JPH057546B2 - - Google Patents

Info

Publication number
JPH057546B2
JPH057546B2 JP57027843A JP2784382A JPH057546B2 JP H057546 B2 JPH057546 B2 JP H057546B2 JP 57027843 A JP57027843 A JP 57027843A JP 2784382 A JP2784382 A JP 2784382A JP H057546 B2 JPH057546 B2 JP H057546B2
Authority
JP
Japan
Prior art keywords
increase
pipe pressure
intake pipe
amount
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57027843A
Other languages
Japanese (ja)
Other versions
JPS58144632A (en
Inventor
Toshiaki Isobe
Toshimitsu Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2784382A priority Critical patent/JPS58144632A/en
Publication of JPS58144632A publication Critical patent/JPS58144632A/en
Publication of JPH057546B2 publication Critical patent/JPH057546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、内燃機関の電子制御燃料噴射方法に
係り、特に、吸気管圧力感知式の電子制御燃料噴
射装置を備えた自動車用内燃機関に用いるのに好
適な、エンジンの吸気管圧力とエンジン回転数に
応じて基本噴射量を求めると共に、過渡時は、エ
ンジン運転状態に応じて算出される補正係数によ
り前記基本噴射量を補正することによつて燃料噴
射量を決定するようにした内燃機関の電子制御燃
料噴射方法の改良に関する。
The present invention relates to an electronically controlled fuel injection method for an internal combustion engine, and particularly to an engine intake pipe pressure and engine rotation method suitable for use in an automobile internal combustion engine equipped with an intake pipe pressure sensing type electronically controlled fuel injection device. In this internal combustion engine, the basic injection amount is determined according to the number of fuel injections, and the fuel injection amount is determined by correcting the basic injection amount using a correction coefficient calculated according to the engine operating state during transient times. This invention relates to improvements in electronically controlled fuel injection methods.

【従来の技術】[Conventional technology]

自動車用エンジン等の内燃機関の燃焼室に所定
空燃比の混合気を供給する方法の一つに、電子制
御燃料噴射装置を用いるものがある。 これは、エンジン内に燃料を噴射するためのイ
ンジエクタを、例えば、エンジンの吸気マニホー
ルドあるいはスロツトルボデイに、エンジン気筒
数個あるいは1個配設し、該インジエクタの開弁
時間をエンジンの運転状態に応じて制御すること
により、所定の空燃比の混合気がエンジン燃焼室
に供給されるようにするものである。 この電子制御燃料噴射装置には、大別して、エ
ンジンの吸入空気量とエンジン回転数に応じて基
本噴射量を求めるようにした、いわゆる吸入空気
量感知式の電子制御燃料噴射装置と、エンジンの
吸気管圧力とエンジン回転数に応じて基本噴射量
を求めるようにした、いわゆる吸気管圧力感知式
の電子制御燃料噴射装置がある。 このうち前者は、空燃比を精密に制御すること
が可能であり、排気ガス浄化対策が施された自動
車用エンジンに広く用いられるようになつてい
る。 しかしながら、この吸入空気量感知式の電子制
御燃料噴射装置においては、吸入空気量が、アイ
ドル時と高負荷時で50倍程度変化し、ダイナミツ
クレンジが広いので、吸入空気量を電気信号に変
換する際の精度が低くなるだけでなく、後段のデ
ジタル制御回路における計算精度を高めようとす
ると、電気信号のビツト長が長くなり、デジタル
制御回路として高価なコンピユータを用いる必要
がある。又、吸入空気量を検出するために、エア
フローメータ等の非常に精密な構造を有するセン
サを用いる必要があり、設備費が高価となる等の
問題点を有していた。 一方、後者の吸気管圧力感知式の電子制御燃料
噴射装置においては、吸気管圧力の変化量が2〜
3倍程度と少なく、ダイナミツクレンジが狭いの
で、後段のデジタル制御回路における演算処理が
容易であるだけでなく、吸気管圧力を検知するた
めの圧力センサも安価であるという特徴を有す
る。
2. Description of the Related Art One of the methods for supplying an air-fuel mixture at a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine such as an automobile engine uses an electronically controlled fuel injection device. In this method, an injector for injecting fuel into the engine is installed in the intake manifold or throttle body of the engine, for example, in several engine cylinders or one engine cylinder, and the valve opening time of the injector is adjusted depending on the operating state of the engine. By controlling the air-fuel mixture, a mixture having a predetermined air-fuel ratio is supplied to the engine combustion chamber. These electronically controlled fuel injection devices can be roughly divided into so-called intake air amount sensing type electronically controlled fuel injection devices that calculate the basic injection amount according to the engine's intake air amount and engine speed, and There is a so-called intake pipe pressure sensing type electronically controlled fuel injection system that determines a basic injection amount according to pipe pressure and engine speed. Among these, the former allows for precise control of the air-fuel ratio, and has come to be widely used in automobile engines equipped with exhaust gas purification measures. However, in this electronically controlled fuel injection system that senses the amount of intake air, the amount of intake air changes by about 50 times between idle and high load, and has a wide dynamic range, so it converts the amount of intake air into an electrical signal. Not only does this result in lower accuracy when calculating, but if the calculation accuracy in the digital control circuit at the subsequent stage is to be increased, the bit length of the electrical signal becomes longer, requiring the use of an expensive computer as the digital control circuit. Furthermore, in order to detect the amount of intake air, it is necessary to use a sensor having a very precise structure, such as an air flow meter, resulting in problems such as high equipment costs. On the other hand, in the latter type of electronically controlled fuel injection device that detects intake pipe pressure, the amount of change in intake pipe pressure is 2 to 2.
Since the dynamic range is narrow, about 3 times as much, not only is the arithmetic processing in the subsequent digital control circuit easy, but the pressure sensor for detecting the intake pipe pressure is also inexpensive.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、吸入空気量感知式の電子制御燃
料噴射装置に比べると、空燃比の制御精度が低
く、特に、加速時においては、吸気管圧力が増大
しなければ燃料噴射量が増えないため、空燃比が
一時的にリーンとなつて、加速性能が低いもので
あつた。 このような問題点を解消するべく、従来は、絞
り弁に配設された櫛歯状のセンサから出力される
パルス列に応じて加速増量を行うようにしていた
が、ドライバビリテイを高めるためには、増量の
量を非常に大としなければならず、その場合に
は、空燃比がオーバーリツチとなつて、排気ガス
中の一酸化炭素量が異常に増大し、空燃比を三元
触媒コンバータに適した所定範囲内に維持するこ
とができなかつた。これは、排気下流側に配設し
た酸素濃度センサの出力信号に応じて燃料噴射量
をフイードバツク制御するようにした場合におい
ても、酸素濃度センサの応答が遅いため、同様で
ある。 従つて従来は、吸気管圧力感知式の電子制御燃
料噴射装置を、空燃比を精密に制御することが必
要な、排気ガス浄化対策が施された自動車用エン
ジンに用いることは困難であると考えられてい
た。 本発明は、前記従来の問題点を解消するべくな
されたもので、加速時に、アクセルペダルの踏み
方と吸気管圧力の両者の変化に応じた適切な、過
度とならない増量補正を行つて、空燃比を理論空
燃比近傍に維持することができ、従つて、良好な
過度応答性能と排気ガス浄化性能を両立させるこ
とができる内燃機関の電子制御燃料噴射方法を提
供することを目的とする。
However, compared to an electronically controlled fuel injection system that senses the amount of intake air, the control accuracy of the air-fuel ratio is lower, and especially during acceleration, the amount of fuel injected does not increase unless the intake pipe pressure increases, so the air-fuel ratio was temporarily lean, resulting in poor acceleration performance. In order to solve these problems, conventionally the acceleration was increased according to the pulse train output from a comb-like sensor installed in the throttle valve, but in order to improve drivability, In this case, the amount of increase must be very large, and in that case, the air-fuel ratio becomes overrich, the amount of carbon monoxide in the exhaust gas increases abnormally, and the air-fuel ratio is changed to a three-way catalytic converter. could not be maintained within a suitable predetermined range. This is the same even when the fuel injection amount is feedback-controlled in accordance with the output signal of the oxygen concentration sensor disposed downstream of the exhaust gas because the response of the oxygen concentration sensor is slow. Therefore, in the past, it was thought that it would be difficult to use an electronically controlled fuel injection system that senses intake pipe pressure in an automobile engine that requires precise control of the air-fuel ratio and that takes measures to purify exhaust gas. It was getting worse. The present invention has been made to solve the above-mentioned conventional problems, and the present invention performs an appropriate and not excessive increase correction in response to changes in both the way the accelerator pedal is pressed and the intake pipe pressure during acceleration. It is an object of the present invention to provide an electronically controlled fuel injection method for an internal combustion engine that can maintain a fuel ratio near the stoichiometric air-fuel ratio, thereby achieving both good transient response performance and exhaust gas purification performance.

【課題を解決するための手段】[Means to solve the problem]

本発明は、エンジンの吸気管圧力とエンジン回
転数に応じて基本噴射量を求めると共に、過度時
は、エンジン運転状態に応じて算出される補正係
数により前記基本噴射量を補正することによつて
燃料噴射量を決定するようにした内燃機関の電子
制御燃料噴射方法において、加速時に、アイドル
スイツチがオフとなつた時に増量補正を行うアフ
タアイドル増量と、絞り弁開度の所定期間毎の変
化量に応じた値を積算した値を補正係数として、
絞り弁開度の増大速度に応じた増量補正を行う絞
り弁開度増量と、吸気管圧力の所定期間毎の変化
量に応じた値を積算した値を補正係数として、吸
気管圧力の増大速度に応じた増量補正を行う吸気
管圧力増量とを算出し、これら増量値のうち、そ
の最大値を用いて加速増量を行うと共に、少くと
も前記吸気管圧力増量の補正係数に上限を設ける
ことにより、前記目的を達成したものである。
The present invention calculates the basic injection amount according to the engine intake pipe pressure and engine speed, and when excessive, corrects the basic injection amount using a correction coefficient calculated according to the engine operating condition. In an electronically controlled fuel injection method for an internal combustion engine that determines the amount of fuel to be injected, there is an after-idle amount increase that performs an increase correction when the idle switch is turned off during acceleration, and the amount of change in the throttle valve opening for each predetermined period. The value obtained by integrating the values according to is used as the correction coefficient,
The rate of increase in intake pipe pressure is calculated using the correction coefficient, which is the sum of the throttle valve opening increase, which performs an increase correction according to the increase rate of the throttle valve opening, and the amount of change in intake pipe pressure for each predetermined period. Calculate the intake pipe pressure increase to perform the increase correction according to the increase value, perform the acceleration increase using the maximum value among these increase values, and at least set an upper limit on the correction coefficient of the intake pipe pressure increase. , the above objective has been achieved.

【作用】[Effect]

本発明においては、加速時に、アクセルペダル
を踏んだ瞬間に増量補正を行う、極めて応答の早
いアフタアイドル増量と、吸気管圧力の増大に先
行して絞り弁開度の増大速度に応じた増量補正を
行う、応答の早い絞り弁開度増量と、吸気管圧力
の増大に応じた増量補正を行う、精度の高い吸気
管圧力増量と、を組合わせて増量補正を行うよう
にしているので、応答が早く、且つ、精度の高い
加速増量を行うことができる。 即ち、前記アフタアイドル増量は、応答は極め
て早いが、どの程度の加速か判断できないため、
見込み補正しかできず、オーバーリツチ防止の観
点から多くの増量値とすることはできない。 又、前記絞り弁開度増量は、絞り弁開度に基づ
いて行われるため、アクセルペダルの踏み方に応
じた増量を迅速に行うことができ、高精度の吸気
管圧力増量が行われる迄の中間加速部分の応答性
を向上させることができる。 これらに対して、前記吸気管圧力増量は、絞り
弁開度が変化した後で吸気管圧力の変化が生じて
から行われる。この吸気管圧力増量は、実際にエ
ンジン燃焼室に吸入される空気量に基づいて行わ
れるものであり、精度が高い。 なお、吸入空気量感知式の場合には、加速時に
絞り弁が開かれると、絞り弁より上流側のエアフ
ローセンサ出力は直ちに吸入空気量の増加を検出
するのに対し、実際に燃焼室に吸入される空気量
は、絞り弁より下流側のサージタンクの分だけ増
加が遅れるため、前記センサ出力により計算され
る燃料量の方が先行して増加することになり、こ
れが適当な加速増量となるため、本発明のような
絞り弁開度増量を必要としない。 本発明においては、更に、前記アフタアイドル
増量、絞り弁開度増量及び吸気管圧力増量の最大
値を辿つて加速増量を行うようにしているので、
これらが重なる領域でも過増量となることがな
い。 又、加速が継続するフル加速時に、前記補正係
数がそのまま積算されていくと、たとえ精度の高
い吸気管圧力増量であつても過増量となつてしま
う恐れがある。そこで本発明では、少くとも吸気
管圧力増量の補正係数に上限を設けて、このよう
なフル加速時の過増量を防いでいる。
In the present invention, during acceleration, the after-idle amount increase is performed at the moment the accelerator pedal is pressed, and the after-idle amount increases with extremely quick response.The amount is also increased in accordance with the rate of increase in the throttle valve opening prior to the increase in intake pipe pressure. Since the increase correction is performed by combining a fast-response increase in the throttle valve opening, which performs the It is possible to quickly and accurately increase the amount of acceleration. In other words, although the after-idle increase has an extremely quick response, it is not possible to determine how much acceleration the engine is accelerating.
Only estimated corrections can be made, and it is not possible to increase the amount by a large amount in order to prevent over-richness. In addition, since the throttle valve opening is increased based on the throttle valve opening, it can be quickly increased depending on how the accelerator pedal is pressed, and the intake pipe pressure can be increased with high accuracy. The responsiveness of the intermediate acceleration portion can be improved. On the other hand, the intake pipe pressure increase is performed after the intake pipe pressure changes after the throttle valve opening changes. This intake pipe pressure increase is performed based on the amount of air actually taken into the engine combustion chamber, and is highly accurate. In the case of the intake air amount sensing type, when the throttle valve is opened during acceleration, the air flow sensor output upstream of the throttle valve immediately detects an increase in the amount of intake air, whereas Since the increase in the amount of air caused by the throttle valve is delayed by the amount of the surge tank downstream from the throttle valve, the amount of fuel calculated from the sensor output increases in advance, and this becomes an appropriate increase in acceleration. Therefore, there is no need to increase the throttle valve opening as in the present invention. In the present invention, the acceleration increase is further performed by following the maximum values of the after-idle increase, the throttle valve opening increase, and the intake pipe pressure increase.
Even in the area where these overlap, the amount will not be increased excessively. Furthermore, if the correction coefficient is accumulated as it is during full acceleration where acceleration continues, even if the intake pipe pressure is increased with high accuracy, there is a risk that the amount will be increased excessively. Therefore, in the present invention, at least an upper limit is set on the correction coefficient for the intake pipe pressure increase to prevent such an excessive increase during full acceleration.

【実施例】【Example】

以下図面を参照して、本発明の実施例を詳細に
説明する。 本発明に係る内燃機関の電子制御燃料噴射方法
が採用された、吸気管圧力感知式の電子制御燃料
噴射装置の実施例は、第1図及び第2図に示す如
く、外気を取入れるためのエアクリーナ12と、
該エアクリーナ12より取入れられた吸入空気の
温度を検出するための吸気温センサ14と、吸気
通路16中に配設され、運転席に配設されたアク
セルペダル(図示省略)と連動して開閉するよう
にされた、吸入空気の流量を制御するための絞り
弁18と、該絞り弁18がアイドル開度にあるか
否かを検出するためのアイドル接点(スイツチ)
及び絞り弁18の開度に比例した電圧出力を発生
するポテンシヨメータを含むスロツトルセンサ2
0と、気筒間の吸気干渉を防止するためのサージ
タンク22と、該サージタンク22内の圧力から
吸気管圧力を検出するための吸気管圧力センサ2
3と、前記絞り弁18をバイパスするバイパス通
路24と、該バイパス通路24の途中に配設さ
れ、該バイパス通路24の開口面積を制御するこ
とによつて、アイドル回転速度を制御するための
アイドル回転制御弁26と、吸気マニホルド28
に配設された、エンジン10の吸気ポートに向け
て燃料を噴射するためのインジエクタ30と、排
気マニホールド32に配設された、排気ガス中の
残存酸素濃度から空燃比を検知するための酸素濃
度センサ34と、前記排気マニホールド32下流
側の排気管36の途中に配設された三元触媒コン
バータ38と、エンジン10のクランク軸の回転
と連動して回転するデイストリビユータ軸を有す
るデイストリビユータ40と、該デイストリビユ
ータ40に内蔵された、前記デイストリビユータ
軸の回転に応じて上死点信号及びクランク角信号
を出力する上死点センサ42及びクランク角セン
サ44と、エンジンブロツクに配設された、エン
ジン冷却水温を検知するための冷却水温センサ4
6と、変速機48の出力軸の回転数から車両の走
行速度を検出するための車速センサ50と、前記
吸気管圧力センサ23出力の吸気管圧力と前記ク
ランク角センサ44の出力から求められるエンジ
ン回転数に応じて、エンジン1工程あたりの基本
噴射量を求めると共に、これを前記スロツトルセ
ンサ20の出力、前記酸素濃度センサ34出力の
空燃比、前記冷却水温センサ46出力のエンジン
冷却水温等に応じて補正することにより燃料噴射
量を決定して、前記インジエクタ30に開弁時間
信号を出力し、又、エンジン運転状態に応じて点
火時期を決定してイグナイタ付コイル52に点火
信号を出力し、更に、アイドル時に前記アイドル
回転制御弁26を制御するデジタル制御回路54
とを備えた自動車用エンジン10の吸気管圧力感
知式電子制御燃料噴射装置において、前記デジタ
ル制御回路54内で、加速時に、前記スロツトル
センサ20のアイドルスイツチがオフとなつた時
に所定量の増量補正を行うアフタアイドル増量
と、前記スロツトルセンサ20のポテンシヨメー
タ出力から検知される絞り弁開度の所定期間毎の
変化量に応じた値を積算した値を補正係数とし
て、絞り弁開度の増大速度に応じた増量補正を行
う絞り弁開度増量と、前記吸気管圧力センサ23
の出力から検知される吸気管圧力の所定時間毎の
変化量に応じた値を積算した値を補正係数とし
て、吸気管圧力の増大速度に応じた増量補正を行
う吸気管圧力増量とを算出し、これら増量値のう
ち、その最大値を用いて加速増量を行うようにし
たものである。 前記デジタル制御回路54は、第2図に詳細に
示す如く、各種演算処理を行うマイクロプロセツ
サからなる中央処理装置(以下CPUと称する)
60と、前記吸気温センサ14、スロツトルセン
サ20のポテンシヨメータ、吸気管圧力センサ2
3、酸素濃度センサ34、冷却水温センサ46等
から入力されるアナログ信号を、デジタル信号に
変換して順次CPU60に取込むためのマルチプ
レクサ付アナログ入力ポート62と、前記スロツ
トルセンサ20のアイドルスイツチ、上死点セン
サ42、クランク角センサ44、車速センサ50
等から入力されるデジタル信号を、所定のタイミ
ングでCPU60に取込むためのデジタル入力ポ
ート64と、プログラムあるいは各種定数等を記
憶するためのリードオンリーメモリ(以下ROM
と称する)66と、CPU60における演算デー
タ等を一時的に記憶するためのランダムアクセス
メモリ(以下RAMと称する)68と、機関停止
時にも補助電源から給電されて記憶を保持できる
バツクアツプ用ランダムアクセスメモリ(以下バ
ツクアツプRAMと称する)70と、CPU60に
おける演算結果を、所定のタイミングで前記アイ
ドル回転制御弁26、インジエクタ30、イグナ
イタ付コイル52等に出力するためのデジタル出
力ポート72と、上記各構成機器間を接続するコ
モンバス74とから構成されている。 以下、実施例の作用を説明する。 まずデジタル制御回路54は、吸気管圧力セン
サ23出力の吸気管圧力PMと、クランク角セン
サ44の出力から算出されるエンジン回転数NE
により、ROM66に予め記憶されているマツプ
から、基本噴射時間TP(PM,NE)を読み出す。 更に、各センサからの信号に応じて、次式を用
いて前記基本噴射時間TP(PM,NE)を補正す
ることにより、燃料噴射時間TAUを算出する。 TAU=TP(PM,NE)*(1+K*F) …(1) ここで、Fは、補正係数で、Fが正である場合
には増量補正を表わし、Fが負である場合には減
量補正を表わしている。又、Kは、前記補正係数
Fを更に補正するための補正倍率であり、通常は
1とされている。 このようにして決定された燃料噴射時間TAU
に対応する燃料噴射信号が、インジエクタ30に
出力され、エンジン回転と同期してインジエクタ
30が燃料噴射時間TAUだけ開かれて、エンジ
ン10の吸気マニホールド28内に燃料が噴射さ
れる。 本実施例における加速増量は、次のようにして
行われる。 即ち、第3図に示す如く、加速時に、アクセル
ペダルが踏み込まれ、スロツトルセンサ20のア
イドルスイツチが、第3図Aに示す如く、時刻t1
でオフとなると、絞り弁開度TA及び吸気管圧力
PMの増大に先行して、第3図Dに実線Aで示す
ような、極めて迅速な増量補正を行うアフタアイ
ドル増量(以下LL増量と称する)が行われる。 このLL増量は、具体的には、例えば、補正係
数Fを、まず正の所定値とし、次いで、エンジン
回転毎あるいは一定時間毎に、所定の減衰速度で
0まで減衰させることによつて行われる。 次いで、絞り弁18が更に開かれ、前記スロツ
トルセンサ20のポテンシヨメータ出力から検知
される絞り弁開度TAが、第3図Bに示す如く、
時刻t2で立上り始めると、吸気管圧力PMの増大
に先行して、第3図Dに実線Bで示すような、絞
り弁開度TAの増大速度に応じた迅速な増量補正
を行う絞り弁開度増量(以下TA増量と称する)
が行われる。 このTA増量は、具体的には、例えば絞り弁開
度TAの所定時間毎の変化量に応じた値を積算し
た値(正値)を補正係数Fとし、次いで、エンジ
ン回転毎あるいは一定時間毎に、所定の減衰速度
で0まで減衰させることによつて行われる。 更に、吸気管圧力PMが絞り弁開度TAの増大
に遅れて増大し始めると、時刻t3から、第3図D
に実線Cで示すような、吸気管圧力PMの増大速
度に応じた精度の高い増量補正を行う吸気管圧力
増量(以下PM増量と称する)が行われる。 このPM増量は、具体的には、第4図に示す如
く、吸気管圧力PMの所定時間毎の変化量ΔPM
に応じて、該変化量ΔPMに対応させて予め設定
されている値ΔF(第6図実線D)を積算して値
(正値)を補正係数Fとし、次いで、吸気管圧力
PMが一定となつた時は、該補正係数Fを、エン
ジン回転毎あるいは一定時間毎に、所定の減衰速
度ΔF′で0まで減衰することによつて行われる。 従つて、例えば、絞り弁開度TAが加速途中で
一定となつた場合には、第4図に実線Eで示すよ
うな状態となり、一方、絞り弁開度TAが一気に
全開状態まで開かれた場合には、同じく第4図に
破線Fで示すような状態となつて、吸気管圧力の
変化速度及び変化量に応じた最適な増量補正が行
われる。 なお、第4図に破線Fで示すような、加速が継
続するフル加速の場合に、値ΔFを積算した値を
そのまま補正係数Fとしてしまうと、過増量とな
つて、加速時にオーバーリツチとなる可能性があ
る。 従つて、本発明においては、第4図に一点鎖線
Gで示す如く、値ΔFを積算した値に上限を設け、
補正係数Fが該上限値Fmaxを越えないようにし
ている。 このPM増量のプログラムを、第5図に示す。 なお、時刻t2〜t3ではLL増量とTA増量が重な
り、又、時刻t3〜t4では全ての増量が重なり、更
に、時刻t4〜t5ではTA増量とPM増量が重なつて
いるが、全ての増量を重畳して増量補正を行つて
しまうと、特に、応答は早いが精度の良くない
LL増量、TA増量の影響で、過増量となる恐れが
ある。 従つて、本発明においては、第3図Dに太い実
線で示す如く、前記LL増量、TA増量、PM増量
の最大値を辿つて加速増量を行うようにしてい
る。 前記のようにして、極めて応答の早いLL増量、
応答の早いTA増量、精度の高いPM増量を組合
せて加速増量を行うことによつて、アクセルペダ
ルを早く踏み込んだ場合には多量の増量が実施さ
れ、一方、アクセルペダルを徐々に踏み込んだ場
合には少量の増量が行われる等、アクセルペダル
の踏み方に応じた適切な加速増量を実施すること
ができ、空燃比を理論空燃比近傍に維持して、過
度応答性能と排気ガス浄化性能を両立することが
できる。 なお、前記実施例においては、吸気管圧力PM
の所定時間毎の変化量ΔPMに応じて積算される
値ΔFが、第6図に実線Dで示す如く、変化量
ΔPMの1次関数とされていたが、変化量ΔPMと
値ΔFの関係はこれに限定されず、第6図に破線
Hあるいは一点鎖線Iで示す如く、2次関数とす
ることも可能である。
Embodiments of the present invention will be described in detail below with reference to the drawings. As shown in FIGS. 1 and 2, an embodiment of the intake pipe pressure sensing type electronically controlled fuel injection device employing the electronically controlled fuel injection method for an internal combustion engine according to the present invention is as shown in FIGS. Air cleaner 12,
An intake temperature sensor 14 for detecting the temperature of the intake air taken in from the air cleaner 12 is disposed in the intake passage 16, and opens and closes in conjunction with an accelerator pedal (not shown) disposed in the driver's seat. A throttle valve 18 for controlling the flow rate of intake air, and an idle contact (switch) for detecting whether or not the throttle valve 18 is at an idle opening.
and a throttle sensor 2 including a potentiometer that generates a voltage output proportional to the opening degree of the throttle valve 18.
0, a surge tank 22 for preventing intake air interference between cylinders, and an intake pipe pressure sensor 2 for detecting intake pipe pressure from the pressure inside the surge tank 22.
3, a bypass passage 24 that bypasses the throttle valve 18, and an idler disposed in the middle of the bypass passage 24 for controlling the idle rotation speed by controlling the opening area of the bypass passage 24. Rotation control valve 26 and intake manifold 28
an injector 30 for injecting fuel toward the intake port of the engine 10, and an oxygen concentration sensor for detecting the air-fuel ratio from the residual oxygen concentration in the exhaust gas, located in the exhaust manifold 32. A distributor having a sensor 34, a three-way catalytic converter 38 disposed in the middle of an exhaust pipe 36 downstream of the exhaust manifold 32, and a distributor shaft that rotates in conjunction with the rotation of the crankshaft of the engine 10. 40, a top dead center sensor 42 and a crank angle sensor 44, which are built in the distributor 40 and output a top dead center signal and a crank angle signal in accordance with the rotation of the distributor shaft, and a top dead center sensor 42 and a crank angle sensor 44, which are installed in the engine block. A cooling water temperature sensor 4 is installed to detect the engine cooling water temperature.
6, a vehicle speed sensor 50 for detecting the running speed of the vehicle from the rotation speed of the output shaft of the transmission 48, and an engine that is determined from the intake pipe pressure output from the intake pipe pressure sensor 23 and the output from the crank angle sensor 44. The basic injection amount per engine stroke is determined according to the rotational speed, and this is used as the output of the throttle sensor 20, the air-fuel ratio of the oxygen concentration sensor 34 output, the engine cooling water temperature of the cooling water temperature sensor 46 output, etc. The fuel injection amount is determined by correcting it accordingly, and a valve opening time signal is output to the injector 30, and the ignition timing is determined according to the engine operating condition and an ignition signal is output to the igniter-equipped coil 52. , further comprising a digital control circuit 54 that controls the idle rotation control valve 26 during idle.
In the intake pipe pressure sensing type electronically controlled fuel injection system for an automobile engine 10, the digital control circuit 54 increases the amount by a predetermined amount when the idle switch of the throttle sensor 20 is turned off during acceleration. The throttle valve opening is determined using a correction coefficient that is the sum of the after-idle increase to be corrected and the amount of change in the throttle valve opening detected from the potentiometer output of the throttle sensor 20 for each predetermined period. and the intake pipe pressure sensor 23.
Calculates the intake pipe pressure increase amount, which performs an increase correction according to the rate of increase in intake pipe pressure, using the value obtained by integrating the values corresponding to the amount of change in the intake pipe pressure detected from the output at each predetermined time as a correction coefficient. Among these increase values, the maximum value is used to perform accelerated increase. As shown in detail in FIG. 2, the digital control circuit 54 is a central processing unit (hereinafter referred to as CPU) consisting of a microprocessor that performs various arithmetic operations.
60, the intake temperature sensor 14, the potentiometer of the throttle sensor 20, and the intake pipe pressure sensor 2.
3. An analog input port 62 with a multiplexer for converting analog signals input from the oxygen concentration sensor 34, cooling water temperature sensor 46, etc. into digital signals and sequentially inputting them to the CPU 60; and an idle switch for the throttle sensor 20; Top dead center sensor 42, crank angle sensor 44, vehicle speed sensor 50
A digital input port 64 is used to input digital signals input from other devices into the CPU 60 at predetermined timing, and a read-only memory (hereinafter referred to as ROM) is used to store programs or various constants.
) 66, a random access memory (hereinafter referred to as RAM) 68 for temporarily storing calculation data etc. in the CPU 60, and a backup random access memory that can be supplied with power from an auxiliary power source and retain memory even when the engine is stopped. (hereinafter referred to as backup RAM) 70, a digital output port 72 for outputting the calculation results of the CPU 60 to the idle rotation control valve 26, injector 30, coil with igniter 52, etc. at a predetermined timing, and each of the above-mentioned components. and a common bus 74 that connects between the two. The effects of the embodiment will be explained below. First, the digital control circuit 54 calculates the intake pipe pressure PM output from the intake pipe pressure sensor 23 and the engine rotation speed NE calculated from the output of the crank angle sensor 44.
Accordingly, the basic injection time TP (PM, NE) is read from the map stored in advance in the ROM 66. Furthermore, the fuel injection time TAU is calculated by correcting the basic injection time TP (PM, NE) using the following equation according to the signals from each sensor. TAU=TP(PM,NE)*(1+K*F)...(1) Here, F is a correction coefficient; if F is positive, it represents an increase correction, and if F is negative, it represents a reduction. It represents a correction. Further, K is a correction magnification for further correcting the correction coefficient F, and is normally set to 1. Fuel injection time TAU determined in this way
A fuel injection signal corresponding to this is output to the injector 30, the injector 30 is opened for the fuel injection time TAU in synchronization with the engine rotation, and fuel is injected into the intake manifold 28 of the engine 10. The accelerated increase in amount in this embodiment is performed as follows. That is, as shown in FIG. 3, the accelerator pedal is depressed during acceleration, and the idle switch of the throttle sensor 20 is activated at time t 1 as shown in FIG. 3A.
When it turns off, the throttle valve opening TA and intake pipe pressure
Prior to the increase in PM, after-idle power increase (hereinafter referred to as LL power increase) is performed, which performs extremely rapid power increase correction, as shown by the solid line A in FIG. 3D. Specifically, this LL increase is performed by, for example, first setting the correction coefficient F to a predetermined positive value, and then attenuating it to 0 at a predetermined damping speed every engine rotation or every certain period of time. . Next, the throttle valve 18 is further opened, and the throttle valve opening degree TA detected from the potentiometer output of the throttle sensor 20 becomes as shown in FIG. 3B.
When the rise starts at time t2 , the throttle valve performs a quick increase correction according to the rate of increase in the throttle valve opening TA, as shown by the solid line B in FIG. 3D, prior to the increase in the intake pipe pressure PM. Opening increase (hereinafter referred to as TA increase)
will be held. Specifically, this TA increase is performed by setting the correction coefficient F to a value (positive value) that is the sum of the values corresponding to the amount of change in the throttle valve opening TA every predetermined time, and then This is done by damping down to zero at a predetermined damping rate. Furthermore, when the intake pipe pressure PM begins to increase with a delay in the increase in the throttle valve opening TA, from time t 3 , Fig. 3D
As shown by a solid line C, an intake pipe pressure increase (hereinafter referred to as PM increase) is performed that performs a highly accurate increase correction according to the rate of increase in intake pipe pressure PM. Specifically, as shown in FIG.
According to the change amount ΔPM, a preset value ΔF (solid line D in Figure 6) is integrated, the value (positive value) is set as a correction coefficient F, and then the intake pipe pressure is
When PM becomes constant, the correction coefficient F is attenuated to 0 at a predetermined attenuation speed ΔF' every engine rotation or every fixed period of time. Therefore, for example, if the throttle valve opening TA becomes constant during acceleration, the state will be as shown by the solid line E in Fig. 4, but on the other hand, if the throttle valve opening TA becomes fully open all at once. In this case, a state as shown by the broken line F in FIG. 4 is reached, and an optimal increase correction is performed in accordance with the rate and amount of change in the intake pipe pressure. In addition, in the case of full acceleration where the acceleration continues as shown by the broken line F in Fig. 4, if the value obtained by integrating the value ΔF is used as the correction coefficient F, the amount will be increased excessively, resulting in overrichness during acceleration. there is a possibility. Therefore, in the present invention, as shown by the dashed line G in FIG. 4, an upper limit is set on the value of the integrated value ΔF,
The correction coefficient F is kept from exceeding the upper limit value Fmax. This PM increase program is shown in FIG. It should be noted that from time t 2 to t 3 , the LL increase and TA increase overlap, from time t 3 to t 4 , all the increases overlap, and furthermore, from time t 4 to t 5 , the TA increase and PM increase overlap. However, if all the increases are superimposed and the increase correction is performed, the response is fast but the accuracy is not good.
Due to the effects of increasing LL and TA, there is a risk of overdosing. Therefore, in the present invention, as shown by the thick solid line in FIG. 3D, the accelerated increase is performed by following the maximum values of the LL increase, TA increase, and PM increase. As mentioned above, LL increase with extremely quick response,
By combining quick response TA increase and highly accurate PM increase to increase acceleration, a large amount of increase is achieved when the accelerator pedal is depressed quickly, while a large amount is increased when the accelerator pedal is depressed gradually. It is possible to perform an appropriate acceleration increase depending on how the accelerator pedal is pressed, such as a small amount increase, and maintain the air-fuel ratio near the stoichiometric air-fuel ratio, achieving both transient response performance and exhaust gas purification performance. can do. In addition, in the above embodiment, the intake pipe pressure PM
The value ΔF, which is accumulated according to the amount of change ΔPM for each predetermined time, was assumed to be a linear function of the amount of change ΔPM, as shown by the solid line D in FIG. 6, but the relationship between the amount of change ΔPM and the value ΔF is The function is not limited to this, and it is also possible to use a quadratic function as shown by the broken line H or the dashed-dotted line I in FIG.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、加速時
に、アクセルペダルの踏み方と吸気管圧力の両者
の変化に応じた適切な、過度とならない増量補正
を行うことができ、空燃比を理論空燃比近傍に維
持して、良好な過渡応答性能と排気ガス浄化性能
を両立することができる。従つて、吸気管圧力感
知式の電子制御燃料噴射装置を用いた場合でも、
精密な空燃比制御を行うことが可能となるという
優れた硬化を有する。
As explained above, according to the present invention, during acceleration, it is possible to perform appropriate and not excessive increase correction according to changes in both the way the accelerator pedal is pressed and the intake pipe pressure, and the air-fuel ratio is adjusted to the stoichiometric air-fuel ratio. By maintaining it in the vicinity, it is possible to achieve both good transient response performance and exhaust gas purification performance. Therefore, even when using an electronically controlled fuel injection device that senses intake pipe pressure,
It has excellent curing properties that enable precise air-fuel ratio control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る内燃機関の電子制御燃
料噴射方法が採用された、自動車用エンジンの吸
気管圧力感知式電子制御燃料噴射装置の実施例を
示すブロツク線図、第2図は、前記実施例で用い
られているデジタル制御回路の構成を示すブロツ
ク線図、第3図は、前記実施例における加速増量
の様子を示す線図、第4図は、同じく、吸気管圧
力の増大速度に応じた加速増量の様子を示す線
図、第5図は、同じく、吸気管圧力の増大速度に
応じた加速増量のプログラムを示す流れ図、第6
図は、前記実施例で用いられている、吸気管圧力
の所定時間毎の変化量と積算される値の関係を示
す線図である。 10…エンジン、14…吸気温センサ、18…
絞り弁、20…スロツトルセンサ、23…吸気管
圧力センサ、30…インジエクタ、34…酸素濃
度センサ、40…デイストリビユータ、42…上
死点センサ、44…クランク角センサ、46…冷
却水温センサ、54…デジタル制御回路。
FIG. 1 is a block diagram showing an embodiment of an intake pipe pressure sensing type electronically controlled fuel injection device for an automobile engine in which the electronically controlled fuel injection method for an internal combustion engine according to the present invention is adopted, and FIG. FIG. 3 is a block diagram showing the configuration of the digital control circuit used in the embodiment, FIG. 3 is a diagram showing the acceleration increase in the embodiment, and FIG. 4 is a diagram showing the rate of increase in intake pipe pressure. Figure 5 is a line diagram showing how the amount of acceleration increases depending on the rate of increase in intake pipe pressure, and Figure 6 is a flowchart showing a program of increasing amount of acceleration depending on the rate of increase in intake pipe pressure.
The figure is a diagram showing the relationship between the amount of change in intake pipe pressure every predetermined time and the integrated value, which is used in the embodiment. 10...Engine, 14...Intake temperature sensor, 18...
Throttle valve, 20... Throttle sensor, 23... Intake pipe pressure sensor, 30... Injector, 34... Oxygen concentration sensor, 40... Distributor, 42... Top dead center sensor, 44... Crank angle sensor, 46... Cooling water temperature sensor , 54...digital control circuit.

Claims (1)

【特許請求の範囲】 1 エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共に、過渡時は、エン
ジン運転状態に応じて算出される補正係数により
前記基本噴射量を補正することによつて燃料噴射
量を決定するようにした内燃機関の電子制御燃料
噴射方法において、 加速時に、 アイドルスイツチがオフとなつた時に増量補正
を行うアフタアイドル増量と、 絞り弁開度の所定期間毎の変化量に応じた値を
積算した値を補正係数として、絞り弁開度の増大
速度に応じた増量補正を行う絞り弁開度増量と、 吸気管圧力の所定期間毎の変化量に応じた値を
積算した値を補正係数として、吸気管圧力の増大
速度に応じた増量補正を行う吸気管圧力増量とを
算出し、 これら増量値のうち、その最大値を用いて加速
増量を行うと共に、 少くとも前記吸気管圧力増量の補正係数に上限
を設けたことを特徴とする内燃機関の電子制御燃
料噴射方法。
[Scope of Claims] 1. The basic injection amount is determined according to the engine intake pipe pressure and the engine speed, and during transient periods, the basic injection amount is corrected using a correction coefficient calculated according to the engine operating state. In an electronically controlled fuel injection method for an internal combustion engine in which the amount of fuel to be injected is determined by Throttle valve opening increase, which performs an increase correction according to the rate of increase in throttle valve opening, using the value obtained by integrating the values corresponding to the amount of change in the throttle valve opening as a correction coefficient; and The integrated value is used as a correction coefficient to calculate the intake pipe pressure increase that is corrected according to the rate of increase in intake pipe pressure, and among these increase values, the maximum value is used to perform accelerated increase, An electronically controlled fuel injection method for an internal combustion engine, characterized in that at least an upper limit is set for the correction coefficient for the intake pipe pressure increase.
JP2784382A 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine Granted JPS58144632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2784382A JPS58144632A (en) 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2784382A JPS58144632A (en) 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58144632A JPS58144632A (en) 1983-08-29
JPH057546B2 true JPH057546B2 (en) 1993-01-29

Family

ID=12232194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2784382A Granted JPS58144632A (en) 1982-02-23 1982-02-23 Method for electronically controlling fuel injection in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58144632A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230542A (en) * 1984-04-28 1985-11-16 Fujitsu Ten Ltd Fuel injector for internal-combustion engine
US4949694A (en) * 1988-04-26 1990-08-21 Nissan Motor Co., Ltd. Fuel supply control system for internal combustion engine
JPH0833117B2 (en) * 1988-07-07 1996-03-29 三菱自動車工業株式会社 Fuel injector
JP2816437B2 (en) * 1989-01-31 1998-10-27 スズキ株式会社 Internal combustion engine fuel control device
JP2520068B2 (en) * 1990-09-24 1996-07-31 シーメンス アクチエンゲゼルシヤフト Correction method during transition of mixture control during dynamic transition conditions in an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection
JPS56101030A (en) * 1980-01-18 1981-08-13 Toyota Motor Corp Method of electronically controlled fuel injection for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection
JPS56101030A (en) * 1980-01-18 1981-08-13 Toyota Motor Corp Method of electronically controlled fuel injection for internal combustion engine

Also Published As

Publication number Publication date
JPS58144632A (en) 1983-08-29

Similar Documents

Publication Publication Date Title
JPS6165038A (en) Air-fuel ratio control system
JPH0251056B2 (en)
US4463732A (en) Electronic controlled non-synchronous fuel injecting method and device for internal combustion engines
US4487190A (en) Electronic fuel injecting method and device for internal combustion engine
JPH057548B2 (en)
JPS6231179B2 (en)
JPH057546B2 (en)
JPH0512538B2 (en)
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH0573907B2 (en)
JPH0372824B2 (en)
JPH059620B2 (en)
JPH0316498B2 (en)
JPH0368221B2 (en)
JPH0475382B2 (en)
JPH059621B2 (en)
JPH0510490B2 (en)
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0423098B2 (en)
JPH0325620B2 (en)
JPS58214633A (en) Electronically controlled fuel injection method for internal-combustion engine
JPH0325621B2 (en)
JPS58144639A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58144638A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH022457B2 (en)