JPS58150038A - Fuel injection method of electronically controlled engine - Google Patents
Fuel injection method of electronically controlled engineInfo
- Publication number
- JPS58150038A JPS58150038A JP3230582A JP3230582A JPS58150038A JP S58150038 A JPS58150038 A JP S58150038A JP 3230582 A JP3230582 A JP 3230582A JP 3230582 A JP3230582 A JP 3230582A JP S58150038 A JPS58150038 A JP S58150038A
- Authority
- JP
- Japan
- Prior art keywords
- skip
- air
- fuel ratio
- fuel injection
- ratio sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1477—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
- F02D41/1483—Proportional component
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、空燃比センサの特性上のばらつきを補償して
燃料噴射量を高精度で制御することができる電子制御機
関の燃料噴射方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection method for an electronically controlled engine that can compensate for variations in the characteristics of an air-fuel ratio sensor and control the fuel injection amount with high precision.
燃料噴射量の帰還制御では空燃比センサからの帰還信号
に関係して積分量を増減し、この積分量に基づいて燃料
噴射量を算出している。また、制御の応答性を改善する
ために、一般の電子制御機関では空燃比センサの出力反
転時に積分量に所定のスキップを加算あるいは減算して
得られるスキップ付き積分量を利用しているが、従来の
電子制御機関ではこのスキップが一定であった。排気ガ
ス中の酸素濃度がら空燃比を検出する周知の空燃比セン
サの出力特性は、製造上のばらつき、経時変化、および
劣化等のために正常なものからずれ、これが制御精度上
、支障となっている。In the feedback control of the fuel injection amount, the integral amount is increased or decreased in relation to the feedback signal from the air-fuel ratio sensor, and the fuel injection amount is calculated based on this integral amount. Furthermore, in order to improve control responsiveness, general electronically controlled engines use an integral quantity with skip, which is obtained by adding or subtracting a predetermined skip to the integral quantity when reversing the output of the air-fuel ratio sensor. In conventional electronically controlled engines, this skip was constant. The output characteristics of the well-known air-fuel ratio sensor, which detects the air-fuel ratio based on the oxygen concentration in exhaust gas, deviate from normal values due to manufacturing variations, changes over time, and deterioration, which can impede control accuracy. ing.
本発明の目的は、空燃比センサの出力特性が正常なもの
からずれていても燃料噴射量を高精度で制御することが
できる電子制御機関の燃料噴射方法を提供することであ
る。An object of the present invention is to provide a fuel injection method for an electronically controlled engine that can control the fuel injection amount with high precision even if the output characteristics of an air-fuel ratio sensor deviate from normal ones.
この目的を達成するために本発明によれば、空燃比セン
サの出力に基づいてスキップ付き積分量を算出し、帰還
制御の期間では、スキップ付き積分量に基づいて燃料噴
射量を算出する電子制御機関の燃料噴射方法において、
(a)機関が所定温度以上であり燃料噴射量の帰還制御
が行なわれておりかつ機関が所定回転速度以上で回転し
ている期間に、空燃比センサの出力電圧の最大値VOx
maχと最小値VOx minとを検出し、(11最太
値VOxmaxと最小値VOxmin との差ΔVO
x (=VOx max −VOxminを算出し、(
C)スキップ付き積分量のスキップを差ΔVOxに基づ
いて補正する。To achieve this objective, the present invention provides electronic control that calculates an integral amount with skip based on the output of an air-fuel ratio sensor, and calculates a fuel injection amount based on the integral amount with skip during the feedback control period. In the engine fuel injection method,
(a) Maximum value VOx of the output voltage of the air-fuel ratio sensor during a period when the engine is at a predetermined temperature or higher, feedback control of the fuel injection amount is being performed, and the engine is rotating at a predetermined rotational speed or higher.
max and the minimum value VOx min are detected, and (11 the difference ΔVO between the maximum value VOxmax and the minimum value VOxmin
x (=VOx max - VOxmin is calculated, (
C) Correcting the skip of the integral amount with skip based on the difference ΔVOx.
図面を参照して本発明の詳細な説明する。The present invention will be described in detail with reference to the drawings.
第1図は電子制御燃料噴射機関の全体の概略図であり、
エアクリーナ1を通って吸気通路2へ吸入された空気は
、運転室の加速ペダルに連動する絞り弁3により流量を
制御され、吸気分岐管4を介して機関本体5の燃焼室へ
導かれも排気系には上流から順番に排気分岐管6、排気
管7、および三元触媒を収容する触媒コンバータ8が設
けられている。クランク角センサ10は機関の回転速度
をクランク軸の回転から検出する。運転室のエンジンス
イッチ11はエンジンキー12のオン(ON)位置およ
びスター)(8T)位置を検出する。エアフローメータ
13は吸入空気流量を検出し、吸気温センサ14は吸気
温度を検出し、水温センサ15はシリンダブロックに取
付けられて冷却水温度を検出し、空燃比センサ16は排
気分岐管6に取付けられて排気ガス中の酸素濃度を検出
しスロットルセンサ17は絞り弁3の開度を検出する。Figure 1 is an overall schematic diagram of an electronically controlled fuel injection engine.
The air sucked into the intake passage 2 through the air cleaner 1 has its flow rate controlled by a throttle valve 3 that is linked to the accelerator pedal in the driver's cab, and is led to the combustion chamber of the engine body 5 via the intake branch pipe 4 and then exhausted. The system is provided with, in order from upstream, an exhaust branch pipe 6, an exhaust pipe 7, and a catalytic converter 8 that accommodates a three-way catalyst. The crank angle sensor 10 detects the rotational speed of the engine from the rotation of the crankshaft. The engine switch 11 in the driver's cab detects the ON position and the STAR (8T) position of the engine key 12. The air flow meter 13 detects the intake air flow rate, the intake temperature sensor 14 detects the intake air temperature, the water temperature sensor 15 is attached to the cylinder block and detects the cooling water temperature, and the air-fuel ratio sensor 16 is attached to the exhaust branch pipe 6. The throttle sensor 17 detects the opening degree of the throttle valve 3 by detecting the oxygen concentration in the exhaust gas.
り′ランク角センサ10、エンジンスイッチ11、エア
フローメータ13、吸気温センサ■4、水温センサI5
、空燃比センサ16、スロットルセンサ17、および車
速センサJBの出力は電子制御装置2θへ送られる。燃
料噴射弁21は吸気分岐管4の各核部分に設けられ、電
子制御装置20がらの電気パルスに応動して開閉する。Rank angle sensor 10, engine switch 11, air flow meter 13, intake temperature sensor 4, water temperature sensor I5
, the air-fuel ratio sensor 16, the throttle sensor 17, and the vehicle speed sensor JB are sent to the electronic control device 2θ. The fuel injection valves 21 are provided at each core portion of the intake branch pipe 4 and are opened and closed in response to electric pulses from the electronic control device 20.
第2図は電子制御装置2oのブロック図である。FIG. 2 is a block diagram of the electronic control device 2o.
タイマ25、割込み制御部26、回転数カウンタ27、
デジタル入力ポート28、アナログ入力ポート29、C
PU(中央処理装置)30. RAM(任意アクセス記
憶装置)31、ROM(読出し専用記憶装置)32、お
よび燃料噴射時間制御用カウンタ33はバス34を介し
て互いに接続されている。回転数カウンタ27ば、クラ
ンク角センサ10が30’のクランク角だけ回転するご
とに発生する出力パルスに基づいてクランク軸の1回転
につき1回、機関回転速度を辿1定し、測定終了と同時
に割込み制御部26へ割込み指令信号を送る。割込み制
御部26は回転数カウンタ27がも割込み指令信号を受
けると割込み信号を発生し、CPU30は割込み信号の
発生により燃料噴射量の算出のための割込みプログラム
を実行する。点火スイッチ1】のスタート端子35、ス
ロットルセンサ17、および」F速センサ18の出力信
号はデジタル入力信号としてデジタル入力ポート28へ
送られる。スタート端t35からのスタート信号は初期
化を行なうために信号として用いられる。エアフローメ
ータl:(、吸気温センサ14、水温センサ15、およ
び空燃比センサ16の出力はアナログ入力信号としてア
ナログ入力ボート29へ送られる。アナログ人力ポート
29は、アナログマルチプレクサとA/i)(アナログ
/デジタル)変換器を含み、アナログ人力信号を選択的
にA/D変換する。燃料噴射時間制御用カラ/り:33
はレジスタを含むダウンカウンタから成り、燃料噴射量
を表わすデジタル入力信号に対応するパルス幅のパルス
を出力とじて発生する。燃料噴射時間制御用カウンタ、
う3の出力パルスは電力増幅部36により増幅されてか
ら燃料噴射弁21へ送られる。燃料噴射時間制御用カウ
ンタ33の出力パルスのパルス1陥はC,)’ Li2
Oが算出した最終燃料噴射量に対応する。電子制別装置
20の電力は電源回路37により制御され、電源回路3
7はエンジンスイッチ11のオン端子38を介して蓄電
池39から電力を供給される。timer 25, interrupt control unit 26, rotation number counter 27,
Digital input port 28, analog input port 29, C
PU (Central Processing Unit) 30. A RAM (random access memory) 31, a ROM (read only memory) 32, and a fuel injection time control counter 33 are connected to each other via a bus 34. The revolution counter 27 traces the engine revolution speed once per revolution of the crankshaft based on the output pulse generated every time the crank angle sensor 10 rotates by 30' crank angle, and at the same time as the measurement ends. An interrupt command signal is sent to the interrupt control section 26. The interrupt control unit 26 generates an interrupt signal when the rotation number counter 27 also receives the interrupt command signal, and the CPU 30 executes an interrupt program for calculating the fuel injection amount based on the generation of the interrupt signal. The output signals of the start terminal 35 of the ignition switch 1, the throttle sensor 17, and the F speed sensor 18 are sent to the digital input port 28 as digital input signals. The start signal from the start terminal t35 is used as a signal for initialization. Air flow meter l: (, the outputs of the intake temperature sensor 14, water temperature sensor 15, and air-fuel ratio sensor 16 are sent as analog input signals to the analog input boat 29. The analog human power port 29 is connected to the analog multiplexer and A/i) /digital) converter to selectively A/D convert the analog human input signal. Color for fuel injection time control: 33
consists of a down counter including a register, and generates as an output a pulse having a pulse width corresponding to a digital input signal representing the amount of fuel to be injected. Counter for fuel injection time control,
The third output pulse is amplified by the power amplifier 36 and then sent to the fuel injection valve 21. Pulse 1 of the output pulse of the fuel injection time control counter 33 is C, )' Li2
O corresponds to the calculated final fuel injection amount. The power of the electronic discrimination device 20 is controlled by a power supply circuit 37.
7 is supplied with power from a storage battery 39 via an on terminal 38 of the engine switch 11.
第3図は本発明を実施するプログラムのフローチャート
である。ステップ43では冷却水が所定温度T以上か否
かを判別し、判別結果が正であればステップ44へ、否
であればステップ75へ進む。所定温度Tは機関の暖機
が終了した温度として設定されており、冷却水が所定温
度T以上である場合には空燃比センサ16も活性温度領
域に達していて正常な出力を発生している。ステップ4
4では燃料噴射量の帰還制御の実施期間か否かを判別し
、判別結果が正であればステップ45へ進み、否であれ
ばステップ75へ進む。暖機期間および減速期間では帰
還制御は中止されている。暖機期間では燃料噴射量の増
量のため、空燃比は過濃側へ偏位し、また減速期間では
燃料遮断(燃料カット)のために空燃比は希薄側へ偏位
する。このように帰還制御の中止期間では空燃比は理論
空燃比に対して偏位し、空燃比センサの出力も偏位して
空燃比セッサの正しい最大出力電圧および最小出力電圧
を検出することが困難となる。ステップ45では空燃比
センサ16の出力電圧VOxを検出する。ステップ46
では機関が所定回転速度R以上で回転しているが否かを
判別し、判別結果が正であればステップ47へ進み、否
であればステップ54へ進む。機関が所定回転速度R未
満で回転して(・る場合では、排気ガス量が不十分であ
り、空燃比センサ16の出力が大きな周波数で反転し、
すなわち変動し易く、適切な出力の検出は難しい。ステ
ップ47では最大出力電圧VOx maxを検出する。FIG. 3 is a flowchart of a program implementing the present invention. In step 43, it is determined whether or not the temperature of the cooling water is higher than a predetermined temperature T. If the determination result is positive, the process proceeds to step 44, and if not, the process proceeds to step 75. The predetermined temperature T is set as the temperature at which warm-up of the engine is completed, and if the cooling water is above the predetermined temperature T, the air-fuel ratio sensor 16 has also reached the active temperature range and is generating a normal output. . Step 4
In step 4, it is determined whether or not it is the execution period for feedback control of the fuel injection amount, and if the determination result is positive, the process proceeds to step 45, and if not, the process proceeds to step 75. Feedback control is suspended during the warm-up period and deceleration period. During the warm-up period, the air-fuel ratio deviates to the rich side due to an increase in the amount of fuel injection, and during the deceleration period, the air-fuel ratio deviates to the lean side due to fuel cut-off. In this way, during the feedback control suspension period, the air-fuel ratio deviates from the stoichiometric air-fuel ratio, and the output of the air-fuel ratio sensor also deviates, making it difficult to detect the correct maximum and minimum output voltages of the air-fuel ratio sensor. becomes. In step 45, the output voltage VOx of the air-fuel ratio sensor 16 is detected. Step 46
Then, it is determined whether the engine is rotating at a predetermined rotational speed R or higher, and if the determination result is positive, the process proceeds to step 47, and if not, the process proceeds to step 54. When the engine rotates below the predetermined rotational speed R, the amount of exhaust gas is insufficient and the output of the air-fuel ratio sensor 16 is reversed at a high frequency.
In other words, it is easy to fluctuate, and it is difficult to detect an appropriate output. In step 47, the maximum output voltage VOx max is detected.
具体的にはこれまでの最大出力電圧VOx maxと今
回ステップ45で検出した出力電圧VOxとを比較し、
VOx≧VOx maxならばVOxを新たなVOxm
axとする。ステップ48では最小出力電圧VOxmi
nを検出する。具体的にはこれまでの最小出力電圧VO
x minと今回ステップ45で検出した出力電圧VO
xとを比較し、VOx (VOx mi nならば、V
Oxを新たなVOxminとする。ステップ49では最
大出力電圧VOxmaxと最小出力電圧VOx m i
nとの差ΔVOx (=VOxm<ax −VOx
m1n)を算出する。ステップ50ではΔVOxを記憶
する。ステップ54ではすなわち帰還制御の実施期間で
はあるが空燃比センサ16の出力が変動して不安定であ
る場合では、前回のΔVOxを新たなΔVOxとする。Specifically, the maximum output voltage VOx max so far is compared with the output voltage VOx detected in step 45 this time,
If VOx≧VOx max, convert VOx to new VOxm
Let it be ax. In step 48, the minimum output voltage VOxmi
Detect n. Specifically, the previous minimum output voltage VO
x min and the output voltage VO detected in step 45 this time
x, and VOx (If VOx min, then V
Let Ox be the new VOxmin. In step 49, the maximum output voltage VOxmax and the minimum output voltage VOx m i
Difference from n ΔVOx (=VOxm<ax −VOx
m1n) is calculated. In step 50, ΔVOx is stored. In step 54, if the output of the air-fuel ratio sensor 16 fluctuates and is unstable during the feedback control execution period, the previous ΔVOx is set as the new ΔVOx.
ステップ58ではスキップ用補正値ΔR8を差ΔVOx
の関数として予め定めたテーブルから今回の差ΔVOx
に対応するスキップ用補正値ΔR8を求める。第4図は
差ΔVOxの関数として定められている補正値ΔR8を
表わしている。テーブルには適当に選択された差ΔVO
xに対応するスキップ用補正値ΔR8のみが書込まれて
いる。ステップ59ではスロットルセンサ12のアイド
ルスイッチがオンであるか否かを判別し、判別結果が正
であればステップ6oへ進み、否であればステップ ′
61へ進む。アイドルスイッチは、絞り弁3がアイドリ
ング開度にある場合にはオンとなっており、アイドリン
グ開度より大きく開かれている場合にはオフとなってい
る。ステップ6oではスキップ用補正値ΔR8=oとす
る。スキップ用補正値ΔR8=oとした理由はアイドル
期間にΔIts)0としてスキップを大きくすると、燃
料噴射量の変動が大きくなって慢関運転が不安定となり
、これを回避するためである。ステップ61では空燃比
センサ16の出力電圧VOxが所定電圧Vr以上である
が否かを判別し、判別結果が正であればステップ62へ
進み、否であればステップ68へ進む。空燃比が理論空
燃比以下である場合すなわち混合気が過濃である場合、
VOx〉Vrであり、空燃比が理論空燃比より大きい場
合、すなわち混合気が希薄である場合VOx(Vrであ
る。ステップ62テ4’!、 Vf −(R8+ΔRs
)ヲ新t、ニーすVfトスる。ただしVfはスキップ付
き積分量、R8はスキップ用所定値である。R8+ΔR
8l′!最終的なスキップであり、燃料噴射量はスキッ
プ付き積分量Vfに比例する。ステップ63ではV f
−K iを新たなに!とする。ただしKiは単位時間
当たりのスキップ付き積分量の変化分として設定された
正の所定値である。ステップ64では空燃比センサ16
の出力電圧VOxが所定値■「未満が否かを判別し、判
別結果が正であればこのプログラムを終了し、否であれ
ばステップ63へ戻る。こうして、空燃比センサ16が
過濃信号を出方するとスキップ付き積分量Vfがらスキ
ップとしてのR8+ΔR8が引かれ、以降、混合気が希
薄となるまでスキップ付き積分量Vfは所定の時間間隔
ごとにKlずつ減少する。ステップ68.ではUf−1
−(R8+ΔR8)を新たなVfとする。ステップ69
ではVf十Kiを新たなVfとする。ステップ7oでは
空燃比センサ16の出力電圧VOxが所定値Vr以上で
あるか否かを判別し、判別結果が正であればこのプログ
ラムを終了し、否であればステップ69へ戻る。こうし
て空燃比センサ】6が希薄信号を出力すると、スキップ
付き積分量VfにスキップとしてのR8+ΔR8が加算
され、以降、混合気が過濃となるまでスキップ付積分量
Vfは所定の時間間隔ごとにKiずつ増大する。ステッ
プ75では開ループ制御を行なう。In step 58, the skip correction value ΔR8 is set to the difference ΔVOx.
The current difference ΔVOx is calculated from a predetermined table as a function of
A skip correction value ΔR8 corresponding to is calculated. FIG. 4 represents the correction value ΔR8, which is determined as a function of the difference ΔVOx. The table shows the appropriately selected difference ΔVO
Only the skip correction value ΔR8 corresponding to x is written. In step 59, it is determined whether or not the idle switch of the throttle sensor 12 is on. If the determination result is positive, the process proceeds to step 6o, and if not, the process proceeds to step '
Proceed to 61. The idle switch is on when the throttle valve 3 is at the idling opening, and is off when the throttle valve 3 is opened more than the idling opening. In step 6o, the skip correction value ΔR8 is set to o. The reason why the skip correction value ΔR8=o is set is to avoid this problem, where if the skip is increased by setting ΔIts)0 during the idle period, the fluctuation in the fuel injection amount becomes large and the engine engine operation becomes unstable. In step 61, it is determined whether the output voltage VOx of the air-fuel ratio sensor 16 is equal to or higher than a predetermined voltage Vr. If the determination result is positive, the process proceeds to step 62; otherwise, the process proceeds to step 68. If the air-fuel ratio is below the stoichiometric air-fuel ratio, that is, if the mixture is too rich,
VOx>Vr, and when the air-fuel ratio is larger than the stoichiometric air-fuel ratio, that is, when the air-fuel mixture is lean, VOx (Vr. Step 62 Te4'!, Vf - (R8 + ΔRs
) wo new t, knee Vf toss. However, Vf is an integral amount with skip, and R8 is a predetermined value for skip. R8+ΔR
8l'! This is the final skip, and the fuel injection amount is proportional to the integral amount Vf with skip. In step 63, V f
-New Ki! shall be. However, Ki is a positive predetermined value set as a change in the amount of integral with skip per unit time. In step 64, the air-fuel ratio sensor 16
It is determined whether or not the output voltage VOx is less than a predetermined value. When it comes out, R8+ΔR8 as a skip is subtracted from the integral amount Vf with skip, and thereafter, the integral amount Vf with skip decreases by Kl at every predetermined time interval until the air-fuel mixture becomes lean.In step 68, Uf-1
-(R8+ΔR8) is set as a new Vf. Step 69
Now let Vf0Ki be the new Vf. In step 7o, it is determined whether the output voltage VOx of the air-fuel ratio sensor 16 is greater than or equal to a predetermined value Vr. If the determination result is positive, this program is terminated, and if not, the process returns to step 69. In this way, when the air-fuel ratio sensor [6] outputs a lean signal, R8 + ΔR8 as a skip is added to the integral amount Vf with skip, and from then on, the integral amount Vf with skip increases Ki at every predetermined time interval until the air-fuel mixture becomes rich. It increases gradually. In step 75, open loop control is performed.
第5図は空燃比センサ16の出力電圧およびスキップ付
き積分量の時間変化を示している。実線は空燃比センサ
16の出力電圧が正常である場合、破線は空燃比センサ
16の出力電圧が製造上のばらつき等により正常なもの
からずれている場合、二点鎖線は本発明により空燃比セ
ンサの出力電圧を補償した場合の特性を示している。FIG. 5 shows temporal changes in the output voltage of the air-fuel ratio sensor 16 and the integral amount with skip. The solid line indicates when the output voltage of the air-fuel ratio sensor 16 is normal, the broken line indicates when the output voltage of the air-fuel ratio sensor 16 deviates from the normal value due to manufacturing variations, etc., and the two-dot chain line indicates when the air-fuel ratio sensor 16 is operated according to the present invention. This shows the characteristics when the output voltage is compensated.
製造上−のばらつき等の原因のために空燃比センサ16
の振幅減少するが、本発明により振幅の減少に伴ってス
キップ補正値ΔR8が増大されるので、応答性、が向上
し、振幅が正常な場合とほぼ同じ精度で燃料噴射量を制
御することができる。Air-fuel ratio sensor 16 due to manufacturing variations, etc.
However, according to the present invention, the skip correction value ΔR8 is increased as the amplitude decreases, so the responsiveness is improved and the fuel injection amount can be controlled with almost the same accuracy as when the amplitude is normal. can.
このように本発明によれば、空燃比センサの出力が製造
上のばらつき等のために正常な出力特性からずれていて
も、空燃比センサの最大出力電圧と最小出力電圧との差
に関係してスキップ量を補正することにより、空燃比セ
ンサの出力特性のずれを補償することができる。As described above, according to the present invention, even if the output of the air-fuel ratio sensor deviates from normal output characteristics due to variations in manufacturing, etc., the difference between the maximum output voltage and the minimum output voltage of the air-fuel ratio sensor By correcting the skip amount, it is possible to compensate for deviations in the output characteristics of the air-fuel ratio sensor.
第1図は本発明が適用される電子制御機関の概略図、第
2図は第1図の電子制御装置の詳細なブロック図、第3
図は本発明を実施するプログラムのフローチャート、第
4図は空燃比センサの出力電圧の差ΔVOxとスキップ
補正値との関係を示すグラフ、第5図は空燃比センサの
出力特性とスキップ付き積分量との時間変化を示すグラ
フである。FIG. 1 is a schematic diagram of an electronic control engine to which the present invention is applied, FIG. 2 is a detailed block diagram of the electronic control device in FIG. 1, and FIG.
The figure is a flowchart of a program that implements the present invention, Figure 4 is a graph showing the relationship between the output voltage difference ΔVOx of the air-fuel ratio sensor and the skip correction value, and Figure 5 is the output characteristic of the air-fuel ratio sensor and the integral amount with skip. It is a graph showing the change over time.
Claims (1)
量を算出し、帰還制御の期間では、スキップ付き積分量
に基づいて燃料噴射量を算出する電子制御機関の燃料噴
射方法において、(a1機関が所定温度以上であり燃料
噴射量の帰還制御が行なわれておりかつ機関が所定回転
速度以上で回転している期間に、空燃比センサの出力電
圧の最大値VOx ma xと最小値VOxm i n
とを検出し、(bl最大値VOxmaxと最小値VOx
minとの差ΔVOx(=VOxmax−VOxmin
) −ヲ算出シ、(Clスキップ付き積分量のスキッ
プを差ΔVOxに基づいて補正することを特徴とする、
°電子制御燃料噴射方法。 2 スキップを所定値R8と補正値ΔR8との和R8+
ΔR8とし、補正値ΔR8を差ΔVOxの関数として予
め定めたテーブルを設け、前記(blで算出した差ΔV
Oxに対応する補正値ΔItsを該テーブルから求める
ことを特徴とする特許請求の範囲第1項記載の燃料噴射
方法。 3、差VOxの減少に連れて補正値ΔR8を増大させる
ことを特徴とする特許請求の範囲第2項記載の燃料噴射
方法。[Claims] 1. A fuel injection method for an electronically controlled engine that calculates an integral amount with skip based on the output of an air-fuel ratio sensor, and calculates the fuel injection amount based on the integral amount with skip during the feedback control period. In (a1), during a period when the engine is at a predetermined temperature or higher, feedback control of the fuel injection amount is being performed, and the engine is rotating at a predetermined rotational speed or higher, the maximum value VOx max of the output voltage of the air-fuel ratio sensor is Minimum value VOxmin
(bl maximum value VOxmax and minimum value VOx
Difference from min ΔVOx (=VOxmax−VOxmin
) - Calculation system, (characterized in that the skip of the integral amount with Cl skip is corrected based on the difference ΔVOx,
°Electronically controlled fuel injection method. 2 Skip the sum R8+ of the predetermined value R8 and the correction value ΔR8
ΔR8, a table is set in advance with the correction value ΔR8 as a function of the difference ΔVOx, and the difference ΔV calculated in the above (bl)
2. The fuel injection method according to claim 1, wherein the correction value ΔIts corresponding to Ox is determined from the table. 3. The fuel injection method according to claim 2, wherein the correction value ΔR8 is increased as the difference VOx decreases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3230582A JPS58150038A (en) | 1982-03-03 | 1982-03-03 | Fuel injection method of electronically controlled engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3230582A JPS58150038A (en) | 1982-03-03 | 1982-03-03 | Fuel injection method of electronically controlled engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58150038A true JPS58150038A (en) | 1983-09-06 |
JPH0522061B2 JPH0522061B2 (en) | 1993-03-26 |
Family
ID=12355233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3230582A Granted JPS58150038A (en) | 1982-03-03 | 1982-03-03 | Fuel injection method of electronically controlled engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58150038A (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4693076A (en) * | 1985-04-09 | 1987-09-15 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4703619A (en) * | 1985-04-09 | 1987-11-03 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4707984A (en) * | 1985-04-15 | 1987-11-24 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4707985A (en) * | 1985-09-12 | 1987-11-24 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4712373A (en) * | 1985-04-12 | 1987-12-15 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4720973A (en) * | 1985-02-23 | 1988-01-26 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having double-skip function |
US4723408A (en) * | 1985-09-10 | 1988-02-09 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4729219A (en) * | 1985-04-03 | 1988-03-08 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4739614A (en) * | 1985-02-22 | 1988-04-26 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system in internal combustion engine |
US4745741A (en) * | 1985-04-04 | 1988-05-24 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4747265A (en) * | 1985-12-23 | 1988-05-31 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4750328A (en) * | 1986-10-13 | 1988-06-14 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4761950A (en) * | 1985-09-10 | 1988-08-09 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4779414A (en) * | 1986-07-26 | 1988-10-25 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4796425A (en) * | 1986-10-13 | 1989-01-10 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4809501A (en) * | 1987-01-16 | 1989-03-07 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4811557A (en) * | 1986-10-13 | 1989-03-14 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4817384A (en) * | 1986-08-13 | 1989-04-04 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4817383A (en) * | 1986-11-08 | 1989-04-04 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4831838A (en) * | 1985-07-31 | 1989-05-23 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4840027A (en) * | 1986-10-13 | 1989-06-20 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4854124A (en) * | 1987-07-10 | 1989-08-08 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having divided-skip function |
US4881368A (en) * | 1987-02-09 | 1989-11-21 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4905469A (en) * | 1987-10-20 | 1990-03-06 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio feedback system having improved activation determination for air-fuel ratio sensor |
US4941318A (en) * | 1988-03-01 | 1990-07-17 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio feedback control system having short-circuit detection for air-fuel ratio sensor |
US4964271A (en) * | 1987-03-06 | 1990-10-23 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio feedback control system including at least downstream-side air-fuel ratio sensor |
US4964272A (en) * | 1987-07-20 | 1990-10-23 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio feedback control system including at least downstreamside air-fuel ratio sensor |
US4970858A (en) * | 1988-03-30 | 1990-11-20 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio feedback system having improved activation determination for air-fuel ratio sensor |
USRE33942E (en) * | 1985-02-22 | 1992-06-02 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system in internal combustion engine |
-
1982
- 1982-03-03 JP JP3230582A patent/JPS58150038A/en active Granted
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE33942E (en) * | 1985-02-22 | 1992-06-02 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system in internal combustion engine |
US4739614A (en) * | 1985-02-22 | 1988-04-26 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system in internal combustion engine |
US4720973A (en) * | 1985-02-23 | 1988-01-26 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having double-skip function |
US4729219A (en) * | 1985-04-03 | 1988-03-08 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4745741A (en) * | 1985-04-04 | 1988-05-24 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4703619A (en) * | 1985-04-09 | 1987-11-03 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4693076A (en) * | 1985-04-09 | 1987-09-15 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4712373A (en) * | 1985-04-12 | 1987-12-15 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4707984A (en) * | 1985-04-15 | 1987-11-24 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved response characteristics |
US4831838A (en) * | 1985-07-31 | 1989-05-23 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4723408A (en) * | 1985-09-10 | 1988-02-09 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4761950A (en) * | 1985-09-10 | 1988-08-09 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4707985A (en) * | 1985-09-12 | 1987-11-24 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4747265A (en) * | 1985-12-23 | 1988-05-31 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4819427A (en) * | 1985-12-23 | 1989-04-11 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4779414A (en) * | 1986-07-26 | 1988-10-25 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4817384A (en) * | 1986-08-13 | 1989-04-04 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4796425A (en) * | 1986-10-13 | 1989-01-10 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system carrying out learning control operation |
US4811557A (en) * | 1986-10-13 | 1989-03-14 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4840027A (en) * | 1986-10-13 | 1989-06-20 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4750328A (en) * | 1986-10-13 | 1988-06-14 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4817383A (en) * | 1986-11-08 | 1989-04-04 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4809501A (en) * | 1987-01-16 | 1989-03-07 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US4881368A (en) * | 1987-02-09 | 1989-11-21 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having improved exhaust emission characteristics |
US5022225A (en) * | 1987-03-06 | 1991-06-11 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio feedback control system including at least downstream-side air fuel ratio sensor |
US4964271A (en) * | 1987-03-06 | 1990-10-23 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio feedback control system including at least downstream-side air-fuel ratio sensor |
US4854124A (en) * | 1987-07-10 | 1989-08-08 | Toyota Jidosha Kabushiki Kaisha | Double air-fuel ratio sensor system having divided-skip function |
US4964272A (en) * | 1987-07-20 | 1990-10-23 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio feedback control system including at least downstreamside air-fuel ratio sensor |
US4905469A (en) * | 1987-10-20 | 1990-03-06 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio feedback system having improved activation determination for air-fuel ratio sensor |
US4941318A (en) * | 1988-03-01 | 1990-07-17 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio feedback control system having short-circuit detection for air-fuel ratio sensor |
US4970858A (en) * | 1988-03-30 | 1990-11-20 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio feedback system having improved activation determination for air-fuel ratio sensor |
Also Published As
Publication number | Publication date |
---|---|
JPH0522061B2 (en) | 1993-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58150038A (en) | Fuel injection method of electronically controlled engine | |
US4434768A (en) | Air-fuel ratio control for internal combustion engine | |
US4430976A (en) | Method for controlling air/fuel ratio in internal combustion engines | |
JPS601340A (en) | Air-fuel ratio control device in internal-combustion engine | |
JPS6228299B2 (en) | ||
JPH0214976B2 (en) | ||
JPS6134330A (en) | Air-fuel ratio controller for internal-combustion engine | |
JPS627374B2 (en) | ||
JP2707674B2 (en) | Air-fuel ratio control method | |
JPS6231179B2 (en) | ||
US5092123A (en) | Air-fuel ratio feedback control system having air-fuel ratio sensors upstream and downstream of three-way catalyst converter | |
JPH0312217B2 (en) | ||
JPH0799110B2 (en) | Air-fuel ratio feedback control method for internal combustion engine | |
JP2690482B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2547380B2 (en) | Air-fuel ratio feedback control method for internal combustion engine | |
JPH02230935A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0243910B2 (en) | ||
JPH0512538B2 (en) | ||
JPH0555700B2 (en) | ||
JP2641828B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS61237858A (en) | Control device for air-fuel ratio in internal-combustion engine | |
JPS6035148A (en) | Air-fuel ratio control device | |
JPS6050246A (en) | Device for controlling learning upon idling in internal- combustion engine | |
JPS6045745A (en) | Method of controlling learning of air-fuel ratio of electronically-controlled engine | |
JPH0531247Y2 (en) |