JPH0368221B2 - - Google Patents

Info

Publication number
JPH0368221B2
JPH0368221B2 JP57027846A JP2784682A JPH0368221B2 JP H0368221 B2 JPH0368221 B2 JP H0368221B2 JP 57027846 A JP57027846 A JP 57027846A JP 2784682 A JP2784682 A JP 2784682A JP H0368221 B2 JPH0368221 B2 JP H0368221B2
Authority
JP
Japan
Prior art keywords
reduction
throttle valve
pipe pressure
intake pipe
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57027846A
Other languages
Japanese (ja)
Other versions
JPS58144635A (en
Inventor
Toshiaki Isobe
Toshimitsu Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2784682A priority Critical patent/JPS58144635A/en
Publication of JPS58144635A publication Critical patent/JPS58144635A/en
Publication of JPH0368221B2 publication Critical patent/JPH0368221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の電子制御燃料噴射方法に
係り、特に、吸気管圧力式の電子制御燃料噴射装
置を備えた自動車用内燃機関に用いるのに好適
な、エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共に、過渡時は、エン
ジン運転状態に応じて算出される補正係数により
前記基本噴射量を補正することによつて燃料噴射
量を決定するようにした内燃機関の電子制御燃料
噴射方法の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electronically controlled fuel injection method for an internal combustion engine, and is particularly applicable to an automobile internal combustion engine equipped with an intake pipe pressure type electronically controlled fuel injection device. In addition to determining the basic injection amount according to the engine intake pipe pressure and engine speed, which is suitable for The present invention relates to an improvement in an electronically controlled fuel injection method for an internal combustion engine, in which the fuel injection amount is determined based on the fuel injection amount.

〔従来の技術〕[Conventional technology]

自動車用エンジン等の内燃機関の燃焼室に所定
空燃比の混合気を供給する方法の一つに、電子制
御燃料噴射装置を用いるものがある。これは、エ
ンジン内に燃料を噴射するためのインジエクタ
を、例えば、エンジンの吸気マニホルド或いはス
ロツトルボデーに、エンジン気筒数個或いは1個
配設し、該インジエクタの開弁時間をエンジンの
運転状態に応じて制御することにより、所定の空
燃比の混合気がエンジン燃焼室に供給されるよう
にするものである。この電子制御燃料噴射装置に
は、大別して、エンジンの吸入空気量とエンジン
回転数に応じて基本噴射量を求めるようにした、
いわゆる吸入空気量(感知)式の電子制御燃料噴
射装置と、エンジンの吸気管圧力とエンジン回転
数に応じて基本噴射量を求めるようにした、いわ
ゆる吸気管圧力(感知)式の電子制御燃料噴射装
置がある。
2. Description of the Related Art One of the methods for supplying an air-fuel mixture at a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine such as an automobile engine uses an electronically controlled fuel injection device. In this method, an injector for injecting fuel into the engine is installed in the intake manifold or throttle body of the engine, for example, in several or one engine cylinder, and the valve opening time of the injector is adjusted depending on the operating state of the engine. By controlling the air-fuel mixture, a mixture having a predetermined air-fuel ratio is supplied to the engine combustion chamber. This electronically controlled fuel injection system can be roughly divided into two types: one that calculates the basic injection amount according to the intake air amount and engine speed of the engine;
The so-called intake air amount (sensing) type electronically controlled fuel injection device, and the so-called intake pipe pressure (sensing) type electronically controlled fuel injection that determines the basic injection amount according to the engine intake pipe pressure and engine speed. There is a device.

このうち前者は、空燃比を精密に制御すること
が可能であり、排気ガス浄化対策が施された自動
車用エンジンに広く用いられるようになつてい
る。しかしながら、この吸入空気量式の電子制御
燃料噴射装置においては、吸入空気量が、アイド
ル時と高負荷時で50倍程度変化し、ダイナミツク
レンジが広いので、吸入空気量を電気信号に変換
する際の精度が低くなるだけでなく、後段のデジ
タル制御回路における計算精度を高めようとする
と、電気信号のビツト長が長くなり、デジタル制
御回路として高価なコンピユータを用いる必要が
ある。又、吸入空気量を測定するために、エアフ
ローメータ等の非常に精密な構造を有する測定器
を用いる必要があり、設備費が高価となる等の問
題点を有していた。
Among these, the former allows for precise control of the air-fuel ratio, and has come to be widely used in automobile engines equipped with exhaust gas purification measures. However, in this intake air volume type electronically controlled fuel injection system, the intake air volume changes by about 50 times between idle and high load, and the dynamic range is wide, so the intake air volume is converted into an electrical signal. Not only does this result in lower accuracy, but if you try to improve the calculation accuracy in the digital control circuit at the subsequent stage, the bit length of the electrical signal becomes longer, and it becomes necessary to use an expensive computer as the digital control circuit. Furthermore, in order to measure the amount of intake air, it is necessary to use a measuring device with a very precise structure, such as an air flow meter, resulting in problems such as high equipment costs.

一方、後者の吸気管圧力式の電子制御燃料噴射
装置においては、吸気管圧力の変化量が2〜3倍
程度と少なく、ダイナミツクレンジが狭いので、
後段のデジタル制御回路における演算処理が容易
であるだけでなく、吸気管圧力を検知するための
圧力センサも安価であるという特徴を有する。
On the other hand, in the latter type of intake pipe pressure type electronically controlled fuel injection system, the amount of change in intake pipe pressure is small, about 2 to 3 times, and the dynamic range is narrow.
Not only is the arithmetic processing in the subsequent digital control circuit easy, but the pressure sensor for detecting the intake pipe pressure is also inexpensive.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、吸入空気量式の電子制御燃料噴
射装置に比べると、空燃比の制御精度が低く、特
に、減速時においては、吸気管圧力が減少しなけ
れば燃料噴射量が減少しないため、空燃比が一時
的にリツチとなつて、減速性能が低いものとなる
だけでなく、排気ガス中の一酸化炭素量が増大し
て、空燃比を三元触媒コンバータに適した所定範
囲内に維持することが困難であつた。これは、排
気下流側に配設した酸素濃度センサの出力信号に
応じて燃料噴射量をフイードバツク制御するよう
にした場合においても、酸素濃度センサの応答が
遅いため、同様である。従つて、従来は、吸気管
圧力式の電子制御燃料噴射装置を、空燃比を精密
に制御することが必要な、排気ガス浄化対策が施
された自動車用エンジンに用いることは困難であ
ると考えられていた。
However, compared to electronically controlled fuel injection systems that use intake air flow, the control accuracy of the air-fuel ratio is lower, and especially during deceleration, the fuel injection amount does not decrease unless the intake pipe pressure decreases, so the air-fuel ratio Not only does this temporarily become rich, reducing deceleration performance, but the amount of carbon monoxide in the exhaust gas increases, making it difficult to maintain the air-fuel ratio within a predetermined range suitable for a three-way catalytic converter. It was difficult. This is the same even when the fuel injection amount is feedback-controlled in accordance with the output signal of the oxygen concentration sensor disposed downstream of the exhaust gas because the response of the oxygen concentration sensor is slow. Therefore, conventionally, it has been considered difficult to use intake pipe pressure type electronically controlled fuel injection devices in automobile engines that require precise control of the air-fuel ratio and are equipped with exhaust gas purification measures. It was getting worse.

本発明は、前記従来の欠点を解消するべくなさ
れたもので、減速時に、アクセルペダルの踏み
方、即ち、絞り弁開度と吸気管圧力の両者に応じ
た、適切な、過度とならない減量補正を行つて、
空燃比を理論空燃比近傍に維持することができ、
従つて、良好な減速性能と排気ガス浄化性能を両
立させることができる内燃機関の電子制御燃料噴
射方法を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional art, and, when decelerating, the amount of weight loss is corrected appropriately and not excessively according to the way the accelerator pedal is pressed, that is, both the throttle valve opening and the intake pipe pressure. go and
The air-fuel ratio can be maintained near the stoichiometric air-fuel ratio,
Therefore, it is an object of the present invention to provide an electronically controlled fuel injection method for an internal combustion engine that can achieve both good deceleration performance and exhaust gas purification performance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、エンジンの吸気管圧力とエンジン回
転数に応じて基本噴射量を求めると共に、過渡時
は、エンジン運転状態に応じて算出される補正係
数により前記基本噴射量を補正することによつて
燃料噴射量を決定するようにした内燃機関の電子
制御燃料噴射方法において、減速時に、絞り弁開
度の所定期間毎の変化量に応じた値を補正係数と
して、絞り弁開度の減少速度に応じた減量補正を
行う絞り弁開度減量と、吸気管圧力の所定期間毎
の変化量に応じた値を積算した値を補正係数とし
て、吸気管圧力の減少速度に応じた減量補正を行
う吸気管圧力減量と、を組合せた減量補正を行
い、各減量の最小値を辿つて減速減量を行うと共
に、前記絞り弁開度減量の補正係数に下限を設け
るようにして、前記目的を達成したものである。
The present invention calculates the basic injection amount according to the engine intake pipe pressure and engine rotation speed, and during transient periods, corrects the basic injection amount using a correction coefficient calculated according to the engine operating state. In an electronically controlled fuel injection method for an internal combustion engine that determines the fuel injection amount, during deceleration, a value corresponding to the amount of change in the throttle valve opening for each predetermined period is used as a correction coefficient to adjust the rate of decrease in the throttle valve opening. Intake control that performs reduction correction according to the rate of decrease in intake pipe pressure, using a correction coefficient that is the sum of the throttle valve opening reduction and the amount of change in intake pipe pressure for each predetermined period. The above object is achieved by performing a reduction correction by combining pipe pressure reduction and deceleration reduction by following the minimum value of each reduction, and setting a lower limit on the correction coefficient for the throttle valve opening reduction. It is.

〔作用〕[Effect]

本発明においては、減速時に、吸気管圧力の減
少に先行して絞り弁開度の減少速度に応じた減量
補正を行う、応答の早い絞り弁開度減量と、吸気
管圧力の減少速度に応じた減量補正を行う、精度
の高い吸気管圧力減量と、を組合せて減量補正を
行うようにしているので、応答が速く、且つ、精
度の高い減速減量を行うことができる。
In the present invention, during deceleration, the reduction in throttle valve opening is corrected in accordance with the rate of decrease in the throttle valve opening prior to the decrease in intake pipe pressure, and the reduction in throttle valve opening is performed in accordance with the rate of decrease in intake pipe pressure. Since the reduction correction is performed in combination with the intake pipe pressure reduction with high precision, which performs the reduction correction, the response is quick and the deceleration reduction can be performed with high precision.

即ち、前記絞り弁開度減量は、絞り弁開度に基
づいて行われるため、アクセルペダルの踏み方に
応じた減量を迅速に行うことができ、高精度の吸
気管圧力減量が行われる迄の中間減速部分の応答
性を向上させることができる。
That is, since the reduction in the throttle valve opening is performed based on the throttle valve opening, the reduction can be quickly performed in accordance with how the accelerator pedal is depressed, and the amount of time needed to reduce the intake pipe pressure with high accuracy is achieved. The responsiveness of the intermediate deceleration portion can be improved.

これに対して、前記吸気管圧力減量は、絞り弁
開度が変化した後で吸気管圧力の変化が生じてか
ら行われる。この吸気管圧力減量は、実際に燃焼
室に吸入させる空気量に基づいて行われるもので
あり、精度が高い。
On the other hand, the intake pipe pressure reduction is performed after the intake pipe pressure changes after the throttle valve opening changes. This intake pipe pressure reduction is performed based on the amount of air actually taken into the combustion chamber, and is highly accurate.

なお、吸入空気量感知式の場合には、減速時に
絞り弁が閉じられると、絞り弁より上流側のセン
サ出力は直ちに吸入空気量の減少を検出するのに
対し、実際に燃焼室に吸入される空気量は、絞り
弁より下流側のサージタンクの分だけ減少が遅れ
るため、前記センサ出力により計算される燃料量
の方が先行して減少することとなり、これが適当
な減速減量となるため、本発明のような絞り弁開
度減量を必要としない。
In addition, in the case of the intake air amount sensing type, when the throttle valve is closed during deceleration, the sensor output upstream of the throttle valve immediately detects a decrease in the amount of intake air; Since the amount of air is reduced by the amount of the surge tank downstream of the throttle valve, the amount of fuel calculated by the sensor output decreases in advance, and this results in an appropriate reduction in deceleration. There is no need to reduce the throttle valve opening as in the present invention.

本発明においては、更に、前記絞り弁開度減量
と吸気管圧力減量の最小値を辿つて減速減量を行
うようにしているので、両者が重なる領域でも過
減量となることがない。
Further, in the present invention, since the deceleration reduction is performed by following the minimum value of the throttle valve opening reduction and the intake pipe pressure reduction, an excessive reduction does not occur even in a region where the two overlap.

又、前記絞り弁開度減量は、応答は早いが精度
が低いため、その減少速度に応じた減量をそのま
ま行つてしまうと過減量となる恐れがある。そこ
で本発明では、絞り弁開度減量の補正係数に下限
を設けて、精度の低い絞り弁開度減量のために過
減量となつてしまうことを防いでいる。
Furthermore, since the throttle valve opening reduction has a quick response but low precision, if the reduction is continued in accordance with the rate of reduction, there is a risk of an excessive amount. Therefore, in the present invention, a lower limit is set for the correction coefficient for reducing the throttle valve opening to prevent the throttle valve opening from being excessively reduced due to low accuracy.

〔実施例〕〔Example〕

以下図面を参照して、本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明に係る内燃機関の電子制御燃料噴射方法
が採用された吸気管圧力式の電子制御燃料噴射装
置の実施例は、第1図及び第2図に示す如く、外
気を取入れるためのエアクリーナ12と、該エア
クリーナ12より取入れられた吸入空気の温度を
検出するための吸気温センサ14と、吸気通路1
6中に配設され、運転席に配設されたアクセルペ
ダル(図示省略)と連動して開閉するようにされ
た、吸入空気の流量を制御するための絞り弁18
と、該絞り弁18がアイドル開度にあるか否かを
検出するためのアイドル接点及び絞り弁18の開
度に比例した電圧出力を発生するポテンシヨメー
タを含むスロツトルセンサ20と、サージタンク
22と、該サージタンク22内の圧力から吸気管
圧力を検出するための吸気管圧力センサ23と、
前記絞り弁18をバイパスするバイパス通路24
と、該バイパス通路24の途中に配設され、該バ
イパス通路24の開口面積を制御することによつ
てアイドル回転速度を制御するためのアイドル回
転制御弁26と、吸気マニホルド28に配設され
た、エンジン10の吸気ポートに向けて燃料を噴
射するためのインジエクタ30と、排気マニホル
ド32に配設された、排気ガス中の残存酸素濃度
から空燃比を検知するための酸素濃度センサ34
と、前記排気マニホルド32下流側の排気管36
の途中に配設された三元触媒コンバータ38と、
エンジン10のクランク軸の回転と連動して回転
するデイストリビユータ軸を有するデイストリビ
ユータ40と、該デイストリビユータ40に内蔵
された、前記デイストリビユータ軸の回転に応じ
て上死点信号及びクランク角信号を出力する上死
点センサ42及びクランク角センサ44と、エン
ジンブロツクに配設された、エンジン冷却水温を
検知するための冷却水温センサ46と、変速機4
8の出力軸の回転数から車両の走行速度を検出す
るための車速センサ50と、前記吸気管圧力セン
サ23出力の吸気管圧力と前記クランク角センサ
44の出力から求められるエンジン回転数に応じ
てエンジン1工程あたりの基本噴射量をマツプか
ら求めると共に、これを、前記スロツトルセンサ
20の出力、前記酸素濃度センサ34出力の空燃
比、前記冷却水温センサ46出力のエンジン冷却
水温等に応じて補正することによつて、燃料噴射
量を決定して前記インジエクタ30に開弁時間信
号を出力し、又、エンジン運転状態に応じて点火
時期を決定してイグナイタ付コイル52に点火信
号を出力し、更に、アイドル時に前記アイドル回
転制御弁26を制御するデジタル制御回路54と
を備えた自動車用エンジン10の吸気管圧力式電
子制御燃料噴射装置において、前記デジタル制御
回路54内で、減速時に、前記スロツトルセンサ
20のポテンシヨメータ出力から検知される絞り
弁開度の所定時間毎の変化量に応じた値を積算し
た値を補正係数として、絞り弁開度の減少速度に
応じた減量補正を行う絞り弁開度減量と、前記吸
気管圧力センサ23の出力から検知される吸気管
圧力の所定時間毎の変化量に応じた値を積算した
値を補正係数として、吸気管圧力の減少速度に応
じた減量補正を行う吸気管圧力減量とを組合せた
減量補正を行い、各減量の最小値を辿つて減速減
量を行うと共に、前記絞り弁開度減量の補正係数
に下限を設けたものである。
An embodiment of an intake pipe pressure type electronically controlled fuel injection device employing the electronically controlled fuel injection method for an internal combustion engine according to the present invention is as shown in FIGS. 1 and 2. , an intake temperature sensor 14 for detecting the temperature of intake air taken in from the air cleaner 12, and an intake passage 1.
a throttle valve 18 for controlling the flow rate of intake air, which is disposed in the interior of the vehicle and is opened and closed in conjunction with an accelerator pedal (not shown) disposed in the driver's seat;
, a throttle sensor 20 including an idle contact for detecting whether or not the throttle valve 18 is at an idle opening, and a potentiometer that generates a voltage output proportional to the opening of the throttle valve 18, and a surge tank. 22, an intake pipe pressure sensor 23 for detecting intake pipe pressure from the pressure inside the surge tank 22,
Bypass passage 24 that bypasses the throttle valve 18
an idle rotation control valve 26 disposed in the middle of the bypass passage 24 for controlling the idle rotation speed by controlling the opening area of the bypass passage 24; and an idle rotation control valve 26 disposed in the intake manifold 28. , an injector 30 for injecting fuel toward the intake port of the engine 10, and an oxygen concentration sensor 34 disposed in the exhaust manifold 32 for detecting the air-fuel ratio from the residual oxygen concentration in the exhaust gas.
and an exhaust pipe 36 downstream of the exhaust manifold 32.
a three-way catalytic converter 38 disposed in the middle of the
A distributor 40 has a distributor shaft that rotates in conjunction with the rotation of the crankshaft of the engine 10, and a top dead center signal and A top dead center sensor 42 and a crank angle sensor 44 that output a crank angle signal, a cooling water temperature sensor 46 disposed in the engine block for detecting engine cooling water temperature, and a transmission 4
A vehicle speed sensor 50 for detecting the running speed of the vehicle from the rotation speed of the output shaft of No. 8; The basic injection amount per engine stroke is determined from the map, and this is corrected according to the output of the throttle sensor 20, the air-fuel ratio of the output of the oxygen concentration sensor 34, the engine cooling water temperature of the output of the cooling water temperature sensor 46, etc. By doing so, the fuel injection amount is determined and a valve opening time signal is output to the injector 30, and the ignition timing is determined according to the engine operating condition and an ignition signal is output to the igniter-equipped coil 52. Furthermore, in the intake pipe pressure type electronically controlled fuel injection device for the automobile engine 10, which includes a digital control circuit 54 that controls the idle rotation control valve 26 during idle, the digital control circuit 54 controls the throttle speed during deceleration. A value obtained by integrating the values corresponding to the amount of change in the throttle valve opening detected from the potentiometer output of the torque sensor 20 every predetermined time is used as a correction coefficient, and a reduction correction is performed in accordance with the decreasing speed of the throttle valve opening. A value obtained by integrating the throttle valve opening reduction and the amount of change in the intake pipe pressure detected from the output of the intake pipe pressure sensor 23 every predetermined time is used as a correction coefficient, and the correction coefficient is adjusted according to the rate of decrease in the intake pipe pressure. A reduction correction is performed in combination with an intake pipe pressure reduction that performs a reduction correction, and a deceleration reduction is performed by tracing the minimum value of each reduction, and a lower limit is set for the correction coefficient for the throttle valve opening reduction.

前記デジタル制御回路54は、第2図に詳細に
示す如く、各種演算処理を行うマイクロプロセツ
サからなる中央処理装置(以下CPUと称する)
60と、前記吸気温センサ14、スロツトルセン
サ20のポテンシヨメータ、吸気管圧力センサ2
3、酸素濃度センサ34、冷却水温センサ46等
から入力されるアナログ信号を、デジタル信号に
変換して順次CPU60に取込むためのマルチプ
レクサ付アナログ入力ポート62と、前記スロツ
トルセンサ20のアイドル接点、上死点センサ4
2、クランク角センサ44、車速センサ50等か
ら入力されるデジタル信号を、所定のタイミング
でCPU60に取込むためのデジタル入力ポート
64と、プログラム或いは各種定数等を記憶する
ためのリードオンリーメモリ(以下ROMと称す
る)66と、CPU60における演算データ等を
一時的に記憶するためのランダムアクセスメモリ
(以下RAMと称する)68と、機関停止時にも
補助電源から給電されて記憶を保持できるバツク
アツプ用ランダムアクセスメモリ(以下バツクア
ツプRAMと称する)70と、CPU60における
演算結果を、所定のタイミングで前記アイドル回
転制御弁26、インジエクタ30、イグナイタ付
コイル52等に出力するためのデジタル出力ポー
ト72と、上記各構成機器間を接続するコモンバ
ス74とから構成されている。
As shown in detail in FIG. 2, the digital control circuit 54 is a central processing unit (hereinafter referred to as CPU) consisting of a microprocessor that performs various arithmetic operations.
60, the intake temperature sensor 14, the potentiometer of the throttle sensor 20, and the intake pipe pressure sensor 2.
3. An analog input port 62 with a multiplexer for converting analog signals input from the oxygen concentration sensor 34, cooling water temperature sensor 46, etc. into digital signals and sequentially inputting them into the CPU 60; and an idle contact point of the throttle sensor 20; Top dead center sensor 4
2. A digital input port 64 for inputting digital signals input from the crank angle sensor 44, vehicle speed sensor 50, etc. to the CPU 60 at predetermined timing, and a read-only memory (hereinafter referred to as "read-only memory" for storing programs or various constants, etc.). Random access memory (hereinafter referred to as RAM) 68 for temporarily storing calculation data etc. in the CPU 60, and random access memory (hereinafter referred to as RAM) 68 for backup that can maintain memory by being supplied with power from the auxiliary power supply even when the engine is stopped. A memory (hereinafter referred to as backup RAM) 70, a digital output port 72 for outputting the calculation results of the CPU 60 to the idle rotation control valve 26, injector 30, coil with igniter 52, etc. at a predetermined timing, and each of the above components. It is composed of a common bus 74 that connects devices.

以下実施例の作用を説明する。 The operation of the embodiment will be explained below.

まずデジタル制御回路54は、吸気管圧力セン
サ23出力の吸気管圧力PMと、クランク角セン
サ44の出力から算出されるエンジン回転数NE
により、ROM66に予め記憶されているマツプ
から、基本噴射時間TP(PM,NE)を読出す。
First, the digital control circuit 54 calculates the intake pipe pressure PM output from the intake pipe pressure sensor 23 and the engine rotation speed NE calculated from the output of the crank angle sensor 44.
The basic injection time TP (PM, NE) is read out from the map stored in the ROM 66 in advance.

更に、各センサからの信号に応じて、次式を用
いて前記基本噴射時間TP(PM,NE)を補正す
ることにより、燃料噴射時間TAUを算出する。
Furthermore, the fuel injection time TAU is calculated by correcting the basic injection time TP (PM, NE) using the following equation according to the signals from each sensor.

TAU=TP(PM,NE)*(1+K*F) …(1) ここで、Fは、補正係数で、Fが正である場合
には増量補正を表わし、Fが負である場合には減
量補正を表わしている。又、Kは、前記補正係数
Fを更に補正するための補正倍率であり、通常は
1とされている。
TAU=TP(PM,NE)*(1+K*F)...(1) Here, F is a correction coefficient; if F is positive, it represents an increase correction, and if F is negative, it represents a reduction. It represents a correction. Further, K is a correction magnification for further correcting the correction coefficient F, and is normally set to 1.

このようにして決定された燃料噴射時間TAU
に対応する燃料噴射信号が、インジエクタ30に
出力され、エンジン回転と同期してインジエクタ
30が燃料噴射時間TAUだけ開かれて、エンジ
ン10の吸気マニホルド28内に燃料が噴射され
る。
Fuel injection time TAU determined in this way
A fuel injection signal corresponding to this is output to the injector 30, and the injector 30 is opened for the fuel injection time TAU in synchronization with the engine rotation, and fuel is injected into the intake manifold 28 of the engine 10.

本実施例における減速減量は次のようにして行
われる。
The deceleration reduction in this embodiment is performed as follows.

即ち、第3図に示す如く、減速時に、時刻t1
絞り弁18が閉じられ始めると、吸気管圧力PM
の減少に先行して、第3図Dに実線Aで示すよう
な、絞り弁開度TAの減少速度に応じた迅速な減
量補正を行う絞り弁開度減量(以下TA減量と称
する)が行われる。このTA減量は、具体的に
は、第4図に示す如く、絞り弁開度TAの所定時
間毎の変化量△TAに応じて、該変化量△TAに
対応させて予め設定されている値△F(第6図実
線C)を積算した値(負値)を補正係数Fとし、
次いで、絞り弁開度TAが一定となつた時は、該
補正係数Fをエンジン回転毎或いは一定時間毎
に、所定の回復速度△F′で0迄回復することによ
つて行われる。従つて、例えば、絞り弁開度TA
が減速途中で一定となつた場合には、第4図に実
線Dで示すような状態となり、一方、絞り弁開度
TAが一気に全閉状態まで閉じられた場合には、
同じく第4図に破線Eで示すような状態となつ
て、絞り弁開度の変化速度及び変化量に応じた最
適な減量補正が行われる。
That is, as shown in FIG. 3, when the throttle valve 18 begins to close at time t1 during deceleration, the intake pipe pressure PM
Prior to the decrease in the throttle valve opening, a reduction in the throttle valve opening (hereinafter referred to as TA reduction) is carried out, which is a rapid reduction correction according to the rate of decrease in the throttle valve opening TA, as shown by the solid line A in FIG. 3D. be exposed. Specifically, as shown in Fig. 4, this TA reduction is a value that is preset in accordance with the amount of change △TA in the throttle valve opening TA for each predetermined time. The value (negative value) obtained by integrating △F (solid line C in Figure 6) is the correction coefficient F,
Next, when the throttle valve opening TA becomes constant, the correction coefficient F is restored to 0 at a predetermined recovery speed ΔF' every engine rotation or every fixed period of time. Therefore, for example, the throttle valve opening TA
If becomes constant during deceleration, the state will be as shown by solid line D in Fig. 4, and on the other hand, the throttle valve opening
If the TA is closed all at once,
Similarly, a state as shown by the broken line E in FIG. 4 is reached, and the optimal weight reduction correction is performed in accordance with the rate of change and amount of change in the opening degree of the throttle valve.

なお、第4図に破線Eで示すような急減速の場
合に、値△Fを積算した値をそのまま補正係数F
としてしまうと、過減量となつて、減速時にオー
バーリーンとなる可能性がある。従つて、本実施
例においては、第4図に一点鎖線Gで示す如く、
積算値△Fを積算した値に下限を設け、補正係数
Fが該下限値Fminを下まわらないようにしてい
る。このTA減量のプログラムを第5図に示す。
In addition, in the case of sudden deceleration as shown by the broken line E in Fig. 4, the value obtained by integrating the value △F is directly used as the correction coefficient F.
If this happens, there is a possibility that the amount of fuel will be too low, resulting in over lean during deceleration. Therefore, in this embodiment, as shown by the dashed line G in FIG.
A lower limit is set for the value obtained by integrating the integrated value ΔF, so that the correction coefficient F does not fall below the lower limit value Fmin. This TA reduction program is shown in Figure 5.

次いで、吸気管圧力PMが減少し始めると、時
刻t2から、第3図Dに実線Bで示すような、吸気
管圧力PMの減少速度に応じた精度の高い減量補
正を行う吸気管圧力減量(以下PM減量と称す
る)が行われる。このPM減量は、具体的には、
例えば、吸気管圧力PMの所定時間毎の変化量に
応じた値を積算した値(負値)を補正係数Fと
し、次いで、エンジン回転毎或いは一定時間毎
に、所定の回復速度で0迄回復させることによつ
て行われる。
Next, when the intake pipe pressure PM starts to decrease, from time t2 , the intake pipe pressure decrease is performed to perform a highly accurate reduction correction according to the decreasing rate of the intake pipe pressure PM, as shown by the solid line B in FIG. 3D. (hereinafter referred to as PM reduction) is performed. Specifically, this PM reduction is as follows:
For example, the value (negative value) that is the sum of the values corresponding to the amount of change in intake pipe pressure PM for each predetermined time is set as the correction coefficient F, and then the correction coefficient is recovered to 0 at a predetermined recovery speed every engine rotation or every fixed time. It is done by letting

なお、TA減量とPM減量が重複した場合に、
両者を合わせ行うと過減量になる恐れがある。従
つて、本実施例においては、第3図Dに太い実線
で示す如く、前記TA減量とPM減量の最小値を
たどつて、時刻t2〜t3ではTA減量のみを行い、
時刻t3〜t4では、PM減量のみを行うようにして
いる。
In addition, if TA weight loss and PM weight loss overlap,
If both are used together, there is a risk of excessive weight loss. Therefore, in this embodiment, as shown by the thick solid line in FIG. 3D, only the TA reduction is performed from time t 2 to t 3 by following the minimum values of the TA reduction and PM reduction, and
From time t3 to time t4 , only PM reduction is performed.

前記のようにして、応答の早いTA減量と精度
の高いPM減量を組み合わせて減速減量を行うこ
とによつて、適切な減量を実現することができ、
空燃比を理論空燃比近傍に維持して、減速性能と
排気ガス浄化性能を両立することができる。
As described above, by performing deceleration weight loss by combining fast-response TA weight loss and highly accurate PM weight loss, appropriate weight loss can be achieved.
By maintaining the air-fuel ratio near the stoichiometric air-fuel ratio, it is possible to achieve both deceleration performance and exhaust gas purification performance.

なお前記実施例においては、絞り弁開度TAの
所定時間毎の変化量△TAに応じて積算される値
△Fが、第6図に実線Cで示す如く、変化量△
TAの1次関数とされていたが、変化量△TAと
値△Fの関係はこれに限定されず、第6図に破線
H或いは一点鎖線Iで示す如く、2次関数とする
ことも可能である。
In the above embodiment, the value △F, which is accumulated according to the amount of change △TA in the throttle valve opening degree TA every predetermined time, is equal to the amount of change △, as shown by the solid line C in FIG.
Although it was assumed to be a linear function of TA, the relationship between the amount of change △TA and the value △F is not limited to this, and can also be a quadratic function, as shown by the broken line H or the dashed-dotted line I in Figure 6. It is.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明によれば、減速時
に、アクセルペダルの踏み方、即ち、絞り弁開度
と吸気管圧力の両者に応じた、適切な、過度とな
らない減量補正を行うことができ、空燃比を理論
空燃比近傍に維持して、良好な減速性能と排気ガ
ス浄化性能を両立することができる。従つて、吸
気管圧力式の電子制御燃料噴射装置を用いた場合
でも、精密な空燃比制御を行うことが可能とな
る。又、現在(減速中)のリツチ度合は、減速中
の履歴の影響を受けるため、現在の減速度合いだ
けに基づいて減量値を決定したのでは、適切な値
が得られないが、本発明のように、減速中の履歴
を考慮して現在の減量値を決めることによつて最
適な減速減量が行える等の優れた効果を有する。
As explained above, according to the present invention, during deceleration, it is possible to perform an appropriate weight reduction correction that does not become excessive, depending on how the accelerator pedal is pressed, that is, both the throttle valve opening and the intake pipe pressure. By maintaining the air-fuel ratio near the stoichiometric air-fuel ratio, it is possible to achieve both good deceleration performance and exhaust gas purification performance. Therefore, even when using an intake pipe pressure type electronically controlled fuel injection device, it is possible to perform precise air-fuel ratio control. Furthermore, since the current richness degree (during deceleration) is affected by the history of deceleration, determining the reduction value based only on the current deceleration degree will not result in an appropriate value. Thus, by determining the current weight loss value in consideration of the history during deceleration, it has excellent effects such as optimal deceleration weight loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る内燃機関の電子制御燃
料噴射方法が採用された自動車用エンジンの吸気
管圧力式電子制御燃料噴射装置の実施例を示すブ
ロツク線図、第2図は、前記実施例で用いられて
いるデジタル制御回路の構成を示すブロツク線
図、第3図は、前記実施例における減速減量の様
子を示す線図、第4図は、同じく絞り弁開度の減
少速度に応じた減速減量の様子を示す線図、第5
図は、同じく絞り弁開度の減少速度に応じた減速
減量のプログラムを示す流れ図、第6図は、同じ
く、前記実施例で用いられている、絞り弁開度の
所定時間毎の変化量と該変化量に応じた値の関係
を示す線図である。 10……エンジン、14……吸気温センサ、1
8……絞り弁、20……スロツトルセンサ、23
……吸気管圧力センサ、30……インジエクタ、
34……酸素濃度センサ、40……デイストリビ
ユータ、42……上死点センサ、44……クラン
ク角センサ、46……冷却水温センサ、54……
デジタル制御回路。
FIG. 1 is a block diagram showing an embodiment of an intake pipe pressure type electronically controlled fuel injection device for an automobile engine in which the electronically controlled fuel injection method for an internal combustion engine according to the present invention is adopted, and FIG. FIG. 3 is a block diagram showing the configuration of the digital control circuit used in the example. FIG. 3 is a diagram showing how the reduction in deceleration occurs in the example. FIG. Diagram showing the state of deceleration loss, No. 5
FIG. 6 is a flowchart showing a program for reducing deceleration according to the rate of decrease in the throttle valve opening, and FIG. It is a diagram showing the relationship between values according to the amount of change. 10...Engine, 14...Intake temperature sensor, 1
8... Throttle valve, 20... Throttle sensor, 23
...Intake pipe pressure sensor, 30...Injector,
34... Oxygen concentration sensor, 40... Distributor, 42... Top dead center sensor, 44... Crank angle sensor, 46... Cooling water temperature sensor, 54...
Digital control circuit.

Claims (1)

【特許請求の範囲】 1 エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共に、過渡時に、エン
ジン運転状態に応じて算出される補正係数により
前記基本噴射量を補正することによつて燃料噴射
量を決定するようにした内燃機関の電子制御燃料
噴射方法において、 減速時に、 絞り弁開度の所定期間毎の変化量に応じた値を
積算した値を補正係数として、絞り弁開度の減少
速度に応じた減量補正を行う絞り弁開度減量と、 吸気管圧力の所定期間毎の変化量に応じた値を
積算した値を補正係数として、吸気管圧力の減少
速度に応じた減量補正を行う吸気管圧力減量と、 を組合せた減量補正を行い、 各減量の最小値を辿つて減速減量を行うと共
に、 前記絞り弁開度減量の補正係数に下限を設けた
ことを特徴とする内燃機関の電子制御燃料噴射方
法。
[Scope of Claims] 1. A basic injection amount is determined according to the intake pipe pressure of the engine and the engine speed, and the basic injection amount is corrected during a transient period using a correction coefficient calculated according to the engine operating state. Therefore, in an electronically controlled fuel injection method for an internal combustion engine that determines the amount of fuel to be injected, during deceleration, the throttle valve opening is adjusted using a correction coefficient that is the sum of values corresponding to the amount of change in the throttle valve opening for each predetermined period. The throttle valve opening is adjusted according to the speed of decrease in the opening, and the correction coefficient is the sum of the values corresponding to the amount of change in intake pipe pressure for each predetermined period. A reduction in intake pipe pressure is performed to correct the reduction in intake pipe pressure, and a reduction correction is performed in combination with the following, and a reduction in deceleration is performed by tracing the minimum value of each reduction, and a lower limit is set for the correction coefficient for the reduction in throttle valve opening. An electronically controlled fuel injection method for internal combustion engines.
JP2784682A 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine Granted JPS58144635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2784682A JPS58144635A (en) 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2784682A JPS58144635A (en) 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58144635A JPS58144635A (en) 1983-08-29
JPH0368221B2 true JPH0368221B2 (en) 1991-10-25

Family

ID=12232279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2784682A Granted JPS58144635A (en) 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58144635A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201049A (en) * 1984-03-27 1985-10-11 Hitachi Ltd Electronically controlled fuel injection apparatus
JPS6312852A (en) * 1986-07-01 1988-01-20 Nissan Motor Co Ltd Air-fuel ratio controller for internal combustion engine
JP2623941B2 (en) * 1990-08-31 1997-06-25 三菱自動車工業株式会社 Fuel control device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364128A (en) * 1976-11-04 1978-06-08 Lucas Industries Ltd Electronic fuel injection control system of internal combustion engine
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection
JPS5535134A (en) * 1978-09-01 1980-03-12 Toyota Motor Corp Air-fuel ratio control system in internal combustion engine
JPS56101030A (en) * 1980-01-18 1981-08-13 Toyota Motor Corp Method of electronically controlled fuel injection for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364128A (en) * 1976-11-04 1978-06-08 Lucas Industries Ltd Electronic fuel injection control system of internal combustion engine
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection
JPS5535134A (en) * 1978-09-01 1980-03-12 Toyota Motor Corp Air-fuel ratio control system in internal combustion engine
JPS56101030A (en) * 1980-01-18 1981-08-13 Toyota Motor Corp Method of electronically controlled fuel injection for internal combustion engine

Also Published As

Publication number Publication date
JPS58144635A (en) 1983-08-29

Similar Documents

Publication Publication Date Title
US4440119A (en) Electronic fuel injecting method and device for internal combustion engine
JPS6165038A (en) Air-fuel ratio control system
US4463732A (en) Electronic controlled non-synchronous fuel injecting method and device for internal combustion engines
US4487190A (en) Electronic fuel injecting method and device for internal combustion engine
JPH057548B2 (en)
JPS6231179B2 (en)
JPH0512538B2 (en)
JPH057546B2 (en)
JPH0368221B2 (en)
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH0316498B2 (en)
JPH0573907B2 (en)
JPH0372824B2 (en)
JPH0475382B2 (en)
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPH059620B2 (en)
JPH059621B2 (en)
JPH0510490B2 (en)
JPH0423098B2 (en)
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0325620B2 (en)
JPS58144639A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH0325621B2 (en)
JPS58214633A (en) Electronically controlled fuel injection method for internal-combustion engine
JPS58144638A (en) Electronically controlled fuel injecting method for internal-combustion engine