JPH0512538B2 - - Google Patents

Info

Publication number
JPH0512538B2
JPH0512538B2 JP57027844A JP2784482A JPH0512538B2 JP H0512538 B2 JPH0512538 B2 JP H0512538B2 JP 57027844 A JP57027844 A JP 57027844A JP 2784482 A JP2784482 A JP 2784482A JP H0512538 B2 JPH0512538 B2 JP H0512538B2
Authority
JP
Japan
Prior art keywords
increase
throttle valve
pipe pressure
intake pipe
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57027844A
Other languages
Japanese (ja)
Other versions
JPS58144633A (en
Inventor
Toshiaki Isobe
Nobunao Ookawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2784482A priority Critical patent/JPS58144633A/en
Publication of JPS58144633A publication Critical patent/JPS58144633A/en
Publication of JPH0512538B2 publication Critical patent/JPH0512538B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、内燃機関の電子制御燃料噴射方法に
係り、特に、吸気管圧力感知式の電子制御燃料噴
射装置を備えた自動車用内燃機関に用いるのに好
適な、エンジンの吸気管圧力とエンジン回転数に
応じて基本噴射量を求めると共に、過渡時は、エ
ンジン運転状態に応じて算出される補正係数によ
り前記基本噴射量を補正することによつて燃料噴
射量を決定するようにした内燃機関の電子制御燃
料噴射方法の改良に関する。
The present invention relates to an electronically controlled fuel injection method for an internal combustion engine, and particularly to an engine intake pipe pressure and engine rotation method suitable for use in an automobile internal combustion engine equipped with an intake pipe pressure sensing type electronically controlled fuel injection device. In this internal combustion engine, the basic injection amount is determined according to the number of fuel injections, and the fuel injection amount is determined by correcting the basic injection amount using a correction coefficient calculated according to the engine operating state during transient times. This invention relates to improvements in electronically controlled fuel injection methods.

【従来の技術】[Conventional technology]

自動車用エンジン等の内燃機関の燃焼室に所定
空燃比の混合気を供給する方法の一つに、電子制
御燃料噴射装置を用いるものがある。 これは、エンジン内に燃料を噴射するためのイ
ンジエクタを、例えば、エンジンの吸気マニホー
ルドあるいはスロツトルボデイに、エンジン気筒
数個あるいは1個配設し、該インジエクタの開弁
時間をエンジンの運転状態に応じて制御すること
により、所定の空燃比の混合気がエンジン燃焼室
に供給されるようにするものである。 この電子制御燃料噴射装置には、大別して、エ
ンジンの吸入空気量とエンジン回転数に応じて基
本噴射量を求めるようにした、いわゆる吸入空気
量感知式の電子制御燃料噴射装置と、エンジンの
吸気管圧力とエンジン回転数に応じて基本噴射量
を求めるようにした、いわゆる吸気管圧力感知式
の電子制御燃料噴射装置がある。 このうち前者は、空燃比を精密に制御すること
が可能であり、排気ガス浄化対策が施された自動
車用エンジンに広く用いられるようになつてい
る。 しかしながら、この吸入空気量感知式の電子制
御燃料噴射装置においては、吸入空気量が、アイ
ドル時と高負荷時で50倍程度変化し、ダイナミツ
クレンジが広いので、吸入空気量を電気信号に変
換する際の精度が低くなるだけでなく、後段のデ
ジタル制御回路における計算精度を高めようとす
ると、電気信号のビツト長が長くなり、デジタル
制御回路として高価なコンピユータを用いる必要
がある。又、吸入空気量を検出するために、エア
フローメーター等の非常に精密な構造を有するセ
ンサを用いる必要があり、設備費が高価となる等
の問題点を有していた。 一方、後者の吸気管圧力感知式の電子制御燃料
噴射装置においては、吸気管圧力の変化量が2〜
3倍程度と少なく、ダイナミツクレンジが狭いの
で、後段のデジタル制御回路における演算処理が
容易であるだけでなく、吸気管圧力を検知するた
めの圧力センサも安価であるという特徴を有す
る。
2. Description of the Related Art One of the methods for supplying an air-fuel mixture at a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine such as an automobile engine uses an electronically controlled fuel injection device. In this method, an injector for injecting fuel into the engine is installed in the intake manifold or throttle body of the engine, for example, in several engine cylinders or one engine cylinder, and the valve opening time of the injector is adjusted depending on the operating state of the engine. By controlling the air-fuel mixture, a mixture having a predetermined air-fuel ratio is supplied to the engine combustion chamber. These electronically controlled fuel injection devices can be roughly divided into so-called intake air amount sensing type electronically controlled fuel injection devices that calculate the basic injection amount according to the engine's intake air amount and engine speed, and There is a so-called intake pipe pressure sensing type electronically controlled fuel injection system that determines a basic injection amount according to pipe pressure and engine speed. Among these, the former allows for precise control of the air-fuel ratio, and has come to be widely used in automobile engines equipped with exhaust gas purification measures. However, in this electronically controlled fuel injection system that senses the amount of intake air, the amount of intake air changes by about 50 times between idle and high load, and has a wide dynamic range, so it converts the amount of intake air into an electrical signal. Not only does this result in lower accuracy when calculating, but if the calculation accuracy in the digital control circuit at the subsequent stage is to be increased, the bit length of the electrical signal becomes longer, requiring the use of an expensive computer as the digital control circuit. Furthermore, in order to detect the amount of intake air, it is necessary to use a sensor having a very precise structure, such as an air flow meter, resulting in problems such as high equipment costs. On the other hand, in the latter type of electronically controlled fuel injection device that detects intake pipe pressure, the amount of change in intake pipe pressure is 2 to 2.
Since the dynamic range is narrow, about 3 times as much, not only is the arithmetic processing in the subsequent digital control circuit easy, but the pressure sensor for detecting the intake pipe pressure is also inexpensive.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、吸入空気量検知式の電子制御燃
料噴射装置に比べると、空燃比の制御精度が低
く、特に、加速時においては、吸気管圧力が増大
しなければ燃料噴射量が増えないため、空燃比が
一時的にリーンとなつて、加速性能が低いもので
あつた。 このような問題点を解消するべく、従来は、絞
り弁に配設された櫛歯状のセンサから出力される
パルス列に応じて加速増量を行うようにしていた
が、ドライバビリテイを高めるためには、増量の
量を非常に大としなければならず、その場合に
は、空燃比がオーバーリツチとなつて、排気ガス
中の一酸化炭素量が異常に増大し、空燃比を三元
触媒コンバータに適した所定範囲内に維持するこ
とができなかつた。これは、排気下流側に配設し
た酸素濃度センサの出力信号に応じて燃料噴射量
をフイードバツク制御するようにした場合におい
ても、酸素濃度センサの反応が遅いため、同様で
ある。 従つて従来は、吸気管圧力感知式の電子制御燃
料噴射装置を、空燃比を精密に制御することが必
要な、排気ガス浄化対策が施された自動車用エン
ジンに用いることは困難であると考えられてい
た。 本発明は、前記従来の問題点を解消するべくな
されたもので、加速時に、アクセルペダルの踏み
方(即ちアイドルスイツチの状態と絞り弁開度)
と吸気管圧力の両者の変化に応じた適切な、過度
とならない増量補正を行つて、空燃比を理論空燃
比近傍に維持することができ、従つて、良好な過
渡応答性能と排気ガス浄化性能を両立させること
ができる内燃機関の電子制御燃料噴射方法を提供
することを目的とする。
However, compared to an electronically controlled fuel injection system that detects the amount of intake air, the control accuracy of the air-fuel ratio is lower, and especially during acceleration, the amount of fuel injected does not increase unless the intake pipe pressure increases, so the air-fuel ratio was temporarily lean, resulting in poor acceleration performance. In order to solve these problems, conventionally the acceleration was increased according to the pulse train output from a comb-like sensor installed in the throttle valve, but in order to improve drivability, In this case, the amount of increase must be very large, and in that case, the air-fuel ratio becomes overrich, the amount of carbon monoxide in the exhaust gas increases abnormally, and the air-fuel ratio is changed to a three-way catalytic converter. could not be maintained within a suitable predetermined range. This is the same even when the fuel injection amount is feedback-controlled in accordance with the output signal of the oxygen concentration sensor disposed downstream of the exhaust gas because the reaction of the oxygen concentration sensor is slow. Therefore, in the past, it was thought that it would be difficult to use an electronically controlled fuel injection system that senses intake pipe pressure in an automobile engine that requires precise control of the air-fuel ratio and that takes measures to purify exhaust gas. It was getting worse. The present invention was made to solve the above-mentioned conventional problems, and it is possible to determine how the accelerator pedal is pressed (i.e., the state of the idle switch and the opening degree of the throttle valve) during acceleration.
It is possible to maintain the air-fuel ratio near the stoichiometric air-fuel ratio by making appropriate and not excessive increase corrections in response to changes in both the intake pipe pressure and the intake pipe pressure, resulting in good transient response performance and exhaust gas purification performance. An object of the present invention is to provide an electronically controlled fuel injection method for an internal combustion engine that can achieve both of the following.

【課題を解決するための手段】[Means to solve the problem]

本発明は、エンジンの吸気管圧力とエンジン回
転数に応じて基本噴射量を求めると共に、過渡時
は、エンジン運転状態に応じて算出される補正係
数により前記基本噴射量を補正することによつて
燃料噴射量を決定するようにした内燃機関の電子
制御燃料噴射方法において、加速時に、アイドル
スイツチがオフとなつたときに増量補正を行うア
フタアイドル増量と、絞り弁開度が所定開度より
も大である時は増量補正を行わず、所定開度以下
の範囲で絞り弁開度の所定時間毎に変化量に応じ
た値を積算した値を補正係数として、絞り弁開度
の増大速度に応じた増量補正を行う絞り弁開度増
量と、吸気管圧力の所定時間毎の変化量に応じた
値を積算した値を補正係数として、吸気管圧力の
増大速度に応じた増量補正を行う吸気管圧力増量
とを算出し、これら増量値のうち、その最大値を
用いて加速増量を行うようにして、前記目的を達
成したものである。
The present invention calculates the basic injection amount according to the engine intake pipe pressure and engine rotation speed, and during transient periods, corrects the basic injection amount using a correction coefficient calculated according to the engine operating state. In an electronically controlled fuel injection method for an internal combustion engine that determines the amount of fuel to be injected, there is an after-idle increase that performs an increase correction when the idle switch is turned off during acceleration, and an after-idle increase that performs an increase correction when the idle switch is turned off during acceleration. If the throttle valve opening is large, no increase correction is performed, and the value obtained by integrating the values according to the amount of change in the throttle valve opening at predetermined time intervals within the range of the specified opening is used as a correction coefficient to adjust the increase speed of the throttle valve opening. An intake system that performs an increase correction in accordance with the rate of increase in intake pipe pressure, using a correction coefficient that is the sum of the throttle valve opening increase and the amount of change in intake pipe pressure at each predetermined time interval. The above objective is achieved by calculating the pipe pressure increase and performing accelerated increase using the maximum value among these increase values.

【作用】[Effect]

本発明においては、加速時に、アクセルペダル
を踏んだ瞬間に増量補正を行う、極めて応答の早
いアフタアイドル増量と、吸気管圧力の増大に先
行して絞り弁開度の増大速度に応じた増量補正を
行う、応答の早い絞り弁開度増量と、吸気管圧力
の増大に応じた増量補正を行う、精度の高い吸気
管圧力増量と、を組合せて増量補正を行うように
しているので、応答が早く、且つ、精度の高い加
速増量を行うことができる。 即ち、前記アフタアイドル増量は、応答は極め
て早いが、どの程度の加速か判断できないため、
見込み補正しかできず、オーバーリツチ防止の観
点から多くの増量値とすることはできない。 又、前記絞り弁開度量は、絞り弁開度に基づい
て行われるため、アクセルペダルの踏み方に応じ
た増量を迅速に行うことができ、高精度の吸気管
圧力増量が行われる迄の中間加速部分の応答性を
向上させることができる。 これらに対して、前記吸気管圧力増量は、絞り
弁開度が変化した後で吸気管圧力の変化が生じて
から行われる。この吸気管圧力増量は、実際にエ
ンジン燃焼室に吸入される空気量に基づいて行わ
れるものであり、精度が高い。 なお、吸入空気量感知式の場合には、加速時に
絞り弁が開かれると、絞り弁より上流側のエアフ
ローセンサ出力は直ちに吸入空気量の増加を検出
するのに対し、実際に燃焼室に吸入される空気量
は、絞り弁より下流側のサージタンクの分だけ増
加が遅れるため、前記センサ出力により計算され
る燃料の方が先行して増加することになり、これ
が適当な加速増量となるため、本発明のような絞
り弁開度増量を必要としない。 本発明においては、更に、前記アフタアイドル
増量、絞り弁開度増量及び吸気管圧力増量の最大
値を辿つて加速増量を行うようにしているので、
これらが重なる領域でも過増量となることがな
い。 又、前記絞り弁開度増量は、応答は早いが精度
が低いため、絞り弁開度にかかわらず、その増大
速度に応じた増量をそのまま行つてしまうと過増
量となる恐れがある。そこで本発明では、絞り弁
開度が所定開度以上となり、次の吸気管圧力増量
が始まつていると見られる領域では、絞り弁開度
増量の補正係数の積算を禁止して、精度の低い絞
り弁開度増量のために過増量となつてしまうこと
を防いでいる。
In the present invention, during acceleration, the after-idle amount increase is performed at the moment the accelerator pedal is pressed, and the after-idle amount increases with extremely quick response.The amount is also increased in accordance with the rate of increase in the throttle valve opening prior to the increase in intake pipe pressure. Since the increase correction is performed by combining the throttle valve opening increase with a quick response, which performs the Acceleration increase can be performed quickly and with high precision. In other words, although the after-idle increase has an extremely quick response, it is not possible to determine how much acceleration the engine is accelerating.
Only estimated corrections can be made, and it is not possible to increase the amount by a large amount in order to prevent over-richness. In addition, since the throttle valve opening amount is determined based on the throttle valve opening degree, the amount can be quickly increased depending on how the accelerator pedal is depressed, and the intake pipe pressure can be increased quickly until the intake pipe pressure is increased with high precision. The responsiveness of the acceleration part can be improved. On the other hand, the intake pipe pressure increase is performed after the intake pipe pressure changes after the throttle valve opening changes. This intake pipe pressure increase is performed based on the amount of air actually taken into the engine combustion chamber, and is highly accurate. In the case of the intake air amount sensing type, when the throttle valve is opened during acceleration, the air flow sensor output upstream of the throttle valve immediately detects an increase in the amount of intake air, whereas Since the increase in the amount of air caused by the throttle valve is delayed by the amount of the surge tank downstream from the throttle valve, the fuel calculated by the sensor output will increase in advance, and this will result in an appropriate increase in acceleration. , it is not necessary to increase the throttle valve opening as in the present invention. In the present invention, the acceleration increase is further performed by following the maximum values of the after-idle increase, the throttle valve opening increase, and the intake pipe pressure increase.
Even in the area where these overlap, the amount will not be increased excessively. Furthermore, since the throttle valve opening increase has a quick response but low accuracy, if the increase is continued in accordance with the speed of increase regardless of the throttle valve opening, there is a risk of an excessive increase. Therefore, in the present invention, in a region where the throttle valve opening exceeds a predetermined opening and the next increase in intake pipe pressure is considered to be starting, the accumulation of the correction coefficient for the throttle valve opening increase is prohibited to improve accuracy. This prevents an excessive increase in the amount due to a low throttle valve opening.

【実施例】【Example】

以下、図面を参照して、本発明の実施例を詳細
に説明する。 本発明に係る内燃機関の電子制御燃料噴射方法
が採用された吸気管圧力感知式の電子制御燃料噴
射装置の実施例は、第1図及び第2図に示す如
く、外気を取入れるためのエアクリーナ12と、
該エアクリーナ12より取入れられた吸入空気の
温度を検出するための吸気温センサ14と、吸気
通路16に配設され、運転席に配設されたアクセ
ルペダル(図示省略)と連動して開閉するように
された、吸入空気の流量を制御するための絞り弁
18と、該絞り弁18がアイドル開度にあるか否
かを検出するためのアイドル接点(スイツチ)及
び絞り弁18の開度に比例した電圧出力を発生す
るポテンシヨメータを含むスロツトルセンサ20
と、気筒間の吸気干渉を防止するためのサージタ
ンク22と、該サージタンク22内の圧力から吸
気管圧力を検出するための吸気管圧力センサ23
と、前記絞り弁18をバイパスするバイパス通路
24と、該バイパス通路24の途中に配設され、
該バイパス通路24の開口面積を制御することに
よつて、アイドル回転速度を制御するためのアイ
ドル回転制御弁26と、吸気マニホールド28に
配設された、エンジン10の吸気ポートに向けて
燃料を噴射するためのインジエクタ30と、排気
マニホールド32に配設された、排気ガス中の残
存酸素濃度から空燃比を検知するための酸素濃度
センサ34と、前記排気マニホールド32下流側
の排気管36の途中に配設された三元触媒コンバ
ータ38と、エンジン10のクランク軸の回転と
連動して回転するデイストリビユータ軸を有する
デイストリビユータ40と、該デイストリビユー
タ40に内蔵された、前記デイストリビユータ軸
の回転に応じて上死点信号及びクランク角信号を
出力する上死点センサ42及びクランク角センサ
44と、エンジンブロツクに配設された、エンジ
ン冷却水温を検知するための冷却水温センサ46
と、変速機48の出力軸の回転数から車両の走行
速度を検知するための車速センサ50と、前記吸
気管圧力センサ23出力の吸気管圧力と前記クラ
ンク角センサ44の出力から求められるエンジン
回転数に応じて、エンジン1工程あたりの基本噴
射量を求めると共に、これを前記スロツトルセン
サ20の出力、前記酸素濃度センサ34出力の空
燃比、前記冷却水温センサ46出力のエンジン冷
却水温等に応じて補正することによつて、燃料噴
射量を決定して前記インジエクタ30に開弁時間
信号を出力し、又、エンジン運転状態に応じて点
火時期を決定して、イグナイタ付コイル52に点
火信号を出力し、更に、アイドル時に前記アイド
ル回転制御弁26を制御するデジタル制御回路5
4とを備えた自動車用エンジン10の吸気管圧力
感知式電子制御燃料噴射装置において、前記デジ
タル制御回路54内で、加速時及び減速時に、前
記スロツトルセンサ20のアイドルスイツチがオ
フとなつた時に所定量の増量補正を行うアフタア
イドル増量と、前記スロツトルセンサ20のポテ
ンシヨメータ出力から検知される絞り弁開度が所
定開度以下の範囲で絞り弁開度の所定期間毎の変
化量に応じた値を積算した値を補正係数として、
絞り弁開度の変化速度に応じた増減量補正を行う
絞り弁開度増減量と、前記吸気管圧力センサ23
の出力から検知される吸気管圧力の所定期間毎の
変化量に応じた値を積算した値を補正係数とし
て、吸気管圧力の変化速度に応じた増減量補正を
行う吸気管圧力増減量とを算出し、これら増減量
値のうち、加速時はその最大値を、減速時はその
最小値を用いて、加速増量及び減速減量を行うよ
うにしたものである。 前記デジタル制御回路54は、第2図に詳細に
示す如く、各種演算処理を行うマイクロプロセツ
サからなる中央処理装置(以下CPUと称する)
60と、前記吸気温センサ14、スロツトルセン
サ20のポテンシヨメータ、吸気管圧力センサ2
3、酸素濃度センサ34、冷却水温センサ46等
から入力されるアナログ信号を、デジタル信号に
変換して順次CPU60に取込むためのマルチス
プレクサ付アナログ入力ポート62と、前記スロ
ツトルセンサ20のアイドルスイツチ、上死点セ
ンサ42、クランク角センサ44、車速センサ5
0等から入力されるデジタル信号を、所定のタイ
ミングでCPU60に取込むためのデジタル入力
ポート64と、プログラムあるいは各種定数等を
記憶するためのリードオンリーメモリ(以下
ROMと称する)66と、CPU60における演算
データ等を一時的に記憶するためのランダムアク
セスメモリ(以下RAMと称する)68と、機関
停止時にも補助電源から給電されて記憶を保持で
きるバツクアツプ用ランダムアクセスメモリ(以
下バツクアツプRAMと称する)70と、CPU6
0における演算結果を、所定のタイミングで前記
アイドル回転制御弁26、インジエクタ30、イ
グナイタ付コイル52等に出力するためのデジタ
ル出力ポート72と、上記各構成機器間を接続す
るコモンバス74とから構成されている。 以下、実施例の作用を説明する。 まずデジタル制御回路54は、吸気間圧力セン
サ23出力の吸気管圧力PMと、クラン角センサ
44の出力から算出されるエンジン回転係数NE
により、ROM66に予め記憶されているマツプ
から、基本噴射時間TP(PM、NE)を読出す。 更に、各センサからの信号に応じて、次式を用
いて前記基本噴射時間TP(PM、NE)を補正す
ることにより、燃料噴射時間TAUを算出する。 TAU=TP(PM、NE)*(1+K*F) ……(1) ここで、Fは、補正係数で、Fが正である場合
には増量補正を表わし、Fが負である場合には減
量補正を表わしている。又、Kは、前記補正係数
Fを更に補正するための補正倍率であり、通常は
1とされている。 このようにして決定された燃料噴射時間TAU
に対応する燃料噴射信号が、インジエクタ30に
出力され、エンジン回転と同期してインジエクタ
30が燃料噴射時間TAUだけ開かれて、エンジ
ン10の吸気マニホールド28内に燃料が噴射さ
れる。 本実施例における加速増量及び減速増量は、次
のようにして行われる。 即ち、第3図に示す如く、加速時に、アクセル
ペダルを踏み込まれ、スロツトルセンサ20のア
イドルスイツチが、第3図Aに示す如く、時刻t1
でオフとなると、絞り弁開度TA及び吸気管圧力
PMの増大に先行して、第3図Dに実線Aで示す
ような、極めて迅速な増量補正を行うアフタアイ
ドル増量(以下LLを増量と称する)が行なわれ
る。 このLL増量は、具体的には、例えば、補正係
数Fを、まず正の所定地とし、次いで、エンジン
回転毎あるいは一定時間毎に所定の減衰速度で0
まで減衰させることによつて行われる。 次いで、絞り弁18が更に開かれ、前記スロツ
トルセンサ20のポテンシヨメータ出力から検知
される絞り弁開度TAが、第3図Bに示す如く、
時刻t2で立上り始めると、吸気管圧力PMの増大
に先行して、第3図Dに実線Bで示すような、絞
り弁開度TAの増大速度に応じた迅速の増量補正
を行う絞り弁開度増量(以下TA増量と称する)
が行われる。 このTA増量は、具体的には、例えば、絞り弁
開度の所定時間毎の変化量に応じた値を積算した
値(正値)を補正係数Fとし、次いで、エンジン
回転毎あるいは一定時間毎に所定の減速速度で0
まで減衰させることによつて行われる 更に、吸気管圧力PMが絞り弁開度TAの増大
に遅れて増大し始めると、時刻t3から、第3図D
に実線Cで示すような、吸気管圧力Mの増大速度
に応じた精度の高い増量補正を行う吸気管圧力増
量(以下PM像量と称する)が行われる。 このPM増量は、具体的には、例えば、吸気管
圧力の所定時間毎の変化量に応じた値を積算した
値(正値)を補正係数Fとし、次いで、エンジン
回転毎あるいは一定時間毎に、所定の減衰速度で
0まで減衰させることによつて行われる。 なお、この際に、時刻t2〜t3ではLL増量とTA
増量が重なり、又、時刻t3〜t4では全ての増量が
重なり、更に、時刻t4〜t5ではTA増量とPM増量
が重なつているが、全ての増量を重畳して増量補
正を行つてしまうと、特に、応答は早いが精度の
良くないLL増量、TA増量の影響で、過増量とな
る恐れがある。 従つて、本発明においては、第3図Dに太い実
線で示す如く、前記LL増量、TA増量、PM増量
の最大値を辿つて加速増量を行うようにしてい
る。 次に、減速時には、時刻t6で絞り弁18が閉じ
られ始められると、吸気管圧力PMの減少に先行
して、第3図Dに実線Dで示すような、絞り弁開
度TAの減少速度に応じた迅速な減量補正を行う
絞り弁開度減量(以下TA減量と称する)が行わ
れる。 このTA減量は、具体的には、例えば、絞り弁
開度TAの所定時間毎の変化量に応じた値を積算
した値(負値)を補正係数Fとし、次いで、エン
ジン回転毎にあるいは一定時間毎に、所定回復速
度で0まで回復させることによつて行われる。 次いで、吸気管圧力PMが減少し始めると、時
刻t7から、第3図Dに実線Eで示すような、吸気
管圧力PMの減少速度に応じた精度の高い減量補
正を行う吸気管圧力減量(以下PM減量と称す
る)が行われる。 このPM減量は、具体的には、例えば、吸気管
圧力PMの所定時間毎の変化量に応じた値を積算
した値(負値)を補正係数Fとし、次いで、エン
ジン回転毎あるいは一定時間毎に、所定の回復速
度で0まで回復させることによつて行われる。 なお、この際に、TA減量とPM減量が重複し
た場合には、両者を合わせ行うと過減量になる恐
れがある。 従つて、本実施例においては、第3図Dに太い
実線で示す如く、前記TA減量とPM減量の最小
値を辿つて、時刻t7〜t8ではTA減量のみを行い、
時刻t8〜t9では、PM減量のみを行うようにして
いる。 又、前記TA増量あるいはTA減量を行うに際
して、第4図に破線Gで示す如く、絞り弁開度
TAの大きさに拘らず、絞り弁開度の変化速度に
応じた増減量歩を行つてしまうと、絞り弁が所定
開度、例えば45°以上である場合には、絞り弁の
開度変化(例えば45°→90°)に拘らずエンジン運
転状態(吸気管圧力)は殆んど変わらないため、
応答は早いが精度の低いTA増減量の影響で、過
増量あるいは過減量となつて逆効果になる恐れが
ある。 従つて、本実施例においては、第4図に実線H
で示す如く、絞り弁開度TAが、所定開度TA1、
例えば45°を越えている場合には、絞り弁開度の
変化速度に応じた補正係数の積算を行わずに減衰
させ、絞り弁開度TAが45°以下である場合にの
み、絞り弁開度の変化速度に応じた補正係数の積
算を行うようにしている。 本実施例におけるTA増量のプログラムを第5
図に示す。 これにより、絞り弁開度の変化速度に応じた燃
料補正を行う場合の、過増量あるいは過減量によ
る、加速時のオーバーリツチあるいは、減速時の
オーバーリーンを防止することができる。 前記のようにして、極めて応答の早いLL増量、
応答の早いTA増減量、精度の高いPM増減量を
組合せて、加速増量及び/又は減速減量を行うこ
とによつて、アクセルペダルを早く踏み込んだ場
合には多量の増量が実施され、一方、アクセルペ
ダルを徐々に踏み込んだ場合には少量の増量が行
なわれる等、アクセルペダルの踏み方に応じた適
切な増量あるいは減量を実現することができ、空
燃比を理論空燃比近傍に維持して、過渡応答性能
と排気ガス浄化性能を両立することができる。 なお、前記実施例においては、加速像量と減速
減量を共に行うようにしていたが、減速減量を省
略することも可能である。
Embodiments of the present invention will be described in detail below with reference to the drawings. An embodiment of the intake pipe pressure sensing type electronically controlled fuel injection device in which the electronically controlled fuel injection method for an internal combustion engine according to the present invention is adopted is as shown in FIGS. 1 and 2. 12 and
An intake temperature sensor 14 for detecting the temperature of the intake air taken in from the air cleaner 12, and an intake air temperature sensor 14 disposed in the intake passage 16 so as to open and close in conjunction with an accelerator pedal (not shown) disposed in the driver's seat. a throttle valve 18 for controlling the flow rate of intake air, an idle contact (switch) for detecting whether or not the throttle valve 18 is at the idle opening, and a throttle valve 18 that is proportional to the opening of the throttle valve 18. a throttle sensor 20 including a potentiometer that produces a voltage output of
, a surge tank 22 for preventing intake air interference between cylinders, and an intake pipe pressure sensor 23 for detecting intake pipe pressure from the pressure inside the surge tank 22.
a bypass passage 24 that bypasses the throttle valve 18; and a bypass passage 24 disposed in the middle of the bypass passage 24;
By controlling the opening area of the bypass passage 24, fuel is injected toward the intake port of the engine 10, which is arranged in the idle rotation control valve 26 for controlling the idle rotation speed and the intake manifold 28. an oxygen concentration sensor 34 disposed in the exhaust manifold 32 for detecting the air-fuel ratio from the residual oxygen concentration in the exhaust gas; a three-way catalytic converter 38 provided therein, a distributor 40 having a distributor shaft that rotates in conjunction with rotation of the crankshaft of the engine 10, and the distributor built into the distributor 40. A top dead center sensor 42 and a crank angle sensor 44 output a top dead center signal and a crank angle signal according to the rotation of the shaft, and a cooling water temperature sensor 46 disposed in the engine block to detect the engine cooling water temperature.
, a vehicle speed sensor 50 for detecting the running speed of the vehicle from the rotation speed of the output shaft of the transmission 48, and an engine rotation determined from the intake pipe pressure output from the intake pipe pressure sensor 23 and the output from the crank angle sensor 44. The basic injection amount per engine stroke is determined according to the number of engine steps, and this is determined according to the output of the throttle sensor 20, the air-fuel ratio of the output of the oxygen concentration sensor 34, the engine cooling water temperature of the output of the cooling water temperature sensor 46, etc. By correcting the amount, the fuel injection amount is determined and a valve opening time signal is output to the injector 30, and the ignition timing is determined according to the engine operating condition and an ignition signal is sent to the igniter coil 52. a digital control circuit 5 that outputs an output and further controls the idle rotation control valve 26 during idle;
In the intake pipe pressure sensing type electronically controlled fuel injection system for an automobile engine 10, which is equipped with 4, in the digital control circuit 54, when the idle switch of the throttle sensor 20 is turned off during acceleration and deceleration, An after-idle increase that performs a predetermined increase correction, and a change in the throttle valve opening for each predetermined period within a range where the throttle valve opening detected from the potentiometer output of the throttle sensor 20 is less than or equal to the predetermined opening. The value obtained by integrating the corresponding values is used as the correction coefficient,
The throttle valve opening increase/decrease is corrected according to the speed of change of the throttle valve opening, and the intake pipe pressure sensor 23
The intake pipe pressure increase/decrease correction is performed according to the rate of change of the intake pipe pressure, using the value obtained by integrating the values corresponding to the amount of change in the intake pipe pressure detected from the output of the Among these increase/decrease values, the maximum value is used during acceleration and the minimum value is used during deceleration to perform acceleration increase and deceleration decrease. As shown in detail in FIG. 2, the digital control circuit 54 is a central processing unit (hereinafter referred to as CPU) consisting of a microprocessor that performs various arithmetic operations.
60, the intake temperature sensor 14, the potentiometer of the throttle sensor 20, and the intake pipe pressure sensor 2.
3. An analog input port 62 with a multiplexer for converting analog signals input from the oxygen concentration sensor 34, cooling water temperature sensor 46, etc. into digital signals and sequentially inputting them into the CPU 60, and an idle port for the throttle sensor 20. switch, top dead center sensor 42, crank angle sensor 44, vehicle speed sensor 5
A digital input port 64 is used to input digital signals input from 0, etc. to the CPU 60 at a predetermined timing, and a read-only memory (hereinafter referred to as "read-only memory") is used to store programs or various constants.
Random access memory (hereinafter referred to as RAM) 68 for temporarily storing calculation data etc. in the CPU 60, and random access memory (hereinafter referred to as RAM) 68 for backup that can maintain memory by being supplied with power from the auxiliary power supply even when the engine is stopped. Memory (hereinafter referred to as backup RAM) 70 and CPU 6
0 to the idle rotation control valve 26, injector 30, coil with igniter 52, etc. at a predetermined timing, and a common bus 74 that connects each of the above components. ing. The effects of the embodiment will be explained below. First, the digital control circuit 54 controls the intake pipe pressure PM output from the intake pressure sensor 23 and the engine rotation coefficient NE calculated from the output from the crank angle sensor 44.
The basic injection time TP (PM, NE) is read out from the map stored in the ROM 66 in advance. Furthermore, the fuel injection time TAU is calculated by correcting the basic injection time TP (PM, NE) using the following equation according to the signals from each sensor. TAU = TP (PM, NE) * (1 + K * F) ... (1) Here, F is a correction coefficient. If F is positive, it represents an increase correction, and if F is negative, Represents weight loss correction. Further, K is a correction magnification for further correcting the correction coefficient F, and is normally set to 1. Fuel injection time TAU determined in this way
A fuel injection signal corresponding to this is output to the injector 30, the injector 30 is opened for the fuel injection time TAU in synchronization with the engine rotation, and fuel is injected into the intake manifold 28 of the engine 10. The acceleration amount increase and deceleration amount increase in this embodiment are performed as follows. That is, as shown in FIG. 3, the accelerator pedal is depressed during acceleration, and the idle switch of the throttle sensor 20 is activated at time t 1 as shown in FIG. 3A.
When it turns off, the throttle valve opening TA and intake pipe pressure
Prior to the increase in PM, after-idle power increase (hereinafter LL will be referred to as "power increase") is performed to perform extremely rapid power increase correction as shown by the solid line A in FIG. 3D. Specifically, this LL increase is performed by, for example, first setting the correction coefficient F to a positive predetermined value, and then setting it to zero at a predetermined damping speed for each engine rotation or for a certain period of time.
This is done by attenuating the Next, the throttle valve 18 is further opened, and the throttle valve opening degree TA detected from the potentiometer output of the throttle sensor 20 becomes as shown in FIG. 3B.
When the rise starts at time t2 , the throttle valve performs a rapid increase correction according to the rate of increase in the throttle valve opening TA, as shown by the solid line B in FIG. 3D, prior to the increase in the intake pipe pressure PM. Opening increase (hereinafter referred to as TA increase)
will be held. Specifically, this TA increase is performed by setting the correction coefficient F to a value (positive value) that is the sum of the values corresponding to the amount of change in the throttle valve opening at each predetermined time interval, and 0 at a predetermined deceleration speed.
Furthermore, when the intake pipe pressure PM starts to increase with a delay in the increase in the throttle valve opening TA, from time t3 ,
Intake pipe pressure increase (hereinafter referred to as PM image amount) is performed to perform a highly accurate increase correction according to the rate of increase in intake pipe pressure M, as shown by a solid line C. Specifically, this PM increase is performed by setting a correction coefficient F to a value (positive value) that is the sum of values corresponding to the amount of change in intake pipe pressure every predetermined time, and then , by decaying to zero at a predetermined decay rate. In addition, at this time, from time t 2 to t 3 , LL increase and TA
The increases overlap, and from time t 3 to t 4 all increases overlap, and furthermore, from time t 4 to t 5 , the TA increase and PM increase overlap, but all increases are superimposed to correct the increase. If you go too far, there is a risk of over-dosing due to the influence of LL and TA increases, which have a quick response but are not accurate. Therefore, in the present invention, as shown by the thick solid line in FIG. 3D, the accelerated increase is performed by following the maximum values of the LL increase, TA increase, and PM increase. Next, during deceleration, when the throttle valve 18 begins to close at time t6 , the throttle valve opening TA decreases as shown by the solid line D in FIG. 3D, prior to the decrease in the intake pipe pressure PM. Throttle valve opening reduction (hereinafter referred to as TA reduction) is performed to perform rapid reduction correction according to the speed. Specifically, this TA reduction is performed by setting a correction coefficient F to a value (negative value) that is the sum of the values corresponding to the amount of change in the throttle valve opening TA every predetermined time, and then This is performed by recovering to 0 at a predetermined recovery rate every time. Next, when the intake pipe pressure PM starts to decrease, from time t7 , the intake pipe pressure is reduced by performing a highly accurate reduction correction according to the decreasing rate of the intake pipe pressure PM, as shown by the solid line E in FIG. 3D. (hereinafter referred to as PM reduction) is performed. Specifically, this PM reduction is performed, for example, by setting the correction coefficient F to a value (negative value) that is the sum of values corresponding to the amount of change in the intake pipe pressure PM every predetermined time, and then This is done by recovering to 0 at a predetermined recovery speed. In addition, at this time, if TA weight loss and PM weight loss overlap, there is a risk that excessive weight loss will occur if both are performed together. Therefore, in this embodiment, as shown by the thick solid line in FIG. 3D, only the TA reduction is performed from time t7 to t8 , following the minimum values of the TA reduction and PM reduction, and
From time t8 to time t9 , only PM reduction is performed. In addition, when increasing or decreasing the TA, the opening of the throttle valve is adjusted as shown by the broken line G in Fig. 4.
Regardless of the size of TA, if the throttle valve opening is increased or decreased according to the speed of change in the throttle valve opening, if the throttle valve is at a predetermined opening, for example 45° or more, the throttle valve opening will change. (for example, from 45° to 90°), the engine operating condition (intake pipe pressure) remains almost the same.
Although the response is quick, due to the influence of TA increase/decrease with low accuracy, there is a risk of over-increasing or under-dosing, which may have the opposite effect. Therefore, in this embodiment, the solid line H in FIG.
As shown, the throttle valve opening TA is the predetermined opening TA1,
For example, if it exceeds 45°, the throttle valve is attenuated without integrating the correction coefficient according to the speed of change of the throttle valve opening, and the throttle valve is opened only when the throttle valve opening TA is 45° or less. The correction coefficient is integrated according to the rate of change in temperature. The TA increase program in this example is the fifth one.
As shown in the figure. This makes it possible to prevent over-richness during acceleration or over-lean during deceleration due to excessive increase or under-increase when fuel correction is performed in accordance with the rate of change of the throttle valve opening. As described above, LL dose increase with extremely quick response,
By combining fast-response TA increase/decrease and highly accurate PM increase/decrease to increase acceleration and/or decrease deceleration, if the accelerator pedal is pressed early, a large amount of increase will be implemented; It is possible to achieve an appropriate increase or decrease depending on how the accelerator pedal is pressed, such as a small amount of increase when the pedal is depressed gradually, and maintain the air-fuel ratio near the stoichiometric air-fuel ratio to prevent transient It is possible to achieve both response performance and exhaust gas purification performance. In the above embodiment, both the acceleration image amount and deceleration reduction are performed, but it is also possible to omit the deceleration reduction.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、加速時
に、アクセルペダルの踏み方と吸気管圧力の両者
の変化に応じた適切な、濃度とならない増量補正
を行うことができ、空燃比を理論空燃比近傍に維
持して、良好な過渡応答性能と排気ガス浄化性能
を両立することができる。従つて、吸気管圧力感
知式の電子制御燃料噴射装置を用いた場合でも、
精密な空燃比例制御を行うことが可能となるとい
う優れた効果を有する。
As explained above, according to the present invention, during acceleration, it is possible to perform an appropriate increase correction that does not result in concentration according to changes in both the way the accelerator pedal is pressed and the intake pipe pressure, and the air-fuel ratio is changed to the stoichiometric air-fuel ratio. By maintaining it in the vicinity, it is possible to achieve both good transient response performance and exhaust gas purification performance. Therefore, even when using an electronically controlled fuel injection device that senses intake pipe pressure,
This has the excellent effect of making it possible to perform precise air-fuel proportional control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る内燃機関の電子制御燃
料噴射方法が採用された、自動車用エンジンの吸
気管圧力感知式電子制御燃料噴射装置の実施例を
示すブロツク線図、第2図は、前記実施例で用い
られているデジタル制御回路の構成を示すブロツ
ク線図、第3図は、前記実施例における加速増量
及び減速減量の様子を示す線図、第4図は、同じ
く、絞り弁開度の変化速度に応じた加速増量及び
減速減量の様子を示す線図、第5図は、同じく、
絞り弁開度の変化速度に応じた加速増量のプログ
ラムを示す流れ図である。 10……エンジン、14……吸気温センサ、1
8……絞り弁、20……スロツトルセンサ、23
……吸気管圧力センサ、30……インジエクタ、
34……酸素濃度センサ、40……デイストリビ
ユータ、42……上死点センサ、44……クラン
ク角センサ、46……冷却水温センサ、54……
デジタル制御回路。
FIG. 1 is a block diagram showing an embodiment of an intake pipe pressure sensing type electronically controlled fuel injection device for an automobile engine in which the electronically controlled fuel injection method for an internal combustion engine according to the present invention is adopted, and FIG. FIG. 3 is a block diagram showing the configuration of the digital control circuit used in the embodiment, FIG. 3 is a diagram showing the increase in acceleration and decrease in deceleration in the embodiment, and FIG. Similarly, FIG.
It is a flowchart which shows the program of acceleration increase according to the rate of change of throttle valve opening. 10...Engine, 14...Intake temperature sensor, 1
8... Throttle valve, 20... Throttle sensor, 23
...Intake pipe pressure sensor, 30...Injector,
34... Oxygen concentration sensor, 40... Distributor, 42... Top dead center sensor, 44... Crank angle sensor, 46... Cooling water temperature sensor, 54...
Digital control circuit.

Claims (1)

【特許請求の範囲】 1 エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共に、過渡時は、エン
ジン運転状態に応じて算出される補正係数により
前記基本噴射量を補正することによつて燃料噴射
量を決定するようにした内燃機関の電子制御燃料
噴射方法において、 加速時に、 アイドルスイツチがオフとなつたときに増量補
正を行うアフタアイドル増量と、 絞り弁開度が所定開度より大である時は増量補
正を行わず、所定開度以下の範囲内で絞り弁開度
の所定期間毎の変化量に応じた値を積算した値を
補正係数として、絞り弁開度の増大速度に応じた
増量補正を行う絞り弁開度増量と、 吸気管圧力の所定期間毎の変化量に応じた値を
積算した値を補正係数として、吸気管圧力の増大
速度に応じた増量補正を行う吸気管圧力増量とを
算出し、 これら増量値のうち、その最大値を用いて加速
増量を行うことを特徴とする内燃機関の電子制御
燃料噴射方法。
[Scope of Claims] 1. The basic injection amount is determined according to the engine intake pipe pressure and the engine speed, and during transient periods, the basic injection amount is corrected using a correction coefficient calculated according to the engine operating state. In an electronically controlled fuel injection method for an internal combustion engine in which the amount of fuel to be injected is determined by If the value is larger than the specified opening degree, no increase correction is performed, and the value obtained by integrating the values corresponding to the amount of change in the throttle valve opening for each specified period within the range below the specified opening is used as a correction coefficient to adjust the throttle valve opening. The throttle valve opening is increased to perform an increase correction according to the increase speed, and the value obtained by integrating the value according to the amount of change in intake pipe pressure for each predetermined period is used as a correction coefficient to perform increase correction according to the increase rate of intake pipe pressure. An electronically controlled fuel injection method for an internal combustion engine, characterized in that the intake pipe pressure increase is calculated, and the maximum value among these increase values is used to perform the acceleration increase.
JP2784482A 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine Granted JPS58144633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2784482A JPS58144633A (en) 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2784482A JPS58144633A (en) 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58144633A JPS58144633A (en) 1983-08-29
JPH0512538B2 true JPH0512538B2 (en) 1993-02-18

Family

ID=12232220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2784482A Granted JPS58144633A (en) 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58144633A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224034U (en) * 1985-07-29 1987-02-13
DE3541731C2 (en) * 1985-11-26 1994-08-18 Bosch Gmbh Robert Fuel injection system
JPS6338643A (en) * 1986-08-04 1988-02-19 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection device for internal combustion engine
JPH0745843B2 (en) * 1987-08-31 1995-05-17 株式会社ユニシアジェックス Fuel supply control device for internal combustion engine
EP0339603B1 (en) * 1988-04-26 1992-01-15 Nissan Motor Co., Ltd. Fuel supply control system for internal combustion engine
KR100748647B1 (en) * 2001-06-26 2007-08-10 현대자동차주식회사 Method of controlling air fuel ratio and ignition for an engine in vehicles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535134A (en) * 1978-09-01 1980-03-12 Toyota Motor Corp Air-fuel ratio control system in internal combustion engine
JPS56148633A (en) * 1980-04-21 1981-11-18 Honda Motor Co Ltd Fuel correction device for efi engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535134A (en) * 1978-09-01 1980-03-12 Toyota Motor Corp Air-fuel ratio control system in internal combustion engine
JPS56148633A (en) * 1980-04-21 1981-11-18 Honda Motor Co Ltd Fuel correction device for efi engine

Also Published As

Publication number Publication date
JPS58144633A (en) 1983-08-29

Similar Documents

Publication Publication Date Title
JPS6165038A (en) Air-fuel ratio control system
JPH0251056B2 (en)
US4463732A (en) Electronic controlled non-synchronous fuel injecting method and device for internal combustion engines
JPH0251052B2 (en)
JPH057548B2 (en)
JPS6231179B2 (en)
JPH0512538B2 (en)
JPH057546B2 (en)
JPH0372824B2 (en)
JPH0573907B2 (en)
JPH059620B2 (en)
JPH0316498B2 (en)
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH0475382B2 (en)
JPH0368221B2 (en)
JPH059621B2 (en)
JPH0510490B2 (en)
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0423098B2 (en)
JPH0429855B2 (en)
JPH0325620B2 (en)
JPS58144639A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58214633A (en) Electronically controlled fuel injection method for internal-combustion engine
JPH0325621B2 (en)
JPS6324142B2 (en)