所定専ンジン回転数にJ31:Jるエ
ンジン運転状ta<基準エンジン運転状態)での吸気負
圧に応じた基準燃料噴射量を基準どし、口の基準エンジ
ン運転状態に対する充填効率の偏差に関連するデータを
予め吸気負圧とエンジン回転数とに基づいて入力記憶し
ておくことにより、上記充填効率の偏差に関連するデー
タの相隣るデータ相互間の差を小ざくつまり該データの
特性曲線の傾きを緩やかにして、分解能を高くし、よっ
て小記憶容量でもって基本燃料rri躬倒の補間精度を
向上させることにある。
(Object of the Invention) The object of the present invention is to set the reference fuel injection amount according to the intake negative pressure at a predetermined dedicated engine rotation speed at J31:J engine operating state ta<reference engine operating state) to By inputting and storing data related to the deviation in filling efficiency with respect to the reference engine operating state in advance based on intake negative pressure and engine rotation speed, it is possible to compare adjacent data related to the deviation in filling efficiency. The purpose of this invention is to reduce the difference in data, that is, to make the slope of the characteristic curve of the data gentler, to increase the resolution, and thereby to improve the interpolation accuracy of the basic fuel error with a small storage capacity.

(発明の構成) この目的達成のため、本発明の解?ノに手段は、第1図
に示すように、吸気通路5のスロットル弁7下流の吸気
負圧を検知する圧力検知手段15と、エンジン回転数を
検知する回転数検知手段18とを協えるとともに、上記
圧力検知手段15の出力に基づいて予め設定した設定回
転数でのエンジン運転状態における基準燃料噴射量を演
算する基準窄わ1噴射■演痺手段21と、上記設定回転
数でのエンジン運転状態との充填効率の偏tに関連する
データを予め吸気負圧およびエンジン回転故に対応して
記憶さぜた記憶手段20と、上記圧ノコ検知手段15 
J3 にび回転数検知手段18の出力に基づいて上記記
憶手段20から吸気負圧およびエンジン回転”数に対応
−りるデータを読み出すアータ読み出し手段22と、該
データ読み出し手段22により読み出したデータに基づ
いて上記基4(燃料噴射量演惇手段21の基準燃料噴射
量を補正する補正手段23とを備えて、現在の吸入空気
量およびエンジン回転数に対応する基本燃料噴射量の算
出を、充填効率の偏差に関連J”るデータと、設定回転
数における吸気負圧に応じた基準燃料噴射量との演算に
より行うようにしたものである。
(Structure of the invention) What is the solution of the present invention to achieve this purpose? As shown in FIG. 1, the means includes a pressure detection means 15 for detecting the intake negative pressure downstream of the throttle valve 7 in the intake passage 5, and a rotation speed detection means 18 for detecting the engine rotation speed. , standard constriction 1 injection for calculating a reference fuel injection amount in an engine operating state at a preset set rotation speed based on the output of the pressure detection means 15; a storage means 20 in which data related to the deviation t of the filling efficiency with respect to the state is stored in advance in correspondence with the intake negative pressure and engine rotation; and the pressure saw detection means 15.
J3 an arter reading means 22 for reading out data corresponding to the intake negative pressure and engine rotational speed from the storage means 20 based on the output of the rotational speed detection means 18; Based on the above-mentioned base 4 (correcting means 23 for correcting the reference fuel injection amount of the fuel injection amount adjustment means 21), calculation of the basic fuel injection amount corresponding to the current intake air amount and engine speed is performed. This is done by calculating the data related to the efficiency deviation and the reference fuel injection amount according to the intake negative pressure at the set rotation speed.

このことにより、本発明では、充填効率の偏差に関連す
るデータ中に読み出すべきデータが記憶されていない場
合には、先ず充填効率データを精度良(補間算出したの
ら、現在の吸入空気量およびエンジン回転数に応じて基
本燃料噴射量を精度良く算出するようにしている。
As a result, in the present invention, if data to be read out is not stored in the data related to the deviation in filling efficiency, first the filling efficiency data is calculated with high accuracy (interpolated), and then the current intake air amount and The basic fuel injection amount is calculated with high accuracy according to the engine speed.

(発′明の効果) したがって、本発明によれば、基本燃1゛11噴0Jf
flの停出を、基準エンジン運転状態における吸気負圧
に応じた基準燃わ1噴銅毎と、上記基準エンジン運転状
態に対する充填効率の偏差に関連Jるデータとに基づい
て行うようにしたので、少ない記憶内容でもって上記充
填効率の偏差に関連り−るデータ中の相隣るデータ相互
間の差を小さくして分解能を高くすることができ、よっ
て小記憶容量でもって基本燃料噴射■の吸気負圧に対づ
る補間精度の向上ひいては正確な燃料調量制御のより一
層の向上を図ることができるものである。
(Effect of the invention) Therefore, according to the present invention, the basic fuel 1.11 injection 0Jf
Since the stoppage of fl is performed based on the standard combustion per blow according to the intake negative pressure in the standard engine operating state, and the data related to the deviation of the charging efficiency with respect to the above-mentioned standard engine operating state. With a small memory content, it is possible to reduce the difference between adjacent data in the data related to the deviation in filling efficiency and increase the resolution. This makes it possible to improve the interpolation accuracy with respect to intake negative pressure, and further improve accurate fuel metering control.

(実施例) 以下、本発明の技術的手段の具体例としての実施例を図
面に基づいて詳細に説明する。
(Example) Hereinafter, an example as a specific example of the technical means of the present invention will be described in detail based on the drawings.

第2図において、1はエンジン、2は該エンジン1内に
形成されたシリンダ3と該シリング3内に回動自在に嵌
挿されたピストン4とによって形成された燃焼室、5は
一端がエアクリーナ6を介して人気に間口し、他端が燃
焼室2に間口して吸気を燃焼室2に供給するための吸気
通路であって、該吸気通路5内には吸入空気量を制御す
るスロットル弁7L!3よび該スロワ1〜ル弁7上流に
J5いて燃1′11を噴射供va 7Iる燃料噴射弁8
がそれぞれ配設さtL ′cいる。また、9は一端が燃
焼室2に聞]]シ他端が人気に開口して燃焼室2からの
排ガスを排出Jるための排気通路であって、該+3)気
通路9の途中には排ガス浄化用の触媒装置10が介設さ
れている。尚、11は吸気通路5の燃焼室2への間口部
に設(プられた吸気力゛、12は排気通路9の燃焼室2
への間口部に設りられた排気弁、13は吸気通路5のス
ロワ1−ル弁7下流側をエンジン冷却水により加熱J−
る吸気加熱装置である。
In FIG. 2, 1 is an engine, 2 is a combustion chamber formed by a cylinder 3 formed in the engine 1, and a piston 4 rotatably inserted into the cylinder 3, and 5 is an air cleaner at one end. 6, and the other end opens into the combustion chamber 2, and is an intake passage for supplying intake air to the combustion chamber 2, and a throttle valve for controlling the amount of intake air is provided in the intake passage 5. 7L! 3 and the fuel injection valve 8 which is located upstream of the throttle valves 1 to 7 and injects fuel 1'11.
are respectively arranged tL'c. In addition, 9 is an exhaust passage whose one end is open to the combustion chamber 2 and whose other end is opened to discharge exhaust gas from the combustion chamber 2, and in the middle of the air passage 9. A catalyst device 10 for purifying exhaust gas is provided. Note that 11 is installed at the frontage of the intake passage 5 to the combustion chamber 2 (intake force), and 12 is the intake force installed at the frontage of the combustion chamber 2 of the exhaust passage 9.
An exhaust valve 13 installed at the frontage of the intake passage 5 heats the downstream side of the throat valve 7 with engine cooling water.
This is an intake air heating device.

さらに、14は上記スロットル弁7の開度を検出するス
ロットル開度センサ、15は吸気通路5のス1」ットル
弁7下流の吸気負圧を検出ヅる負圧センサ、16は吸気
加熱装置13の冷却水温麿を検出ブる冷却水温センサ、
17はJ)I気通路9の触媒装置10上流において1フ
1ガス中の酸素濃度により空燃比を検出する02センサ
よりなる空燃比センサ、18はエンジン1の回転数を検
出J”るエンジン回転数センサであって、該負圧センサ
15により圧力検知手段を構成し、エンジン回転数セン
サ′18により回転数検知手段を(14成している。ま
た、該各センサ14〜18の検出信号は燃旧鳴Q・1弁
8を制御Jるコントローラ1つにそれぞれ入力されてい
る。
Furthermore, 14 is a throttle opening sensor that detects the opening of the throttle valve 7, 15 is a negative pressure sensor that detects the intake negative pressure downstream of the throttle valve 7 in the intake passage 5, and 16 is an intake air heating device 13. Cooling water temperature sensor that detects the cooling water temperature of
17 is an air-fuel ratio sensor consisting of a 02 sensor that detects the air-fuel ratio based on the oxygen concentration in 1 gas upstream of the catalyst device 10 in the air passage 9, and 18 is an engine rotation that detects the rotation speed of the engine 1. The negative pressure sensor 15 constitutes a pressure detection means, and the engine rotation speed sensor '18 constitutes a rotation speed detection means (14).The detection signals of each of the sensors 14 to 18 are as follows. The fuel noise Q/1 is input to one controller that controls the valve 8, respectively.

上記コン1−〇−ラ1つの内部には、予め第4図(イ)
に示づような設定エンジン回転数(例えば700r11
1II)でのエンジン運転状態(基準エンジン運転状態
)における吸気負圧に対する基準燃ね噴射量特性が入力
記憶されているとともに、第5図に示tJ:うに、各種
エンジン回転数および吸気負圧に対応するエンジン運転
状態での充填効率データが上記基j11.エンジン運転
状態におりる充填効率を基1.5f(r I J )と
した1直でエンジン回転数と吸気負圧どに対応して予め
入力記憶されており、該コン1〜ローラ19ににす、基
準エンジン運転状態との充填効捧′のj扇差に関連する
データを予め吸気負LE二おJ:びエンジン回転数に対
応してNa憶さぜた記伯子段20を兼用している。
Inside each of the above controllers 1-0-1, see Figure 4 (A) in advance.
Set engine speed as shown in (e.g. 700r11)
The reference fuel injection amount characteristics with respect to the intake negative pressure in the engine operating state (reference engine operating state) in 1II) are input and stored, and the reference fuel injection amount characteristics are input and stored as shown in FIG. The charging efficiency data under the corresponding engine operating conditions are based on the above basis j11. Based on the charging efficiency when the engine is running, it is 1.5f (r I J ), which is input and stored in advance in accordance with the engine speed and intake negative pressure, etc. Then, a memory stage 20 is also used in which data related to the difference in charging efficiency from the standard engine operating state is stored in advance in accordance with the intake negative LE2 and engine speed. There is.

次に、上記」ン1〜ローラ10の作動を第3図のフロー
フt−−+−に基づ゛いて説明り−る。、該フローチャ
ー1へはL記記憶手段2oの第5図に示す充填効率デー
タ竹に現在のエンジン回転数d3よび吸気負圧に対応す
るデータが予め記憶されていない場合の処理動作を示し
、先ず、スター1〜して、第1スjツ’7’ S + 
IJJ5いてコントローラ19内のすべての11(fを
イニシt・ライズしたのち、第2ステツプS2にJ>い
て回転数センサ18からのエンジン回転数代ぢに塁づい
て現在のエンジン回転数ro@読み出り”とともに、第
3ステツプs3にJ5いて負圧センサ15からの負圧信
号に基づいて現在の吸気負圧baを読み出ず。
Next, the operation of the rollers 1 to 10 will be explained based on the flowchart t--+- of FIG. , Flowchart 1 shows a processing operation when data corresponding to the current engine speed d3 and intake negative pressure is not stored in advance in the filling efficiency data shown in FIG. 5 of the L storage means 2o, First, the star is 1~, and the first stage is '7' S +
After initializing all 11(f) in the controller 19 in IJJ5, in the second step S2, the current engine rotation speed ro@ is read based on the engine rotation speed value from the rotation speed sensor 18. At the same time, in the third step s3, J5 does not read out the current intake negative pressure ba based on the negative pressure signal from the negative pressure sensor 15.

続いて、第4ステツプS4において、第6図に示ずよう
に予め充填効率データとしく記憶されているもののうち
現在の吸気負圧baおよびエンジン回転数roに対応す
る位置近傍の4つの充填助、I−デ − タ A(r+
、b 1 ) 、B(r 2 、l] 1 ) 。
Subsequently, in a fourth step S4, as shown in FIG. 6, four filling aids near the position corresponding to the current intake negative pressure ba and engine speed ro are selected from among those stored in advance as filling efficiency data. , I-data A(r+
, b 1 ), B(r 2 , l] 1 ).

C(I’+、t)2)、D(rz、1)2)e読み出づ
とともに、第5ステツプS5においr:座標点(r+、
l)+)ど(rz、l]+)との間を(r o 、 1
31)で内分した場合の(r+、bl)と(r l) 
11゛1)どの距離に相当づ゛る値Δχと、座標点(「
+ + 11 + )と(rl、bz)との間を(rl
、bθ)で内分した場合の(rl、b+)ど(r+。
C (I'+, t) 2), D (rz, 1) 2) e are read out, and in the fifth step S5 r: coordinate point (r+,
l) +) (rz, l]+) (r o , 1
(r+, bl) and (r l) when internally divided by 31)
11゛1) What distance corresponds to the value Δχ and the coordinate point ("
+ + 11 + ) and (rl, bz) as (rl
, bθ), (rl, b+) is (r+.

11 o )との距離に相当する値Δyとを演算する。11 o)) is calculated.

その後、第6ステツプS6において座)票点(1・0゜
1)1)て゛の充填効率データE(ro、b+)をデー
タA(r+、I]+)およびB(r、+、I)+)に基
づいて弾出J−る、つまりA(r+、bl)−i−(B
(rz、l)+)−A(l’+、rl))・△χ/16
 (rl 6J G、L座標点(r+、り+)と(「2
11) I )との距離に相当する値)の演算を行うと
ともに、第7ステツプS7において座標点(ro 、 
b 2 ) ’Cの充填効率データF(ro、b2)を
データc(rl、l)2>a3よびD(r2.b2>に
其づいT:算出J°る、ずなわち上記と同様にC(1’
+、1)2)+(D(r2+1)2) C(rl。
After that, in the sixth step S6, the filling efficiency data E(ro, b+) at the point (1・0°1)1) is converted into data A(r+,I]+) and B(r,+,I). +) based on J-ru, that is, A(r+, bl)-i-(B
(rz,l)+)-A(l'+,rl))・△χ/16
(rl 6J G, L coordinate point (r+, ri+) and ("2
11) At the same time, in the seventh step S7, the coordinate point (ro,
b2) 'C filling efficiency data F(ro, b2) is calculated based on data c(rl,l)2>a3 and D(r2.b2>, i.e., same as above) C(1'
+, 1) 2) + (D(r2+1)2) C(rl.

b2))・Δx/16(r16Jは座標点(rl。b2))・Δx/16(r16J is the coordinate point (rl.

1)2)と(r2.b2)との距離に相当リ−る値)の
演算を行う。
1) Calculate the value corresponding to the distance between 2) and (r2.b2).

そして、第8ステツプS8において座標点(ro、bo
)での充填効率データMAR(r o 、 bO)を上
記データE(ro、b+)J5よびF(rl) 、 l
] 2 )に基づいて算出する、つまりE (r 0 
Then, in the eighth step S8, the coordinate point (ro, bo
) filling efficiency data MAR(ro, bO) above data E(ro, b+) J5 and F(rl), l
] 2), that is, E (r 0
.

11+ )−t (F(ro、+12 )−E(ro、
tl+ ))・△y/16の演克を行う。
11+ )-t (F(ro, +12)-E(ro,
Perform the demonstration of tl+ ))・△y/16.

続いて、第9ステツプS9において基準燃料噴uJ f
fl特性(第4図(イ))から現在の吸気負圧bOに応
じた基本燃料噴q]吊Qoを鼻当したのち、該基本燃料
噴射口Qoに相当する基準噴射パルスのパルス幅τ0に
充填効率データMAP(ro。
Subsequently, in the ninth step S9, the reference fuel injection uJ f
From the fl characteristic (Fig. 4 (a)), after adjusting the basic fuel injection Qo according to the current intake negative pressure bO, set the pulse width τ0 of the reference injection pulse corresponding to the basic fuel injection port Qo. Filling efficiency data MAP (ro.

bo)を乗じて補正噴射パルス幅τを演算し、これを所
定の噴射タイミング(例えばピストン上死点)を持って
燃i3[噴射弁8に出力して第2ステツプS2に戻る。
The corrected injection pulse width τ is calculated by multiplying the injection pulse width τ, and is outputted to the fuel i3 [injector 8] at a predetermined injection timing (for example, at the top dead center of the piston), and the process returns to the second step S2.

よって、第9ステツプS9前半にJ3ける基準燃料噴射
量特性からの基準エンジン運転状態での基準燃料噴射量
(基準燃料噴射パルス幅τ0)の算出ににす、基準燃料
噴射量演算手段21を構成しているとともに、第8ステ
ツプS8における現在の吸気負圧b l) J5よびエ
ンジン回転数rOに対応する充1i効串データMAP 
(r o 、 l) o )の算出により、データ読み
出し手段22を構成している。
Therefore, the reference fuel injection amount calculation means 21 is configured to calculate the reference fuel injection amount (reference fuel injection pulse width τ0) in the reference engine operating state from the reference fuel injection amount characteristics in J3 in the first half of the ninth step S9. At the same time, the current intake negative pressure b l) at the eighth step S8 is
The data reading means 22 is configured by calculating (r o , l) o ).

また、第9ステツプS9後31′にd3りる補正唱割パ
ルスτの演算により、データ読み出し手段22により読
み出した充填効率データMAP(r U。
Further, the filling efficiency data MAP (r U) read out by the data reading means 22 by calculating the correction allocation pulse τ d3 at 31' after the ninth step S9.

b、o)に基づいて基準燃II噴射量(基準燃わ1噴射
パルス幅τO)を補正するようにした補正手段23を構
成している。
A correction means 23 is configured to correct the reference fuel II injection amount (reference fuel 1 injection pulse width τO) based on b, o).

したがって、上記実施例においては、第5図の充填効率
データは、それぞれ基準エンジン運転状態における充填
効率を基準(rlJ)とした埴で入力記憶されているの
で、該充填効率データの吸気負圧に対する所定エンジン
回転数毎の特性曲線は、第4図(ハ)の如き各所定回転
数での燃料噴射量特性曲線を設定回転数での燃お1噴射
量を基準に描いた同図(ロ)の燃わ1噴fJJ m特性
曲線に等しくなって、その傾きは、同図(ハ)の従来の
傾きに較べて茗しく(設定回転数での燃料噴射量特性の
傾き分だり)小さくなる。その結果、第5図の充填効率
データ内にエンジン回転数rOおよび吸気負圧110に
対応づ′るデータが予め記憶されていない場合にJ5け
る充填効率データMAP D o 。
Therefore, in the above embodiment, the filling efficiency data in FIG. 5 is input and stored in a form with the filling efficiency in the reference engine operating state as the reference (rlJ), so that the filling efficiency data is The characteristic curve for each predetermined engine speed is shown in Figure 4 (b), which is a fuel injection amount characteristic curve at each predetermined engine speed as shown in Figure 4 (c), drawn based on the fuel injection amount at the set engine speed. It becomes equal to the combustion 1 injection fJJ m characteristic curve, and its slope is sharply smaller (by the slope of the fuel injection amount characteristic at the set rotation speed) compared to the conventional slope shown in FIG. As a result, if the data corresponding to the engine speed rO and the intake negative pressure 110 are not stored in advance in the filling efficiency data of FIG. 5, the filling efficiency data MAP Do in J5.

b1〕)の吸気負圧に対する補間精度は、従来のものに
比べ茗しく向上する。よって、補間精度の向上により燃
わ1噴射量制御をより正確に行うことができ、ひいては
エンジンに供給される混合気の空燃比を設定空燃比に確
実に行い保持制御して、エンジン運転性能およびエミッ
ション性能の向上を図ることができる。
b1]) The interpolation accuracy for the intake negative pressure is significantly improved compared to the conventional one. Therefore, by improving the interpolation accuracy, fuel injection amount control can be performed more accurately, which in turn ensures that the air-fuel ratio of the air-fuel mixture supplied to the engine is maintained at the set air-fuel ratio, improving engine operating performance and Emission performance can be improved.

尚、上記実施例では、記憶手段20(コントローラ19
)には予め基準エンジン運転状態での充填効率値を基準
とする充填効率データを記憶したが、その他の基準エン
ジン運転状態との充填効率の偏差に関連するデータ、例
えばJj i%l+エンジン運転状態における燃料噴射
量どのnA OJ fft y3を予め記憶してもよい
。この場合、第3図のフローヂト一トの第9ステツプに
おけるtlj ’Aは加算となる。
In the above embodiment, the storage means 20 (controller 19
) has previously stored filling efficiency data based on the filling efficiency value at the reference engine operating state, but data related to the deviation of the charging efficiency from the other reference engine operating state, such as Jj i%l+engine operating state. The fuel injection amount nA OJ fft y3 may be stored in advance. In this case, tlj'A in the ninth step of the flowchart in FIG. 3 is addition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示づブIJツク図、第2図ない
し第6図は本発明の実施例を示し、第2図は全体概略構
成図、第3図はコントローラの作動を説明するフローチ
ャート図、第4図(イ)〜(ハ)はそれぞれ作動説明図
、第5図はコン1へ[1−ラの記憶内容を示す図、第6
図は第5図の要部を拡大した作動説明図である。 5・・・吸気通路、7・・・スロットル弁、15・・・
負圧センサ(圧力検知手段)、18・・・回転数センナ
(回転数検知手段)、20・・・記憶手段、21・・・
基準燃オ′3[噴射量演算手段、22・・・アーク読み
出し手段、23・・・補正手段。 第3図 jl!4FB (ロ) (ハ) 第6囚
Fig. 1 is a block diagram showing the configuration of the present invention, Figs. 2 to 6 show embodiments of the invention, Fig. 2 is a general schematic diagram, and Fig. 3 explains the operation of the controller. 4(A) to 4(C) are operation explanatory diagrams, and FIG. 5 is a diagram showing the memory contents of controller 1 [1-A.
The figure is an enlarged view of the operation of the main part of FIG. 5. 5... Intake passage, 7... Throttle valve, 15...
Negative pressure sensor (pressure detection means), 18... rotation speed sensor (rotation speed detection means), 20... memory means, 21...
Reference fuel '3 [injection amount calculation means, 22... arc reading means, 23... correction means. Figure 3 jl! 4FB (b) (c) 6th prisoner

Claims (1)

【特許請求の範囲】[Claims] (1)吸気通路のスロワ1〜ル弁下流の吸気負圧を検知
づ゛る圧力検知手段と、エンジン回転数を検知する回転
数検知手段と、上記圧力検知手段の出ツノに基づいて予
め設定した設定回転数でのエンジン運転状態における基
準燃料噴射■を演算する基準燃お1噴射量演算手段と、
上記設定回転数でのエンジン運転状態どの充填効率の偏
差に関連するアークを予め吸気負圧およびエンジン回転
数に対応して記憶させた記憶手段と、上記圧力検知手段
および回転数検知手段の出力に基づいて上記記憶手段か
ら吸気負圧J3よびエンジン回転数に対応するデータを
読み出すデータ読み出し手段と、該データ読み出し手段
により読み出したデータに基づいて上記基準燃料噴射量
部枠手段の基準燃J’i+噴射mを補正する補正手段と
からなることを特徴とするエンジンの燃料噴DjJ装置
(1) Preset based on the pressure detection means that detects the intake negative pressure downstream of the throat valves 1 to 1 in the intake passage, the rotation speed detection means that detects the engine rotation speed, and the output of the pressure detection means. a reference fuel injection amount calculating means for calculating a reference fuel injection amount in an engine operating state at a set rotation speed;
A memory means that stores arcs related to charging efficiency deviations in the engine operating state at the set rotational speed in advance in correspondence with intake negative pressure and engine rotational speed, and outputs of the pressure detection means and rotational speed detection means. data reading means for reading data corresponding to the intake negative pressure J3 and engine speed from the storage means based on the data reading means; and a reference fuel J'i+ of the reference fuel injection amount section frame means based on the data read by the data reading means. A fuel injection DJJ device for an engine, comprising a correction means for correcting injection m.
JP17190283A 1983-09-16 1983-09-16 Fuel injection device of engine Granted JPS6062639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17190283A JPS6062639A (en) 1983-09-16 1983-09-16 Fuel injection device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17190283A JPS6062639A (en) 1983-09-16 1983-09-16 Fuel injection device of engine

Publications (2)

Publication Number Publication Date
JPS6062639A true JPS6062639A (en) 1985-04-10
JPH0214985B2 JPH0214985B2 (en) 1990-04-10

Family

ID=15931930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17190283A Granted JPS6062639A (en) 1983-09-16 1983-09-16 Fuel injection device of engine

Country Status (1)

Country Link
JP (1) JPS6062639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285633A (en) * 1988-05-09 1989-11-16 Toyota Motor Corp Fuel injection amount control device for internal combustion engine
JP2010084759A (en) * 2008-10-01 2010-04-15 Toyota Motor Engineering & Manufacturing North America Inc Method and apparatus for three dimensional calibration of on-board diagnostics system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285633A (en) * 1988-05-09 1989-11-16 Toyota Motor Corp Fuel injection amount control device for internal combustion engine
JP2010084759A (en) * 2008-10-01 2010-04-15 Toyota Motor Engineering & Manufacturing North America Inc Method and apparatus for three dimensional calibration of on-board diagnostics system

Also Published As

Publication number Publication date
JPH0214985B2 (en) 1990-04-10

Similar Documents

Publication Publication Date Title
US5651353A (en) Internal combustion engine control
JPH01244138A (en) Fuel injection control device for engine for automobile
JPS63176638A (en) Fuel injection quantity controller for internal combustion engine
JPS6062639A (en) Fuel injection device of engine
JPH057548B2 (en)
JPH0797942A (en) Air-fuel ratio controller of internal combustion engine
JPS59145357A (en) Fuel control device for internal-combustion engine
JP2532205B2 (en) Engine air-fuel ratio learning control method
JPH0515908B2 (en)
JPS6232338B2 (en)
JP2767344B2 (en) Self-diagnosis device in fuel supply system of internal combustion engine
JPS6321344A (en) Electronically controlled fuel injection device for internal combustion engine
JPH06108901A (en) Air fuel ratio control device for internal combustion engine
JP3627462B2 (en) Control device for internal combustion engine
JPS5815735A (en) Control method of air-fuel ratio
JPH0413546B2 (en)
JPS6035160A (en) Fuel control device of engine
JPH0617661B2 (en) Learning control method for automobile engine
JPS6036751A (en) Fuel control device for engine
JP2631587B2 (en) Fuel supply control device for internal combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0374548A (en) Air flow measuring device
JPH0612083B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS5859329A (en) Air-fuel ratio control method
JPH0261351A (en) Electronic controller for internal combustion engine