JPS5815735A - Control method of air-fuel ratio - Google Patents

Control method of air-fuel ratio

Info

Publication number
JPS5815735A
JPS5815735A JP11326881A JP11326881A JPS5815735A JP S5815735 A JPS5815735 A JP S5815735A JP 11326881 A JP11326881 A JP 11326881A JP 11326881 A JP11326881 A JP 11326881A JP S5815735 A JPS5815735 A JP S5815735A
Authority
JP
Japan
Prior art keywords
engine
air
fuel ratio
correction
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11326881A
Other languages
Japanese (ja)
Other versions
JPH0214534B2 (en
Inventor
Shuji Sakakibara
修二 榊原
Toshio Kondo
利雄 近藤
Shigenori Isomura
磯村 重則
Akio Kobayashi
昭雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP11326881A priority Critical patent/JPS5815735A/en
Priority to US06/398,275 priority patent/US4466410A/en
Publication of JPS5815735A publication Critical patent/JPS5815735A/en
Publication of JPH0214534B2 publication Critical patent/JPH0214534B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/263Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the program execution being modifiable by physical parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges

Abstract

PURPOSE:To control air-fuel ratio in good accuracy at transient time and inactive time of an air-fuel sensor, by preforming integration processing control from output of the air-fuel sensor and storing a value in accordance with this integration information as non-volatile memory correction information at each condition of an engine in addition to said integration processing control. CONSTITUTION:A RAM107, fed with power from a battery 26 in no relation to a key switch 27, is connected to a CPU100 preforming arithmetic operation of a fuel injection quantity. The RAM107 is stored with cooling water temperature, from an analog input port 104, correction quantity, calculated on the basis of a digital value in accordance with intake air temperature, and a correction quantity k2, integration processing information as a function of the lapse of time by a timer 111. Then a corresponding map to various conditions of an engine is prepared from said correction quantity k2, and control can be performed in quick response to all operational conditions.

Description

【発明の詳細な説明】 この発明は、エンジンの排気ガス成分4二よって空燃比
を検出し、エンジンζ二供給する混合気の空燃比C二帰
還制御する空燃比制御装置に関す石。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device that detects the air-fuel ratio based on engine exhaust gas components and performs feedback control of the air-fuel ratio C2 of the air-fuel mixture supplied to the engine.

従来の空燃比制御手段は、空燃比センサの出力C二よゐ
単なる積分制御であつ九、この丸めエンジンの運転の過
渡時舊;おいて、基本空燃比の変動か前記積分制御の補
正速度よp速いと、補正制御が追従できない、また、空
燃比センナが不活性な場合(二は、空燃比の帰還制御が
できない丸め、充分な空燃比制御が実行できず排気ガス
の清浄化を確%i二行なわせることができなかった。
The conventional air-fuel ratio control means is a simple integral control based on the output C2 of the air-fuel ratio sensor.9 During the transient period of engine operation, the change in the basic air-fuel ratio or the correction speed of the integral control is performed. If p is too fast, the correction control cannot follow up, and if the air-fuel ratio sensor is inactive (2) air-fuel ratio feedback control cannot be performed, and sufficient air-fuel ratio control cannot be performed to ensure exhaust gas purification. I couldn't get him to do two lines.

仁の発明は上記のような点(;鑑みなされ九4ので、空
燃比センナの出力(二よる積分処理制御6二加見、仁の
積分情報に応じた値をエンジンの各状態毎6;不揮発性
メJI&vj禎正情報として記憶させ、この記憶し九補
正情報のうちそのときのエンジン状1IIt二対応す為
補正情報とそのと會の積分情報とで空燃比を帰還制御す
るものである。
Jin's invention has the above-mentioned points (; 94), so the output of the air-fuel ratio sensor (2) integral processing control 6 2 Kami, the value according to Jin's integral information for each state of the engine 6; non-volatile The air-fuel ratio is feedback-controlled using the correction information corresponding to the engine condition at that time and its integral information.

この場合、前記不揮発性メモリ6二補正情報として記憶
する条件を下記(m)〜(c)に示す状態とする。
In this case, the conditions for storing the correction information in the nonvolatile memory 6 are as shown in (m) to (c) below.

条件(a)  燃料噴射弁の噴射量または噴射弁に印加
される噴射パルス幅が設定値以下か あるいは設定値以上のエンジン状態。
Condition (a) An engine state in which the injection amount of the fuel injection valve or the injection pulse width applied to the injection valve is less than or equal to the set value or greater than the set value.

条件(ms)  エンジンの吸入空気量が設定値以下か
あるいは設定値以上のエンジン状態。
Condition (ms) Engine condition where the intake air amount of the engine is below the set value or above the set value.

条件(e)  エンジン回転数か設定値以下かあるいは
設定値以上のエンジン状態。
Condition (e) The engine speed is below the set value or above the set value.

すなわち、この発明に係る装置はエンジンの過度時覗;
シいても応答遅れかなく、素早く所定空燃比に制御でき
ると共に、エンジンの低温時(二おける空燃比センナが
不活性なときも不揮発性メ毫ダ(二記憶し九補正情報に
墓づいて空燃比を精度よく制御でき、排気ガス中這転性
の悪化をきたすことがない空燃比制御装置の提供を目的
とするものである。
That is, the device according to the present invention is capable of controlling the engine during transient conditions;
Even when the air-fuel ratio sensor is inactive, the air-fuel ratio can be quickly controlled to the specified air-fuel ratio without any delay in response even when the engine is running low. It is an object of the present invention to provide an air-fuel ratio control device that can control the fuel ratio with high precision and does not cause deterioration of the exhaust gas dispersion.

1九この発明では、車両の車検1点検時等(二車載バッ
テリーが外され不揮発普メモリの内容が消滅して全く誤
り九値が書き込壕れているような場合でも、空燃比が誤
つ九制御をされることを肪止することをも目的としてい
る。
19. This invention prevents the air-fuel ratio from being incorrect even when a vehicle is inspected (2) when the vehicle battery is removed, the contents of the non-volatile memory are erased, and a completely incorrect 9 value is written. It also aims to prevent people from being controlled.

以下この発明の一実施例を図面−二よ〕説明する。第1
図はエンジン部の構成を示すもので、エンジン11は自
動車−二積載され為公知の4ナイクル火花点火式ニンジ
ンで、蝶焼用空気をエアクリーナ1j1吸気管IJ%ス
四ットル弁14を順次介して吸入すゐ、tた燃料は図示
しない燃料系からエンジン11の各気筒C二対応して設
けられ九電磁式蝿科噴射弁11 m 、 1 lb・・
・を介して供給され為、燃焼後の排気ガスは、排気マニ
ホールド1#、排気管1rおよび三元触媒コンバータ1
8等を経て大気(二放出される。
An embodiment of the present invention will be described below with reference to Drawing 2. 1st
The figure shows the configuration of the engine section.The engine 11 is a well-known 4-Nicle spark ignition type engine mounted on a car. Air for frying is sequentially passed through the air cleaner 1j1 intake pipe IJ% gas liter valve 14. The inhaled fuel is supplied from a fuel system (not shown) to each cylinder C2 of the engine 11 through nine electromagnetic injection valves 11 m, 1 lb...
・The exhaust gas after combustion is supplied through exhaust manifold 1#, exhaust pipe 1r and three-way catalytic converter 1.
It will be emitted into the atmosphere after reaching 8 mag.

吸気管JJ(二はエンジン115:吸入される吸気量を
検出し、吸気量C;応じたアナログ電圧を出力するポテ
ンシヌメータ式吸気量センtJ jl。
Intake pipe JJ (Secondly, engine 115: A potentiometer-type intake air amount center tJ jl that detects the intake amount of intake air and outputs an analog voltage corresponding to the intake air amount C.

およびエンジン11(二吸入される空気の温度を検出し
、吸気温6二応じたアナ四グ電圧(アナログ検出信号)
を出力するナー建スタ式吸気温セン−teaが設置され
ている。
and engine 11 (2) Detects the temperature of the intake air, and detects the intake air temperature 62 (analog detection signal)
A star-type intake air temperature sensor is installed that outputs .

まえ、エンジンIJには冷却水温を検出し、冷却水温に
応じたアナ胃グ電圧(アナログ検出信号)を出力するサ
ーミスタ式水温センナ21が設置されてお〕、8ら6二
排気iニホールド16嘔二は排気ガス中の酸素濃度がら
空燃比を検出し、空燃比が理論空燃比よ)小さい(リッ
チ)ときC;1ボルト程度(高レベル)、理論空燃比よ
)大きい(り一ン)と11G二α1ボルト程度(低レベ
ル)の電圧を出力する空燃比センナIJが設置されてい
る。エンジン11のクランタ軸の回転速度は回転速度(
数)センナ21で検出し、回転速度に応じた周波数パル
ス信号を出力する。この回転速度(数)センtzxとし
ては、例えば点火装置の点火コイルを用いればよく、点
火コイルの一次側端子からの点火パルス信号を回転速度
信号とすればよい、上記各セン919〜2Jの検出信号
は制御回路244二供給され為もので、その各検出信号
にもとづいて燃料噴射量を演算し、電磁式燃料噴射弁1
1m、Jjk・・・の開弁時間を制御すること(二よっ
て燃料噴射量を調整すゐ4のである。
A thermistor-type water temperature sensor 21 is installed in front of the engine IJ to detect the coolant temperature and output an analog voltage (analog detection signal) according to the coolant temperature. 2. The air-fuel ratio is detected from the oxygen concentration in the exhaust gas, and when the air-fuel ratio is smaller (rich) than the stoichiometric air-fuel ratio, C: about 1 volt (high level), and higher than the stoichiometric air-fuel ratio. An air-fuel ratio sensor IJ that outputs a voltage of about 11G2α1 volt (low level) is installed. The rotational speed of the clusterer shaft of the engine 11 is the rotational speed (
(number) Detected by the sensor 21 and outputs a frequency pulse signal according to the rotation speed. As this rotational speed (number) centzx, for example, the ignition coil of the ignition device may be used, and the ignition pulse signal from the primary terminal of the ignition coil may be used as the rotational speed signal.Detection of each of the above-mentioned sensors 919 to 2J The signals are supplied to the control circuit 244, which calculates the fuel injection amount based on each detection signal and controls the electromagnetic fuel injection valve 1.
1m, Jjk, etc. (2) to adjust the fuel injection amount.4.

第2図は上記制御回路24を説明する吃ので、leeは
燃料噴射量を演算すbiイクロプロセッナ(OPU)で
あ為、101は回転数カランIで回転速度(数)センナ
IIIからの信号よジエンジン回転数をカウントすゐも
ので、この回転数カウンタ101はエンジン回転嘔二同
期して割)込み制御部1034:1.対して割ル込み指
令信号を送る0割)込み制御部101はこの信号を受け
ゐと、コ唖ンパスOBを通じてマイクロブ四セツt10
11g二割〕込み信号を出力する。
FIG. 2 is for explaining the control circuit 24, so lee is a bimicroprocessor (OPU) that calculates the fuel injection amount, and 101 is the rotation number run I and the signal from the rotation speed senna III. The engine rotation number counter 101 interrupts the engine rotation speed in synchronization with the engine rotation speed. Upon receiving this signal, the interrupt control unit 101 sends an interrupt command signal to the interrupt control unit 101, which sends an interrupt command signal to the interrupt control unit 101.
11g 20%] Outputs the included signal.

102はデジタル入力ボートで空燃比センナ22の信号
や図示しないスタータの作動をオン、オフするスタータ
スイッチ25からのスタータ信号のデジタル信号をマイ
ク胃プロセッサ10(Ii”ニー伝達する。1#4はア
ナログマルチプレフナとA−Dg換器から成るアナログ
入力ポートで吸気量センt)#、吸収源センサ20、冷
却水温j1からの各信号をム一り変換して順次!イクー
プロセツナ10#4=読み込ませる機能を持つ、105
は電源回路で後述する几ムMior−二対してバッチ雫
2Cから直接的嘔二電源を供給すゐ、このバッテリ2g
回路(−は、キースイッチ2rが設けられているが、電
源回路101はキースイッチ11を通さず(二直接、/
(ツテリー26(=接続され、RムM101はキースイ
ッチ21蚤;関係無く常時電源が印加されている。バッ
テリ2Cはキースイッチ21を介して他の電源回路10
C&二供給されるもので、この電源回路10gは後述す
るRAMJ Or以外の部分6二電源を供給する。この
RAMJIFはブーグラム動作中一時値用される一時記
憶凰二ットであるが、萌述の様(=キースイッチ21C
−関係なく常時電源が印加され、キースイッチj7をオ
フ1二して機関の運転を褌止しても、その記憶内容が消
失しない不揮発性メモリを構成する。後述する第2の補
正量kaも仁のRλM10rに記憶されている。108
はプログラム中各種の定数等を配憶してシ〈読み出し専
用メモl(ROM)である、10Iはレジスタを含む燃
料噴射時間制御用カウンタで、ダウンカウンタで構成さ
れ%マイクレプ闘セツナ100で演算され良電磁式燃料
噴射弁Jim、llb・・・の開弁時間、つtn燃料噴
射量を表すデジタル信号を実際の電磁式燃料噴射弁11
m、jlb・・・の開弁時間を与えるパルス時間幅のパ
ルス信号6二変換する。110は電磁式燃料噴射弁Ji
m、Jlb・・・を躯動する電力増幅部であル。
102 is a digital input boat that transmits the signal of the air-fuel ratio sensor 22 and the digital signal of the starter signal from the starter switch 25 that turns on and off the operation of a starter (not shown) to the microphone stomach processor 10 (Ii'' knee). 1 #4 is an analog The analog input port consisting of the multi-prep control unit and the A-Dg converter converts each signal from the intake air flow rate cent) #, the absorption source sensor 20, and the cooling water temperature j1 and sequentially reads it! 105
is a power supply circuit that directly supplies power to Mior-2, which will be described later, from batch Shizuku 2C, and this battery 2g
The circuit (- indicates that the key switch 2r is provided, but the power supply circuit 101 does not pass through the key switch 11 (2 direct, /
(The battery 26 is connected to the key switch 21; the power is always applied regardless. The battery 2C is connected to the other power supply circuit 10 through the key switch 21.)
This power supply circuit 10g supplies power to parts 6 and 2 other than RAMJ Or, which will be described later. This RAMJIF is a temporary memory bit that is used as a temporary value while the program is operating.
- It constitutes a non-volatile memory in which power is always applied regardless of whether the engine is turned off or the stored contents are not lost even if the key switch j7 is turned off or the engine is stopped. A second correction amount ka, which will be described later, is also stored in the RλM10r. 108
10I is a read-only memory (ROM) that stores various constants during the program, and 10I is a counter for controlling fuel injection time including a register, which is composed of a down counter and is calculated by 100% microcontroller. A digital signal representing the valve opening time and fuel injection amount of the electromagnetic fuel injection valves Jim, llb, etc. is transmitted to the actual electromagnetic fuel injection valve 11.
A pulse signal 62 having a pulse time width that gives the valve opening time of m, jlb, . . . is converted into two. 110 is an electromagnetic fuel injection valve Ji
m, Jlb...

111はタイマーで、経過時間を測定し!イク田プpセ
ツナ1004二伝達する。
111 is a timer and measures the elapsed time! Ikuta p Setsuna 1004 2 transmission.

すなわち、回転数カウンタ101は回転速度センナ23
の出力(二よ〕、例えとエンジン1回龜゛(二つき1回
エンジン回転数を測定し、その測定の終了時に割シ込み
制御部102g二割)込み指令信号を供給する0割シ込
み制一部101はその割力込み指令6二もとずき側シ込
み信号を発生し、ヤイクはプロセッサ1004二蝶料噴
射量の演算を行なう割〕込み処理ルーチンを実行させる
In other words, the rotation number counter 101 is connected to the rotation speed sensor 23.
The output (2) is, for example, the 0 interrupt that supplies an interrupt command signal to the engine once (the engine rotation speed is measured once and the interrupt control unit 102g is interrupted at the end of the measurement). The control section 101 generates the interrupt command 62 and the input side input signal, and the controller 1004 causes the processor 1004 to execute an interrupt processing routine for calculating the injection amount of the injection amount.

第3図はマイクロプルセッサ100の概略フジ−チャー
トを示すもので、このフローチャート6二もとすきマイ
クロプロセッサ100の機旋を説明すると共に、構成全
体の作動をも説明する。すなわち、キースイッチ27並
び4二スタータスイッチ2Jがオンしてエンジンが始動
されると、第1ステツプ120から起動指令が発生され
、メインルーチンの演算処理が開始され、まずステラ1
1216二て初期化が実行され、ステップ122(二お
いてアナログ入力ポート104からの冷却水温、吸気温
(二応じたデジタル値を読み込む、ステップJJJでは
その結果から後述する補正量にシを演算し、この補正量
に、をRムMJ#F4二格納する。ステップ1山本11
4ではデジタル入力ポートよ)空燃比センナj1の信号
を入力し、タイq−111g=よる経過時間の開数とし
て後述する補正量に1を増減し、この補正量1(J、つ
t〉積分処理情報をRAMJIFに格納す為。
FIG. 3 shows a schematic diagram of the microprocessor 100, and this flow chart 6 explains the mechanism of the microprocessor 100 and also explains the operation of the entire configuration. That is, when the key switches 27 and 4 and the starter switches 2J are turned on to start the engine, a start command is issued from the first step 120, the main routine arithmetic processing is started, and the Stella 1
Initialization is executed in step 1216, and in step 122, the digital values corresponding to the cooling water temperature and intake air temperature (2) from the analog input port 104 are read. In step JJJ, the correction amount described later is calculated from the result. , this correction amount is stored in RmuMJ#F42.Step 1 Yamamoto 11
4, input the signal of the air-fuel ratio sensor j1 (from the digital input port), increase or decrease the correction amount (described later) by 1 as a fraction of the elapsed time according to tie q-111g=, and calculate this correction amount 1 (J, t〉integral). To store processing information in RAMJIF.

第4図は仁の積分処理情報としての補正量に2を増減す
る3、りま〕積分する処理ステップJj4の詳細な7四
−チャードを示す。
FIG. 4 shows a detailed 74-chart of the processing step Jj4 in which the correction amount as the integral processing information is increased or decreased by 2.

まず、ステップ40−では交熱比検出器が活性状態とな
っているかどうか、または冷却水温等がら空燃比の帰還
制御ができるか否かを判定し、#I還制御できない時り
t)オープンループの時は、ステップ4#−ロ進み補正
量に1をに1−1とし、ステップ405仁進む、を九、
帰還制御できる鳩舎はステップ40 J l:進む。
First, in Step 40-, it is determined whether the exchange heat ratio detector is in an active state or whether feedback control of the air-fuel ratio can be performed based on the cooling water temperature, etc. In this case, set 1 to 1-1 in step 4#-B Advance correction amount, and set Step 405 Advance to 9.
For pigeon lofts that can control return, proceed to step 40 J l:.

ステップ401では経過時間が単位時間Atl過ぎたか
を測定し、過ぎていなければklの補正をせずC二この
部層ステップ114を終了する。
In step 401, it is determined whether the elapsed time has passed the unit time Atl or not, and if it has not passed, kl is not corrected and step 114 for this section is ended.

時間がノt1だけ経過していると、ステップ401:進
み空燃比がリッチであって空燃比セyす12の出力がリ
ッチである高レベル信号であればステップ40 J 4
:S進み、以前のサイクルで求めたに2をノに1だけ減
少させ、ステップ401(二進み、仁の新しい補正量に
2を凡^M1111に格納する。ステップ401におい
て空燃比がり一ンであって、空燃比センサ22の出力か
り一ンを示す低レベル信号であればステップ404 (
二進み、kJを4に2だけ増加させステップ405 (
:進む、このよう嘔ニジて補正量に2を増減させる。第
3図のステップ111ては、補正量kJを増減演算し、
結果をRAM1671:格納する。第s図はこの補正量
に3を演算処理し格納するりt)記憶熟珊するステップ
11Jの詳細な7闘−チャードである。
If time t1 has elapsed, step 401: If the air-fuel ratio is rich and the output of air-fuel ratio control 12 is a rich high level signal, step 40 J4
: Advances by S, decreases 2 obtained in the previous cycle by 1, and in step 401 (Advances 2, stores 2 as the new correction amount in M1111. In step 401, when the air-fuel ratio increases by 1, If there is a low level signal indicating the output of the air-fuel ratio sensor 22, step 404 (
Step 2, increase kJ by 2 to 4, and step 405 (
: Proceed, and increase or decrease the correction amount by 2 in this way. In step 111 of FIG. 3, the correction amount kJ is increased or decreased,
The result is stored in RAM 1671. Fig. S is a detailed chart of step 11J in which 3 is calculated and stored in this correction amount, and t) is memorized.

ステップ4j−では、燃料噴射弁11m。In step 4j-, the fuel injection valve 11m.

JJb・・・媚;おける噴射量、または、燃料噴射11
a、llb・・・(二印加されるパルス幅が設定値以内
か否かを判断し、設定値以外のときはステップ1711
を終了し、設定値以内ときはステップ5oot二進む、
ステップ800では、吸気量センナ1−(二よ)検出さ
れ九空気量が設定値以内か否かを判別し、設定値以外の
ときはステップ115を終了し、設定値以内のときはス
テップJaJs二進む、仁のステップ501では。
JJb... Injection amount or fuel injection 11
a, llb...(2) Determine whether the applied pulse width is within the set value, and if it is outside the set value, proceed to step 1711.
If it is within the set value, proceed to step 5oot2.
In step 800, it is determined whether the detected intake air amount sensor 1-(2) is within the set value, and if it is outside the set value, step 115 is terminated, and if it is within the set value, step JaJs2 is determined. Proceed to step 501 of Jin.

回転速度センt21より検出され九エンジン回転数が、
設定値以内か否かを判別し、設定値以外のときはステッ
プ111を終了し、設定値以内のときはステップj02
6二進み、klの値を判断す為、そしてに2−1ならば
何嘱せず、この処理ステップ118を終了する。なお、
補正量に1は吸入吸気量qと、エンジン回転数Nとによ
って第6IIAの様なマツプを形成している。
The nine engine revolutions detected from the revolution speed center t21 are:
Determine whether or not it is within the set value, and if it is other than the set value, end step 111, and if it is within the set value, proceed to step j02
Step 62 advances to determine the value of kl, and if it is 2-1, this processing step 118 is ended without any further steps. In addition,
The correction amount 1 forms a map like No. 6IIA by the intake air amount q and the engine rotational speed N.

吸気量Q4=ついて鵬香@、エンジン回転数N(;つい
て1香Iiに相轟するマツプ上の補正量kJをに7と表
わしている。この実施例ではこの― 凰ムMler内のマツプはエンジン回転数N(二ついて
は200t・−・mおき(=、を九吸入空気量Q6二つ
いてはアイドルからツルスロットル壕でを3!分割して
いる。ステップJ−2で「klく1」のときはステップ
501に進みkmをΔに1だけ減少し、ステップtry
sでその結果を凡人Ml OF(二格納する。ステップ
602でrkg>IJ−のときはステップ504に進み
、以前のサイクルで求めた補正量に1をΔkJだけ増加
しステップsoaに進み、この処理ステップ111を終
了する。メインルーチンでのステップ125が終了する
とステップ122へ4と為。
The correction amount kJ on the map that corresponds to the intake air amount Q4 = Pengka@, engine speed N The engine rotation speed N (200t...m every 200t... proceeds to step 501, decreases km by 1 to Δ, and executes step try
The result is stored in ordinary person MlOF (2 in step s. If rkg>IJ- in step 602, the process proceeds to step 504, where 1 is increased by ΔkJ to the correction amount obtained in the previous cycle, and the process proceeds to step soa. Step 111 is completed. When step 125 in the main routine is completed, the process advances to step 122 (4).

なお、ステップ121の初期化の処理は次のことをも実
行する。すなわち、車両の車検中修理の時(=バッテリ
ーをはずすことがある。この丸め凰ムMlerに格納さ
れ九補正量kJがこわれて無意味な値C;なることがあ
る。よってバッテリがはずれたかどうかを検出するため
(二通常鳥人Miorの特定の番地に、決められ九パタ
ーンの定数を入れておく、プログラムが起動した時口、
この定数の値が4ζわれでいるか否かつt)誤つ九値で
あるか否かを判断し、娯つ九億であるならバッテリーか
はずれえものとして、wAi量hzのすべての値を「1
」Cニイニシャライズし、前記決められ九パターンの定
数を再設定する6次回の起動時6ニパターyji!数が
こわれていなかつ九らkJのイエシャクイズは行わない
Note that the initialization process in step 121 also executes the following. In other words, when the vehicle is being repaired during vehicle inspection (= the battery may be removed. The nine correction amount kJ stored in this rounded frame Mler may be destroyed and become a meaningless value C. Therefore, whether the battery has been removed or not. In order to detect (2) Put a constant of 9 predetermined patterns into a specific address of Birdman Mior, and when the program starts,
Determine whether the value of this constant is 4ζ and t) whether it is a false 9 value, and if it is 900 million, assume that the battery is defective, and change all values of the wAi amount hz to ``1''.
” C Initialize and reset the constants of the above-mentioned nine patterns 6 At the next startup 6 2 pattern yji! Yesha quizzes with unbroken numbers and 9 kJ will not be held.

通常はステップ111〜121のメインルーチyの処理
を制御グログラム(=従ってく多返し実行す為、第8図
1=おいて、割シ込み制御部102からの燃料噴射量演
算の割夛込み信号が入力され為と、マイクログ四七ツナ
100はメインルーチンの処理中であって4直ちC二そ
の処理を中断し、ステップ110の割)込み処理ルーチ
ンに移る。ステップ111では回転数カウンタ101か
らのエンジン回転数Ntl!わす信号を取ル込み、次C
ニステップl1lG:てアナ四グ入カポート1#4から
吸入空気量(吸気量)Qを表わす信号を取)込み、次−
二ステップ111では回転数Nと吸気量Qをメインルー
チンの演算処理亀ニジは為補正量kJの記憶処理の丸め
のパラメータとして使用するためC二1ムM101に格
納する0次Cニステップ134にて工噴射時間幅t)を
計算する。計算式は「t−Fではメインルーチンで求め
た燃料噴射用の各種の補正量をRAMl0Fから読み出
し空燃比を決定する噴射量(噴射時間幅)の補正計算を
行う、噴射時間幅Tの計算式はrT−txkxk11X
k8Jである0次6ニステツプ1361;”C補正計算
した燃量噴射量のデータをカウンタ101C−にッ卜す
る0次区ニステップ111に進みメインルーチン1:復
帰する。メインルーチン僅二復帰する際は割シ込み処理
で中断したときの処理ステップ6二戻る。
Normally, the processing of the main routine y in steps 111 to 121 is executed repeatedly in the control program (= Therefore, in FIG. When the input is received, the microlog 47Tuna 100 is in the middle of processing the main routine, and immediately interrupts the processing and moves to the interrupt processing routine in step 110. In step 111, the engine rotation speed Ntl from the rotation speed counter 101! Take in the wash signal, then next C
Step l1lG: Take in the signal representing the intake air amount (intake amount) Q from the analog input port 1#4, and then -
In the second step 111, the rotation speed N and the intake air amount Q are stored in the zero-order C step 134 to be used as rounding parameters for the storage process of the correction amount kJ. Then, calculate the injection time width t). The calculation formula is ``In t-F, various correction amounts for fuel injection obtained in the main routine are read from RAMl0F, and correction calculations are made for the injection amount (injection time width) that determines the air-fuel ratio.Formula for calculating the injection time width T. is rT-txkxk11X
k8J, 0th order 6th step 1361; "C correction. Load the calculated fuel injection amount data into the counter 101C-. Proceed to 0th order step 111. Main routine 1: Return. When returning to the main routine only two times. The process returns to step 62 when the process was interrupted due to the interrupt process.

マイクロプロセラ?100の概略機能は以上の通夛であ
る。
MicroProcera? The general functions of 100 are the same as above.

以上の様慝ニして第2の補正量kJ(−に、7)は吸入
空気量とエンジン回転数に応じてたくさん準備されてい
るのでエンジンの運転状態舊:対応した適正な補正量を
即時C二使用することができる。そして過度時を含む全
運転条件響二対して、応答の早い制御ができる。8ら【
二第2の補正量kJは運転状態−二対応して修正されて
ゆくので。
Considering the above, a large number of second correction amounts kJ (-, 7) are prepared according to the intake air amount and engine speed, so depending on the engine operating condition, the appropriate correction amount corresponding to the engine speed can be immediately calculated. C2 can be used. Fast-response control is possible under all operating conditions, including transient conditions. 8 etc.
2. The second correction amount kJ is corrected in accordance with the operating condition.

エンジンやセンナの経時変化中劣化C二対して自動的に
修正でi!為。
Automatically corrects deterioration C2 during engine and Senna changes over time. For.

なお上記実施例のもの6二おいてエンジンを一定条件で
運転し続けると補正量に1は全体のうちの同一のBばか
)修正され%’1ml’二対しy fn + 14p 
kIn : i等(二に:近くの値との差が大Cニー+
1 な9過ぎる場合があるので、kτの鳩目も同時6ユ学習
し修正することも可能であゐ、この場合は上記実施例の
メインルーチンの補正量に1の演算処理ステップJ J
 j l=おいて、積分処理情報としての補正量に1が
「k J)IJのとき第Sa(二おけるステップ504
は kffl■k”+3Δに鳳 1fi り圭F l ?:圭i+2in k雪圭トに=圭I+ハ・ k′:圭トに:′圭1+ハ聰 に″:圭トに′:圭1+ハ朧 となる処理を実行するようプ四グラムする。すとな〕C
二対しては「1」だけ同方崗(二修正するよう域ニしで
ある。rkj(IJのときはステップpost二おいて
上記同様C二して減算処理し、RAMJOF(:それぞ
れ格納する。
In addition, in the case of the above embodiment 62, if the engine is continued to be operated under constant conditions, the correction amount will be 1 (the same B idiot) in the whole, and y fn + 14p for %'1ml'2
kIn: i, etc. (Second: C knee + with large difference from nearby values
Since there are cases where 1 is over 9, it is possible to simultaneously learn and correct the eyelet of kτ by 6 units. In this case, the correction amount of the main routine of the above embodiment is 1 arithmetic processing step J J
j l=, when 1 is "k J)IJ" in the correction amount as the integral processing information, the step 504 in the Sa(2)
is kffl ■ k" + 3 Δ, Kei F l ?: Kei i + 2 in k Yuki Kei to = Kei I + ha, k': Kei to: 'Kei 1 + ha So to': Kei to': Kei 1 + ha The program is programmed to perform the process of blurring. Stona]C
For 2, the area is set to be modified by ``1''. When rkj (IJ), step post 2 is performed, C2 is performed as above, and subtraction processing is performed, and RAMJOF (: is stored, respectively.

上記実施例6二おいて第5図のに3の演算処理を第7図
、第8[1,第9図のように簡単(二しても喪い、この
第7図乃至第9図において、同一ステップは同一符号を
付してその説明は省略する。
In the above-mentioned Example 62, the arithmetic processing in Fig. 5 to 3 is simplified as shown in Figs. 7 and 8[1, 9]. Identical steps are given the same reference numerals and their explanations will be omitted.

また上記実施例(二おいては補正量「ks−に腎」はR
AMJ 07内に#(=書き込まれ九値6:補正量に2
の正負C二応じて所定の補正量ノhJ(或いは3ハl、
2Δkm、ハI)を加減算すること6二よ〕求めたもの
であったが、補正量kl(二定数α、若しくはエンジン
状態C二応じて痩化するα塁を乗算してこのklを求め
ることも可靜である。
In addition, in the above embodiment (2), the correction amount "ks-to-kidney" is R
AMJ 07 contains # (= written nine value 6: correction amount is 2)
A predetermined correction amount hJ (or 3Hl,
2 Δkm, H I) was calculated by adding and subtracting 62), but this kl can be calculated by multiplying the correction amount kl (2 constant α, or the α base that decreases depending on the engine condition C2). It is also safe.

を九上記実施例C二おいては補正量kJをRAM101
に分割して格納する丸めのバラメ\−タとして吸入空気
量とエンジン回転数とを用い、第6図6=示すよう6二
所電間隔毎(二分割してiツブを形成したが、この4の
ではk・1の数つまルはメ毫す−数が多くな〉、コスト
アップや信頼性の低下の心配があるため、パラメータを
吸入空気量Qだけとし、補正量に3をに’、k”。
In the above embodiment C2, the correction amount kJ is stored in the RAM 101.
Using the intake air amount and engine rotational speed as rounding parameters that are divided and stored into In case of 4, the number of k. , k”.

k3・・・kIllとしても良い。k3...kIll may also be used.

また上記各実施例では補正量kJを8AM101g二分
割して格納する丸めのエンジンパラメータとして吸入空
気量を使用したが、弛C二例えば吸入負圧ス四ットル弁
開度を用いてもよいことは勿論であみ。
Furthermore, in each of the above embodiments, the intake air amount was used as a rounded engine parameter to divide the correction amount kJ into 8AM101g and store it, but it is also possible to use the intake negative pressure throttle valve opening for example. Of course Ami.

また上記実施例6;おいては、補正量に1を演算し記憶
処理するステップ5pit二おいテ単位時間jt=経過
毎4二に1を演算し、書き替え(格納)するよう−二処
運しているが、エンジンの単位回転−N@[1:kJの
演算書き替え処理を行うようにしてもよいことは勿論で
あ)、この場合単位回転ΔNはエンジン定常時は30W
U転ぐらい、加減速等の過渡時は20回転ぐらいが制御
応答性、制御精度の点で良好である。
In the above-mentioned embodiment 6, in step 5, 1 is calculated for the correction amount and stored. However, it is of course possible to rewrite the calculation of unit rotation of the engine -N@[1:kJ), and in this case, the unit rotation ΔN is 30W when the engine is steady.
Approximately 20 rotations during transitions such as U-turns and acceleration/deceleration is good in terms of control response and control accuracy.

以上述べたようにこの発明では、エンジスの排気ガス成
分(=よ)空燃比を検出する空燃比センサを備え、この
空燃比センサの信号6二よって空燃比を制御する方法で
あって、餉記空燃比センナの出力信号と積分処理すb積
分処理ステップと、この積分処理ステップ6二て得た積
分情報番二応じた値を、七の処理時点口おけるエンジン
状態(二対応させて読み書き可能な不揮発性メモリにエ
ンジン状態補正量情報として記憶させる記憶処理ステッ
プとを含み、#記憶処理ステップ6二て得た積分情報と
前記不揮発性メモリに記憶され九エンジン状態補正情報
のうちのそのときのエンジンの状態に対応すb補正情報
と(ユよってエンジン窒燃比を制御する仁とを特徴とし
ておル、不揮発性メモ9を二記憶した補正情報に基づい
てエンジンの過渡崎や空燃比センサの不活性時にもあら
ゆるエンジン状態6二わたって空燃比を精度よく制御で
き、またエンジンの経時変化や空燃比センサの劣化、更
には生産時のバラツキを4補償して精度よく空燃比を制
御できるという優れえ効果がある。
As described above, the present invention is a method that includes an air-fuel ratio sensor that detects the air-fuel ratio of engine exhaust gas components, and controls the air-fuel ratio based on the signal 62 of this air-fuel ratio sensor. The output signal of the air-fuel ratio sensor is integrated with the output signal of the air-fuel ratio sensor. and a storage processing step of storing the engine state correction amount information in a non-volatile memory, and the storage processing step 6 stores the integral information obtained in the storage processing step 2 and the engine state correction information at that time among the nine engine state correction information stored in the non-volatile memory. It is characterized by B correction information corresponding to the state of The air-fuel ratio can be controlled accurately under all engine conditions, and the air-fuel ratio can be controlled accurately by compensating for changes in the engine over time, deterioration of the air-fuel ratio sensor, and even production variations. effective.

を九この発明では、上記要件C二加えて、不揮発性メモ
ダの特定の番地C;予め書き込んだ定数値がエンジンの
始動時C二おいて誤った値か否かを判別し、誤った値の
ときのみこの不揮発性メJE−リの各番地の記憶値曾弛
憲磯所定値(−書き替える処理ステップを含んでおり、
車両の車検、整備時等口車載バッテリーが外されてメ毫
すの内容が消滅し全く誤った値が書き込まれていて空燃
比制御も誤った制御をするといったことを防止できると
いう優れた効果を持つ。
In this invention, in addition to the above requirement C2, it is determined whether the constant value written in advance at a specific address C of the non-volatile memory memory is an incorrect value at C2 when the engine is started, and Only when the memory value of each address in this non-volatile memory is changed to a predetermined value (- includes a processing step of rewriting it,
It has the excellent effect of preventing cases such as when the vehicle battery is removed during vehicle inspection or maintenance, the contents of the message disappear, and completely incorrect values are written, resulting in incorrect air-fuel ratio control. have

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す全体構成図、第2図
は第1図6二示す制御回路のブロック図、餓3図は第2
図こ二示すマイタnプルセッサの概略の70−チャート
、第4閣は第3図6二示す補正量に2を得るステップの
詳細なフローチャート、第5図は第3図(=示す補正量
kjを得るステップの詳細なフローチャート、第6図は
この実施例の作動を説明するため(二層いる補正量に1
のマツプ、第7図乃至第9図はそれぞれこの発明の他の
実施例の作動を説明するフローチャートである。 1ノ・・着エンジン、1j・・・空気量センサ、22・
・・空燃比センサ、23・・・回転速度センサ、24・
・・制御回路、ioO・・・マイクロブ四セッサ(OF
υ)、xo’i・・・RAM (不揮発性メモリをなす
一時記憶スニット)。 出願人代理人 弁理士 鉤 江 武 彦一 第4図 第5図
FIG. 1 is an overall configuration diagram showing one embodiment of the present invention, FIG. 2 is a block diagram of the control circuit shown in FIG.
Figure 2 is a schematic 70-chart of the miter n pulser, Figure 3 is a detailed flowchart of the step of obtaining 2 for the correction amount shown in Figure 3, and Figure 5 is a detailed flowchart of the step of obtaining 2 for the correction amount kj shown in Figure 3 A detailed flowchart of the steps to obtain, FIG. 6, is provided to explain the operation of this embodiment (one
7 to 9 are flowcharts each illustrating the operation of other embodiments of the present invention. 1 no. Arrival engine, 1 j... Air amount sensor, 22.
...Air-fuel ratio sensor, 23...Rotational speed sensor, 24.
...Control circuit, ioO... Microb four processor (OF
υ), xo'i...RAM (temporary memory storage that forms non-volatile memory). Applicant's agent Patent attorney Hikoichi Kagoe Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] エンジンの排気ガス成分C;よ〕空燃比を検出する空燃
比センナを備え、この空燃比センナのプと、この積分処
理ステップー二て得た積分情報嘔二応じ友値をその処理
時点α:おけるエンジン状態に対応させて読み書き可能
な不揮発性メモリ1二エンジン状態補正情報として記憶
させる記憶処理ステップを含み、鍵記積分処理ステップ
にて得た積分情報と前記不揮発性メモリに記憶されたエ
ンジン状態補正情報のうちのそのときのエンジン状態に
対応すゐ補正情報とC二よゐ制御手段(二おいて、エン
ジン1=供給するための混合気を形成する燃料噴射弁の
噴射量tiは噴射弁≦二印加され為噴射パルス幅の設定
値(一対すb比較情報からなるエンジン状態、エンジン
の吸入空気量の設定値框二対すゐ比較情報からなるエン
ジン状態、エンジンの回転数の設定値堪二対する比較情
報からなるエンジン状態等の各種エンジン状態の少なく
と41つを特定の運転の条件とし、補正量の演算処理を
行なわせるようC二したことを特徴とする空燃比制御方
式。
The engine is equipped with an air-fuel ratio sensor that detects the air-fuel ratio of the exhaust gas component C; A non-volatile memory 12 that can be read and written in accordance with the engine state includes a storage processing step for storing engine state correction information, and the integral information obtained in the key recording integral processing step and the engine state correction stored in the non-volatile memory are included. Among the information, the correction information corresponding to the engine state at that time and the control means according to C2 (2, engine 1 = injection amount ti of the fuel injection valve that forms the air-fuel mixture to be supplied are injector ≦ The set value of the injection pulse width (one set value for the applied injection pulse width) (one set value for the engine speed, the set value for the engine intake air amount) An air-fuel ratio control system characterized in that at least 41 of various engine states such as engine states made up of comparison information are set as specific driving conditions, and C2 is configured to perform calculation processing of a correction amount.
JP11326881A 1981-07-15 1981-07-20 Control method of air-fuel ratio Granted JPS5815735A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11326881A JPS5815735A (en) 1981-07-20 1981-07-20 Control method of air-fuel ratio
US06/398,275 US4466410A (en) 1981-07-15 1982-07-14 Air-fuel ratio control for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11326881A JPS5815735A (en) 1981-07-20 1981-07-20 Control method of air-fuel ratio

Publications (2)

Publication Number Publication Date
JPS5815735A true JPS5815735A (en) 1983-01-29
JPH0214534B2 JPH0214534B2 (en) 1990-04-09

Family

ID=14607858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11326881A Granted JPS5815735A (en) 1981-07-15 1981-07-20 Control method of air-fuel ratio

Country Status (1)

Country Link
JP (1) JPS5815735A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206637A (en) * 1983-05-09 1984-11-22 Toyota Motor Corp Method of controlling learning of air-fuel ratio of internal-combustion engine
JPS6441645A (en) * 1987-08-08 1989-02-13 Daihatsu Motor Co Ltd Fuel control method for electronic control type fuel injecting device
JPH0192549A (en) * 1987-10-02 1989-04-11 Hitachi Ltd Air-fuel ratio control device
EP2169808A1 (en) 2008-09-29 2010-03-31 ALSTOM Technology Ltd Roebel bar for rotating electrical machines

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420231A (en) * 1977-07-12 1979-02-15 Gen Motors Corp System of controlling fuel of internal combustion engine
JPS5596339A (en) * 1979-01-13 1980-07-22 Nippon Denso Co Ltd Air-fuel ratio control method
JPS5644434A (en) * 1979-09-19 1981-04-23 Nippon Denso Co Ltd Control of air-fuel ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420231A (en) * 1977-07-12 1979-02-15 Gen Motors Corp System of controlling fuel of internal combustion engine
JPS5596339A (en) * 1979-01-13 1980-07-22 Nippon Denso Co Ltd Air-fuel ratio control method
JPS5644434A (en) * 1979-09-19 1981-04-23 Nippon Denso Co Ltd Control of air-fuel ratio

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206637A (en) * 1983-05-09 1984-11-22 Toyota Motor Corp Method of controlling learning of air-fuel ratio of internal-combustion engine
JPH0635850B2 (en) * 1983-05-09 1994-05-11 トヨタ自動車株式会社 Air-fuel ratio learning control method for internal combustion engine
JPS6441645A (en) * 1987-08-08 1989-02-13 Daihatsu Motor Co Ltd Fuel control method for electronic control type fuel injecting device
JPH0552419B2 (en) * 1987-08-08 1993-08-05 Daihatsu Motor Co Ltd
JPH0192549A (en) * 1987-10-02 1989-04-11 Hitachi Ltd Air-fuel ratio control device
EP2169808A1 (en) 2008-09-29 2010-03-31 ALSTOM Technology Ltd Roebel bar for rotating electrical machines

Also Published As

Publication number Publication date
JPH0214534B2 (en) 1990-04-09

Similar Documents

Publication Publication Date Title
US4348727A (en) Air-fuel ratio control apparatus
US4348728A (en) Air-fuel ratio controlling method and apparatus therefor
US4345561A (en) Air-fuel ratio control method and its apparatus
JP2570443B2 (en) Oxygen sensor heater control device
JPS58150038A (en) Fuel injection method of electronically controlled engine
JPS5825540A (en) Air-to-fuel ratio control method
JPS6335825B2 (en)
JPS6228299B2 (en)
JPS627374B2 (en)
JPS5925055A (en) Air-fuel ratio control device
JPS6313014B2 (en)
JPH0645646Y2 (en) Misfire determination device for internal combustion engine
JPH04116241A (en) Performance monitor of hc sensor in internal combustion engine
JPS6256339B2 (en)
JPH0693909A (en) Air-fuel ratio control device for engine
JPS5815735A (en) Control method of air-fuel ratio
JPH09105352A (en) Method and equipment for controlling internal combustion engine
JPS5813130A (en) Air-fuel ratio control method
JPH0797942A (en) Air-fuel ratio controller of internal combustion engine
JPH0711257B2 (en) Self-diagnosis control device for internal combustion engine
JPS6313013B2 (en)
JPS6228295B2 (en)
JPS58204942A (en) Control method of air fuel ratio
JPS5937245A (en) Air-fuel ratio controlling apparatus for engine
JPH0666188A (en) Self diagnostic unit in fuel supply device of internal combustion engine