JPH0573907B2 - - Google Patents

Info

Publication number
JPH0573907B2
JPH0573907B2 JP57015098A JP1509882A JPH0573907B2 JP H0573907 B2 JPH0573907 B2 JP H0573907B2 JP 57015098 A JP57015098 A JP 57015098A JP 1509882 A JP1509882 A JP 1509882A JP H0573907 B2 JPH0573907 B2 JP H0573907B2
Authority
JP
Japan
Prior art keywords
engine
reduction
speed
pipe pressure
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57015098A
Other languages
Japanese (ja)
Other versions
JPS58133435A (en
Inventor
Toshiaki Isobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1509882A priority Critical patent/JPS58133435A/en
Publication of JPS58133435A publication Critical patent/JPS58133435A/en
Publication of JPH0573907B2 publication Critical patent/JPH0573907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration

Description

【発明の詳細な説明】 〓産業上の利用分野〓 本発明は、内燃機関の電子制御燃料噴射方法に
係り、特に、吸気管圧力式の電子制御燃料噴射装
置を備えた自動車用内燃機関に用いるのに好適
な、エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共に、エンジンの減速
運転時に、前記基本噴射量を減量補正するように
した内燃機関の電子制御燃料噴射方法の改良に関
する。
[Detailed Description of the Invention] 〓Field of Industrial Application〓 The present invention relates to an electronically controlled fuel injection method for an internal combustion engine, particularly for use in an automobile internal combustion engine equipped with an intake pipe pressure type electronically controlled fuel injection device. An electronically controlled fuel injection method for an internal combustion engine, which is suitable for determining the basic injection amount according to the engine intake pipe pressure and engine speed, and correcting the basic injection amount by decreasing it during deceleration operation of the engine. Regarding improvements.

〓従来の技術〓 自動車用エンジン等の内燃機関の燃焼室に所定
空燃比の混合気を供給する方法の1つに、電子制
御燃料噴射装置を用いるものがある。これは、エ
ンジン内に燃料を噴射するためのインジエクタ
を、例えば、エンジンの吸気マニホルドあるいは
スロツトルボデイに、エンジン気筒数個あるいは
1個配設し、該インジエクタの開弁時間をエンジ
ンの運転状態に応じて制御することにより、所定
の空燃比の混合気がエンジン燃焼室に供給される
ようにするものである。この電子制御燃料噴射装
置には、大別して、エンジンの吸入空気量とエン
ジン回転数に応じて基本噴射量を求めるようにし
た、いわゆる吸入空気量感知式の電子制御燃料噴
射装置と、エンジンの吸気管圧力とエンジン回転
数に応じて基本噴射量を求めるようにした、いわ
ゆる吸気管圧力感知式の電子制御燃料噴射装置が
ある。
<Prior Art> One of the methods of supplying an air-fuel mixture at a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine such as an automobile engine uses an electronically controlled fuel injection device. In this method, an injector for injecting fuel into the engine is installed in the intake manifold or throttle body of the engine, for example, in several engine cylinders or one engine cylinder, and the valve opening time of the injector is adjusted depending on the operating state of the engine. By controlling the air-fuel mixture, a mixture having a predetermined air-fuel ratio is supplied to the engine combustion chamber. These electronically controlled fuel injection devices can be roughly divided into so-called intake air amount sensing type electronically controlled fuel injection devices that calculate the basic injection amount according to the engine's intake air amount and engine speed, and There is a so-called intake pipe pressure sensing type electronically controlled fuel injection system that determines a basic injection amount according to pipe pressure and engine speed.

このうち前者は、空燃比を精密に制御すること
が可能であり、排気ガス浄化対策が施された自動
車用エンジンに広く用いられるようになつてい
る。しかしながら、この吸入空気量感知式の電子
制御燃料噴射装置においては、吸入空気量が、ア
イドル時と高負荷時で50倍程度変化し、ダイナミ
ツクレンジが広いので、吸入空気量を電気信号に
変換する際の精度がくなるだけでなく、後段のデ
ジタル制御回路における計算精度を高めようとす
ると、電気信号のビツト長が長くなり、デジタル
制御回路として高価なコンピユータを用いる必要
がある。又、吸入空気量を測定するために、エア
フローメータ等の非常に精密な構造を有する測定
器を用いる必要があり、設備費が高価となる等の
問題点を有していた。
Among these, the former allows for precise control of the air-fuel ratio, and has come to be widely used in automobile engines equipped with exhaust gas purification measures. However, in this electronically controlled fuel injection system that senses the amount of intake air, the amount of intake air changes by about 50 times between idle and high load, and has a wide dynamic range, so it converts the amount of intake air into an electrical signal. In addition to increasing the accuracy of calculation in the digital control circuit at the subsequent stage, the bit length of the electrical signal becomes longer, requiring the use of an expensive computer as the digital control circuit. In addition, in order to measure the amount of intake air, it is necessary to use a measuring device such as an air flow meter having a very precise structure, resulting in problems such as high equipment costs.

一方、後者の吸気管圧力感知式の電子制御燃料
噴射装置においては、吸気管圧力の変化量が2〜
3倍程度と少なく、ダイナミツクレンジが狭いの
で、後段のデジタル制御回路における演算処理が
容易であるだけでなく、吸気管圧力を検知するた
めの圧力センサも安価であるという特徴を有す
る。しかしながら、吸入空気量感知式の電子制御
燃料噴射装置に比べると、空燃比の制御精度が低
く、特に、減速時においては、吸気管圧力が減少
しなければ燃料噴射量が減少しないため、空燃比
が一時的にリツチとなつて、減速性能が低いもの
となるだけでなく、排気ガス中の一酸化炭素量が
増大して、空燃比を三元触媒コンバータに適した
所定範囲内に維持することが困難であつた。これ
は、排気下流側に配設した酸素濃度センサの出力
信号に応じて燃料噴射量をフイードバツク制御す
るようにした場合においても、酸素濃度センサの
応答が遅いため、同様である。
On the other hand, in the latter type of electronically controlled fuel injection device that detects intake pipe pressure, the amount of change in intake pipe pressure is
Since the dynamic range is small, about 3 times as much, it is not only easy to perform arithmetic processing in the digital control circuit at the subsequent stage, but also the pressure sensor for detecting the intake pipe pressure is inexpensive. However, compared to an electronically controlled fuel injection device that senses the amount of intake air, the control accuracy of the air-fuel ratio is lower, and especially during deceleration, the amount of fuel injected does not decrease unless the intake pipe pressure decreases, so the air-fuel ratio Temporarily becomes rich, which not only reduces deceleration performance but also increases the amount of carbon monoxide in the exhaust gas, making it difficult to maintain the air-fuel ratio within a predetermined range suitable for a three-way catalytic converter. was difficult. This is the same even when the fuel injection amount is feedback-controlled in accordance with the output signal of the oxygen concentration sensor disposed downstream of the exhaust gas because the response of the oxygen concentration sensor is slow.

従つて、従来は、吸気管圧力感知式の電子制御
燃料噴射装置を、空燃比を精密に制御することが
必要な、排気ガス浄化対策が施された自動車用エ
ンジンに用いることは困難であると考えられてい
た。
Therefore, conventionally, it has been difficult to use intake pipe pressure sensing type electronically controlled fuel injection devices in automobile engines that require precise control of the air-fuel ratio and are equipped with exhaust gas purification measures. It was considered.

なお、前記のような欠点を解消するべく、特開
昭52−133418に記載されているように、減速時に
減量補正を行うことも考えられる。
In order to eliminate the above-mentioned drawbacks, it is also conceivable to perform a reduction correction during deceleration, as described in Japanese Patent Laid-Open No. 52-133418.

〓発明が解決しようとする課題〓 しかしながら、この減速減量をアイドル回転数
近くになつても続行すると、減速状態からアイド
リング状態に移行する際に、エンジン回転数がア
イドル回転数以下に落ち込んで、車両乗員に不快
感を与えたり、あるいは、甚だしい場合には、エ
ンジンストールを発生してしまう可能性があつ
た。
〓Problem to be Solved by the Invention〓 However, if this reduction in deceleration is continued even when the speed approaches the idle speed, the engine speed will fall below the idle speed when the deceleration state shifts to the idling state, causing the vehicle to This may cause discomfort to the occupants or, in extreme cases, may cause the engine to stall.

本発明は、前記従来の問題点を解消するべくな
されたもので、減速時に適切な減量補正を行つ
て、空燃比を理論空燃比近傍に維持すると共に、
減量補正の本来の効果を損なうことなく、減速状
態からアイドリング状態に移行する際の、エンジ
ン回転数の落ち込み(アンダーシユート)やエン
ジンストールを防止することができ、従つて、良
好な減速性能と排気ガス浄化性能を両立させるこ
とができる内燃機関の電子制御燃料噴射方法を提
供することを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and maintains the air-fuel ratio near the stoichiometric air-fuel ratio by performing appropriate reduction correction during deceleration.
Without impairing the original effect of the reduction correction, it is possible to prevent a drop in engine speed (undershoot) and engine stall when transitioning from deceleration to idling, thereby improving deceleration performance. An object of the present invention is to provide an electronically controlled fuel injection method for an internal combustion engine that can achieve both exhaust gas purification performance.

〓課題を解決するための手段〓 本発明は、エンジンの吸気管圧力エンジン回転
数に応じて基本噴射量を求めると共に、エンジン
の減速運転時に、前記基本噴射量を減量補正する
ようにした内燃機関の電子制御燃料噴射方法にお
いて、減速時に、絞り弁開度の減少速度に応じて
減少させ、次いで、所定の回復速度で回復させる
絞り弁開度減量と、吸気管圧力の減少速度に応じ
て減少させ、次いで、所定の回復速度で回復させ
る吸気管圧力減量とを算出し、これら減量値のう
ち、最小値により減量補正を行うと共に、該減量
補正実行中に、絞り弁が全閉状態となり、且つ、
エンジン回転数が所定値以下となつた時には、前
記減量補正を中止して通常の燃料供給を行い、一
方、絞り弁開度が全閉状態でないか、又は、エン
ジン回転数が前記所定値以下でない場合には、前
記減量補正を継続することにより、前記目的を達
成したものである。
<Means for Solving the Problems> The present invention provides an internal combustion engine in which a basic injection amount is determined according to the intake pipe pressure of the engine and the engine speed, and the basic injection amount is corrected to reduce the amount during deceleration operation of the engine. In this electronically controlled fuel injection method, during deceleration, the throttle valve opening is decreased in accordance with the decreasing speed of the throttle valve opening, and then recovered at a predetermined recovery speed, and the throttle valve opening is decreased in accordance with the decreasing speed of the intake pipe pressure. Then, the intake pipe pressure reduction to be recovered at a predetermined recovery speed is calculated, and a reduction correction is performed using the minimum value among these reduction values, and during the execution of the reduction correction, the throttle valve is fully closed, and,
When the engine speed falls below the predetermined value, the reduction correction is stopped and normal fuel supply is performed, while the throttle valve opening is not fully closed or the engine speed is not below the predetermined value. In this case, the objective is achieved by continuing the weight loss correction.

〓作用〓 本発明においては、減速時に、絞り弁開度の減
少速度に応じて減少させ、次いで、所定の回復速
度で回復させる絞り弁開度減量と、吸気管圧力の
減少速度に応じて減少させ、次いで、所定の回復
速度で回復させる吸気管圧力減量とを算出し、こ
れら減量値のうち、最小値により減量補正を行う
ようにしている。従つて、減速初期は、運転者の
アクセルペダル操作と連動して迅速に変化する絞
り弁開度の変化に応じて、応答性の高い減量補正
を行うことできる。又、減量中期以降は、変化は
遅いが減量状態をよく表わす吸気管圧力の変化に
応じて、精度の高い減量補正を行うことができ
る。更に、絞り弁開度減量と吸気管圧力減量が重
複した場合には、その小さい方の値により減量補
正を行うようにしたので、両者が重複しても過減
量となることがない。
<Effect> In the present invention, during deceleration, the throttle valve opening is reduced in accordance with the decreasing speed of the throttle valve opening and then recovered at a predetermined recovery speed, and the throttle valve opening is decreased in accordance with the decreasing speed of the intake pipe pressure. Then, the intake pipe pressure loss to be recovered at a predetermined recovery speed is calculated, and the weight loss correction is performed using the minimum value among these weight loss values. Therefore, at the beginning of deceleration, highly responsive reduction correction can be performed in response to changes in the throttle valve opening, which changes rapidly in conjunction with the driver's accelerator pedal operation. Further, after the middle stage of weight loss, highly accurate weight loss correction can be performed in accordance with changes in intake pipe pressure, which changes slowly but clearly represents the weight loss state. Furthermore, when the throttle valve opening degree reduction and the intake pipe pressure reduction overlap, the reduction is corrected using the smaller value, so even if the two overlap, an excessive amount does not occur.

従つて、減速時に見合つた、アクセルペダルの
離し方(即ち絞り弁開度)と吸気管圧力の両者の
変化に応じた、適切な、過度とならない減量補正
を行つて、良好な応答性と高精度の両立を図るこ
とができる。
Therefore, it is possible to achieve good responsiveness and high performance by performing appropriate and not excessive weight loss corrections in response to changes in both the way the accelerator pedal is released (i.e., throttle valve opening) and the intake pipe pressure, commensurate with deceleration. It is possible to achieve both accuracy.

更に、前記減量補正実行中に、絞り弁が全閉状
態となり、且つ、エンジン回転数が所定値以下と
なつたときには、前記減量補正を中止して通常の
燃料供給を行い、一方、絞り弁が全閉状態でない
か、又は、エンジン回転数が前記所定値以下でな
い場合には、前記減量補正を継続するようにした
ので、減量補正の本来の効果を損なうことなく、
減速状態からアイドリング状態に移行する際の、
エンジン回転数のアンダーシユートやエンジンス
トールを効果的に防止することができる。
Furthermore, when the throttle valve becomes fully closed and the engine speed falls below a predetermined value during execution of the reduction correction, the reduction correction is stopped and normal fuel supply is performed, while the throttle valve is closed. If the engine is not in a fully closed state or the engine speed is not below the predetermined value, the reduction correction is continued, so that the original effect of the reduction correction is not impaired.
When transitioning from deceleration state to idling state,
Engine speed undershoot and engine stall can be effectively prevented.

〓実施例〓 以下図面を参照して、本発明の実施例を詳細に
説明する。
Embodiments Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明に係る内燃機関の電子制御燃料噴射方法
が採用された吸気管圧力感知式の電子制御燃料噴
射装置の実施例は、第1図及び第2図に示す如
く、外気を取入れるためのエアクリーナ12と、
該エアクリーナ12より取入れられた吸入空気の
温度を検出するための吸気温センサ14と、吸気
通路16中に配設され、運転席に配設されたアク
セルペダル(図示省略)と連動して開閉するよう
にされた、吸入空気の流量を制御するための絞り
弁18と、該絞り弁18がアイドル開度にあるか
否かを検出するためのアイドル接点及び絞り弁1
8の開度に比例した電圧出力を発生するポテンシ
ヨメータを含むスロツトルセンサ20と、吸気干
渉を防止するためのサージタンク22と、該サー
ジタンク22内の圧力から吸気管圧力を検出する
ための吸気管圧力センサ23と、前記絞り弁18
をバイパスするバイパス通路24と、該バイパス
通路24の途中に配設され、該バイパス通路24
の開口面積を制御することによつてアイドル回転
速度を制御するためのアイドル回転制御弁26
と、吸気マニホルド28に配設された、エンジン
10の吸気ポートに向けて燃料を噴射するための
インジエクタ30と、排気マニホルド32に配設
された、排気ガス中の残存酸酸素濃度から空燃比
を検知するための酸素濃度センサ34と、前記排
気マニホルド32下流側の排気管36の途中に配
設された三元触媒コンバータ38と、エンジン1
0のクランク軸の回転と連動して回転するデイス
トリビユータ軸を有するデイストリビユータ40
と、該デイストリビユータ40に内蔵された、前
記デイストリビユータ軸の回転に応じて上死点信
号及びクランク角信号を出力する上死点センサ4
2及びクランンク角センサ44と、エンジンブロ
ツクに配設された、エンジン冷却水温を検知する
ための冷却水温センサ46と、変速機48の出力
軸の回転数から車両の走行速度を検出するための
車速センサ50と、前記吸気管圧力センサ23出
力の吸気管圧力と前記クランク角センサ44の出
力から求められるエンジン回転数に応じて、エン
ジン1工程あたりの基本噴射量を求めると共に、
これを、前記スロツトルセンサ20の出力、前記
酸素濃度センサ34出力の空燃比、前記冷却水温
センサ46出力のエンジン冷却水温等に応じて補
正することによつて、燃料噴射量を決定して前記
インジエクタ30に開弁時間信号を出力し、又、
エンジン運転状態に応じて点火時期を決定してイ
グナイタ付コイル52に点火信号を出力し、更
に、アイドル時に前記アイドル回転制御弁26を
制御するデジタル制御回路54とを備えた自動車
用エンジン10の吸気管圧力感知式電子制御燃料
噴射装置において、前記デジタル制御回路54内
で、前記スロツトルセンサ20のポテンシヨメー
タ出力から検知される絞り弁開度の減少速度、及
び、前記吸気管圧力センサ23の出力から検知さ
れる吸気管圧力の減少速度に応じて、減速時に減
量補正を行うと共に、該減量補正実行中に、絞り
弁が全閉状態となり、且つ、エンジン回転数が、
アイドル回転数より若干高めの所定値(例えば
1000rpm)以下となつた時は、前記減量補正を中
止するようにしたものである。
An embodiment of the intake pipe pressure sensing type electronically controlled fuel injection device in which the electronically controlled fuel injection method for an internal combustion engine according to the present invention is adopted is as shown in FIGS. 1 and 2. 12 and
An intake temperature sensor 14 for detecting the temperature of the intake air taken in from the air cleaner 12 is disposed in the intake passage 16, and opens and closes in conjunction with an accelerator pedal (not shown) disposed in the driver's seat. A throttle valve 18 for controlling the flow rate of intake air, an idle contact and a throttle valve 1 for detecting whether or not the throttle valve 18 is at an idle opening degree.
A throttle sensor 20 including a potentiometer that generates a voltage output proportional to the opening degree of 8, a surge tank 22 for preventing intake interference, and a system for detecting intake pipe pressure from the pressure inside the surge tank 22. the intake pipe pressure sensor 23 and the throttle valve 18
a bypass passage 24 that bypasses the bypass passage 24;
an idle rotation control valve 26 for controlling the idle rotation speed by controlling the opening area of the
, an injector 30 disposed in the intake manifold 28 for injecting fuel toward the intake port of the engine 10, and an injector 30 disposed in the exhaust manifold 32 for calculating the air-fuel ratio from the residual oxygen concentration in the exhaust gas. An oxygen concentration sensor 34 for detection, a three-way catalytic converter 38 disposed midway in the exhaust pipe 36 downstream of the exhaust manifold 32, and the engine 1.
Distributor 40 having a distributor shaft that rotates in conjunction with the rotation of the crankshaft of
and a top dead center sensor 4 built into the distributor 40 that outputs a top dead center signal and a crank angle signal in accordance with the rotation of the distributor shaft.
2, a crank angle sensor 44, a cooling water temperature sensor 46 disposed in the engine block for detecting the engine cooling water temperature, and a vehicle speed for detecting the running speed of the vehicle from the rotational speed of the output shaft of the transmission 48. The basic injection amount per engine stroke is determined according to the engine rotation speed determined from the sensor 50, the intake pipe pressure output from the intake pipe pressure sensor 23, and the output from the crank angle sensor 44.
By correcting this according to the output of the throttle sensor 20, the air-fuel ratio of the output of the oxygen concentration sensor 34, the engine coolant temperature of the output of the coolant temperature sensor 46, etc., the fuel injection amount is determined. Outputs a valve opening time signal to the injector 30, and
The intake air of an automobile engine 10 includes a digital control circuit 54 that determines the ignition timing according to the engine operating state and outputs an ignition signal to the igniter-equipped coil 52, and further controls the idle rotation control valve 26 during idling. In the pipe pressure sensing type electronically controlled fuel injection system, the rate of decrease in the opening of the throttle valve detected from the potentiometer output of the throttle sensor 20 and the intake pipe pressure sensor 23 are controlled in the digital control circuit 54 . A reduction correction is performed during deceleration according to the rate of decrease in intake pipe pressure detected from the output, and during the execution of the reduction correction, the throttle valve is fully closed and the engine speed is
A predetermined value slightly higher than the idle speed (e.g.
1000 rpm) or less, the above-mentioned weight loss correction is stopped.

前記デジタル制御回路54は、第2図に詳細に
示す如く、各種演算処理を行うマイクロプロセツ
サからなる中央処理装置(以下CPUと称する)
60と、前記吸気温センサ14、スロツルセンサ
20のポテンシヨメータ、吸気管圧力センサ2
3、酸素濃度センサ34、冷却水温センサ46等
から入力されるアナログ信号を、デジタル信号に
変換して順次CPU60に取込むためのマルチプ
レクサ付アナログ入力ポート62と、前記スロツ
トルセンサ20のアイドル接点、上死点センサ4
2、クランク角センサ44、車速センサ50等か
ら入力されるデジタル信号を、所定のタイミング
でCPU60に取込むためのデジタル入力ポート
64と、プログラムあるいは各種定数等を記憶す
るためのリードオンリーメモリ(以下ROMと称
する)66と、CPU60における演算データ等
を一時的に記憶するためのランダムアクセスメモ
リ(以下RAMと称する)68と、機関停止時に
も補助電源から給電されて記憶を保持できるバツ
クアツプ用ランダムアクセスメモリ(以下バツク
アツプRAMと称する)70と、CPU60におけ
る演算結果を、所定のタイミングで前記アイドル
回転制御弁26、インジエクタ30、イグナイタ
付コイル52等に出力するためのデジタル出力ポ
ート72と、上記各構成機器間を接続するコモン
バス74とから構成されている。
As shown in detail in FIG. 2, the digital control circuit 54 is a central processing unit (hereinafter referred to as CPU) consisting of a microprocessor that performs various arithmetic operations.
60, the intake air temperature sensor 14, the potentiometer of the throttle sensor 20, and the intake pipe pressure sensor 2.
3. An analog input port 62 with a multiplexer for converting analog signals input from the oxygen concentration sensor 34, cooling water temperature sensor 46, etc. into digital signals and sequentially inputting them into the CPU 60; and an idle contact point of the throttle sensor 20; Top dead center sensor 4
2. A digital input port 64 for inputting digital signals input from the crank angle sensor 44, vehicle speed sensor 50, etc. to the CPU 60 at a predetermined timing, and a read-only memory (hereinafter referred to as "read-only memory" for storing programs or various constants, etc.). Random access memory (hereinafter referred to as RAM) 68 for temporarily storing calculation data etc. in the CPU 60, and random access memory (hereinafter referred to as RAM) 68 for backup that can maintain memory by being supplied with power from the auxiliary power supply even when the engine is stopped. A memory (hereinafter referred to as backup RAM) 70, a digital output port 72 for outputting the calculation results of the CPU 60 to the idle rotation control valve 26, injector 30, coil with igniter 52, etc. at a predetermined timing, and each of the above components. It is composed of a common bus 74 that connects devices.

以下、実施例の作用を説明する。 The effects of the embodiment will be explained below.

まずデジタル制御回路54は、吸気管圧力セン
サ23出力の吸気管圧力PMと、クランク角セン
サ44の出力から算出されるエンジン回転数NE
により、ROM66に予め記憶されているマツプ
から、基本噴射時間TP(PM、NE)を読出す。
First, the digital control circuit 54 calculates the intake pipe pressure PM output from the intake pipe pressure sensor 23 and the engine rotation speed NE calculated from the output of the crank angle sensor 44.
Accordingly, the basic injection time TP (PM, NE) is read from the map stored in advance in the ROM 66.

更に、各センサからの信号に応じて、次式を用
いて前記基本噴射時間TP(PM、NE)を補正す
ることにより、燃料噴射時間TAUを算出する。
Furthermore, the fuel injection time TAU is calculated by correcting the basic injection time TP (PM, NE) using the following equation according to the signals from each sensor.

TAU=TP(PM、NE)*(1+K*F) …(1) ここで、Fは補正係数で、Fが正である場合に
は増量補正を表わし、Fが負である場合には減量
補正を表わしている。又、Kは、前記補正係数F
を更に補正するための補正倍率であり、通常は1
とされている。
TAU=TP(PM,NE)*(1+K*F)...(1) Here, F is a correction coefficient; if F is positive, it represents an increase correction, and if F is negative, it represents a reduction correction. It represents. Further, K is the correction coefficient F
It is a correction magnification to further correct the
It is said that

このようにして決定された燃料噴射時間TAU
に対応する燃料噴射信号が、インジエクタ30に
出力され、エンジン回転と同期してインジエクタ
30が燃料噴射時間TAUだけ開かれて、エンジ
ン10の吸気マニホルド28内に燃料が噴射され
る。
Fuel injection time TAU determined in this way
A fuel injection signal corresponding to this is output to the injector 30, and the injector 30 is opened for the fuel injection time TAU in synchronization with the engine rotation, and fuel is injected into the intake manifold 28 of the engine 10.

本実施例における減速時の減量補正(減速減量
と称する)は、次のようにして行われる。
The reduction correction during deceleration (referred to as deceleration reduction) in this embodiment is performed as follows.

即ち、第3図に示す如く、減速時に、時刻t1
絞り弁18が閉じられ始めると、吸気管圧力PM
の減少に先行して、第3図Dに実線Aで示すよう
な、絞り弁開度TAの減少速度に応じた迅速な減
量補正を行う絞り弁開度減量(以下TA減量と称
する)が行われる。このTA減量は、具体的に
は、例えば、絞り弁開度TAの所定時間毎の変化
量に応じた積算値を積算した値(負値)を補正係
数Fとし、次いで、エンジン回転毎あるいは一定
時時間毎に、所定レベルまでは高速の、所定レベ
ル到達後は低速の、所定回復速度で0まで回復さ
せることによつて行われる。
That is, as shown in FIG. 3, when the throttle valve 18 begins to close at time t1 during deceleration, the intake pipe pressure PM
Prior to the decrease in the throttle valve opening, a reduction in the throttle valve opening (hereinafter referred to as TA reduction) is carried out, which is a rapid reduction correction according to the rate of decrease in the throttle valve opening TA, as shown by the solid line A in FIG. 3D. be exposed. Specifically, this TA reduction is performed by setting the correction coefficient F to a value (negative value) that is the sum of integrated values corresponding to the amount of change in the throttle valve opening TA every predetermined time, and then This is performed by recovering to 0 at a predetermined recovery speed, which is fast up to a predetermined level and slow after reaching the predetermined level, at regular intervals.

次いで、吸気管圧力PMが減少し始めると、時
刻t2から、第3図Dに実線Bで示すような、吸気
管圧力PMの減少速度に応じた精度の高い減量補
正を行う吸気管圧力減量(以下PM減量と称す
る)が行われる。このPM減量は、具体的には、
例えば、吸気管圧力PMの所定時間毎の変化量に
応じた積算値を積算した値(負値)を補正係数F
とし、次いで、エンジン回転毎あるいは一定時間
毎に、所定レベルまでは高速の、所定レベル到達
後は低速の、所定回復速度で0まで回復させるこ
とによつて行われる。
Next, when the intake pipe pressure PM starts to decrease, from time t2 , the intake pipe pressure is reduced by performing a highly accurate reduction correction according to the decreasing rate of the intake pipe pressure PM, as shown by the solid line B in FIG. 3D. (hereinafter referred to as PM reduction) is performed. Specifically, this PM reduction is as follows:
For example, the correction coefficient F
This is then performed by recovering to zero at a predetermined recovery speed, which is fast up to a predetermined level and slow after reaching the predetermined level, every engine rotation or every fixed period of time.

なお、TA減量とPM減量が重複した場合に、
両者を合わせ行うと過減量になる恐れがある。従
つて、第3図Dに太い実線で示す如く、前記TA
減量とPM減量の最小値をたどつて、時刻t2〜t3
ではTA減量のみを行い、時刻t2〜t4では、PM減
量のみを行うようにしている。
In addition, if TA weight loss and PM weight loss overlap,
If both are used together, there is a risk of excessive weight loss. Therefore, as shown by the thick solid line in FIG. 3D, the TA
Tracing the minimum value of weight loss and PM weight loss, from time t 2 to t 3
In this case, only TA reduction is performed, and from time t2 to t4 , only PM reduction is performed.

又、前記TA減量及びPM減量に際して、減速
減量実行中に、絞り弁18が全閉状態となり、且
つ、エンジン回転数が、アイドル回転数より若干
高めの所定値、例えば、1000rpm以下となつた時
には、前記減速減量を中止する。具体的には、第
4図に示す如く、まずステツプ101で、前記ス
ロツトルセンサ20のアイドルスイツチがオンで
あるか否かを判定する。判定結果が正である場
合、即ち、絞り弁18が全閉状態である場合に
は、ステツプ102に進み、エンジン回転数が所
定値、例えば1000rpmいかであるか否かを判定す
る。判定結果が正である場合には、ステツプ10
3に進み、減速減量中、即ち、TA減量あるいは
PM減量実行中であるか否かを判定する。判定結
果が正である場合には、ステツプ104に進み、
補正係数Fの値を強制的に0に戻して、減速減量
を中止する。一方、前出ステツプ101〜103
のいずれかの判定結果が否である場合、即ち、減
速減量実行中であつても、アイドルスイツチがオ
フであるか、あるいは、エンジン回転数が
1000rpmを越えている時には、減速減量を中止す
ることなく続行する。
Further, when reducing the TA and PM, when the throttle valve 18 becomes fully closed while the deceleration reduction is being executed, and the engine speed reaches a predetermined value slightly higher than the idle speed, for example, 1000 rpm or less, , cancel the deceleration reduction. Specifically, as shown in FIG. 4, first, in step 101, it is determined whether the idle switch of the throttle sensor 20 is on. If the determination result is positive, that is, if the throttle valve 18 is fully closed, the process proceeds to step 102, where it is determined whether the engine speed is a predetermined value, for example 1000 rpm. If the determination result is positive, step 10
Proceed to step 3, during deceleration reduction, i.e. TA reduction or
Determine whether PM reduction is in progress. If the determination result is positive, proceed to step 104;
The value of the correction coefficient F is forcibly returned to 0, and the deceleration reduction is stopped. On the other hand, the above steps 101 to 103
If either of the judgment results is negative, that is, even if deceleration reduction is being executed, the idle switch is off or the engine speed is low.
When the speed exceeds 1000 rpm, the deceleration reduction continues without stopping.

本実施例における減速減量中のエンジン回転数
NEと補正係数Fの関係の一例を第5図に示す。
第5図の実線Cから明らかな如く、本実施例にお
いては、エンジン回転数NEが1000rpmとなつた
時刻t5〓で減速減量が中止され、補正係数Fが強
制的に0に戻されるため、第5図に破線Dで示す
如く、エンジン回転数NEがアイドル回転数以下
に落ち込んでしまつたり、あるいは、同じく第5
図に一点鎖線Eで示す如く、エンジンストールし
てしまうことがない。
Engine speed during deceleration and reduction in this example
An example of the relationship between NE and correction coefficient F is shown in FIG.
As is clear from the solid line C in FIG. 5, in this embodiment, the deceleration reduction is stopped at time t 5 〓 when the engine speed NE reaches 1000 rpm, and the correction coefficient F is forcibly returned to 0. As shown by the broken line D in Fig. 5, the engine speed NE drops below the idle speed, or
As shown by the dashed line E in the figure, the engine does not stall.

前記のようにして、応答の早いTA減量と精度
の高いPM減量を組合わせて減速減量を行うこと
によつて、適切な減速減量を実現することがで
き、空燃比を理論空燃比近傍に維持し、減速性能
と排気ガス浄化性能を両立することができる。
As described above, by performing deceleration reduction by combining fast-response TA reduction and highly accurate PM reduction, appropriate deceleration reduction can be achieved and the air-fuel ratio can be maintained near the stoichiometric air-fuel ratio. This makes it possible to achieve both deceleration performance and exhaust gas purification performance.

〓発明の効果〓 以上説明した通り、本発明によれば、減速時に
適切な減量補正を行うことができ、空燃比を理論
空燃比近傍に維持すると共に、減速状態からアイ
ドリング状態に移行する際の、エンジン回転の変
化を円滑にして、良好な減速性能と排気ガス浄化
性能を両立することができる。従つて、吸気管圧
力感知式の電子制御燃料噴射装置を用いた場合で
も、精密な空燃比制御を行うことが可能となる。
特に絞り弁が全閉でなく、エンジンストールの可
能性が無い時は、減量補正を中止せず続行するよ
うにしているので、減量補正の本来の効果を損な
うことが無い等の優れた効果を有する。
〓Effects of the Invention〓 As explained above, according to the present invention, it is possible to perform appropriate weight loss correction during deceleration, maintain the air-fuel ratio near the stoichiometric air-fuel ratio, and reduce , it is possible to achieve both good deceleration performance and exhaust gas purification performance by smoothing changes in engine rotation. Therefore, even when using an electronically controlled fuel injection device that senses intake pipe pressure, it is possible to perform precise air-fuel ratio control.
In particular, when the throttle valve is not fully closed and there is no possibility of engine stalling, the reduction correction is continued without being canceled, so it maintains excellent effects such as not impairing the original effect of the reduction correction. have

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る内燃機関の電子制御燃
料噴射方法が採用された自動車用エンジンの吸気
管圧力感知式電子制御燃料噴射装置の実施例を示
すブロツク線図、第2図は、前記実施例で用いら
れているデジタル制御回路の構成を示すブロツク
線図、第3図は前記実施例における減速減量の様
子を示す線図、第4図は、同じく、減速減量を中
止するためのプログラムを示す流れ図、第5図
は、同じく、減速状態からアイドリング状態に移
行する際の、エンジン回転数と補正係数の変化状
態の一例を示す線図である。 10…エンジン、14…吸気温センサ、18…
絞り弁、20…スロツトルセンサ、23…吸気管
圧力センサ、30…インジエクタ、34…酸素濃
度センサ、40…デイストリピユータ、42…上
死点センサ、44…クランク角センサ、46…冷
却水温センサ、54…デジタル制御回路。
FIG. 1 is a block diagram showing an embodiment of an intake pipe pressure sensing type electronically controlled fuel injection device for an automobile engine in which the electronically controlled fuel injection method for an internal combustion engine according to the present invention is adopted, and FIG. A block diagram showing the configuration of the digital control circuit used in the embodiment, FIG. 3 is a diagram showing the deceleration reduction in the embodiment, and FIG. 4 is a program for canceling the deceleration reduction. Similarly, FIG. 5 is a diagram showing an example of changes in the engine speed and the correction coefficient when transitioning from the deceleration state to the idling state. 10...Engine, 14...Intake temperature sensor, 18...
Throttle valve, 20...Throttle sensor, 23...Intake pipe pressure sensor, 30...Injector, 34...Oxygen concentration sensor, 40...Distributor, 42...Top dead center sensor, 44...Crank angle sensor, 46...Cooling water temperature Sensor, 54...digital control circuit.

Claims (1)

【特許請求の範囲】 1 エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共に、 エンジンの減速運転時に、前記基本噴射量を減
量補正するようにした内燃機関の電子制御燃料噴
射方法において、 減速時に、 絞り弁開度の減少速度に応じて減少させ、次い
で、所定の回復速度で回復させる絞り弁開度減量
と、 吸気管圧力の減少速度に応じて減少させ、次い
で、所定の回復速度で回復させる吸気管圧力減量
とを算出し、 これら減量値のうち、最小値により減量補正を
行うと共に、 該減量補正実行中に、絞り弁が全閉状態とな
り、且つ、エンジン回転数が所定以下となつた時
には、前記減量補正を中止して通常の燃料供給を
行い、 一方、絞り弁開度が全閉状態でないか、又は、
エンジン回転数が前記所定値以下でない場合に
は、前記減量補正を継続することを特徴とする内
燃機関の電子制御燃料噴射方法。
[Scope of Claims] 1. Electronically controlled fuel injection for an internal combustion engine in which a basic injection amount is determined according to the intake pipe pressure and engine speed of the engine, and the basic injection amount is corrected to decrease during deceleration operation of the engine. In the method, during deceleration, the throttle valve opening is decreased in accordance with the decreasing speed of the throttle valve opening and then recovered at a predetermined recovery speed; Calculate the intake pipe pressure reduction to be recovered at a recovery speed of becomes below a predetermined value, the reduction correction is stopped and normal fuel supply is carried out.On the other hand, if the throttle valve opening is not fully closed, or
An electronically controlled fuel injection method for an internal combustion engine, characterized in that the reduction correction is continued when the engine speed is not below the predetermined value.
JP1509882A 1982-02-02 1982-02-02 Electronically controlled fuel injection method of internal-combustion engine Granted JPS58133435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1509882A JPS58133435A (en) 1982-02-02 1982-02-02 Electronically controlled fuel injection method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1509882A JPS58133435A (en) 1982-02-02 1982-02-02 Electronically controlled fuel injection method of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58133435A JPS58133435A (en) 1983-08-09
JPH0573907B2 true JPH0573907B2 (en) 1993-10-15

Family

ID=11879362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1509882A Granted JPS58133435A (en) 1982-02-02 1982-02-02 Electronically controlled fuel injection method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58133435A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4635200A (en) * 1983-06-16 1987-01-06 Nippon Soken, Inc. System for controlling air-fuel ratio in an internal combustion engine
US4616619A (en) * 1983-07-18 1986-10-14 Nippon Soken, Inc. Method for controlling air-fuel ratio in internal combustion engine
JPS6045738A (en) * 1983-08-23 1985-03-12 Mazda Motor Corp Controller for fuel of engine with regulated number of cylinders
JPS60116836A (en) * 1983-11-29 1985-06-24 Nippon Soken Inc Controller of air-fuel ratio of internal-combustion engine
US4633840A (en) * 1984-01-14 1987-01-06 Nippon Soken, Inc. Method for controlling air-fuel ratio in internal combustion engine
JP2623941B2 (en) * 1990-08-31 1997-06-25 三菱自動車工業株式会社 Fuel control device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940890A (en) * 1972-08-25 1974-04-17
JPS5061533A (en) * 1973-10-04 1975-05-27
JPS52133418A (en) * 1976-05-03 1977-11-08 Allied Chem Fuel injection system
JPS5618035A (en) * 1979-07-19 1981-02-20 Nissan Motor Co Ltd Fuel controller
JPS56135725A (en) * 1980-03-27 1981-10-23 Toyota Motor Corp Controlling method for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940890A (en) * 1972-08-25 1974-04-17
JPS5061533A (en) * 1973-10-04 1975-05-27
JPS52133418A (en) * 1976-05-03 1977-11-08 Allied Chem Fuel injection system
JPS5618035A (en) * 1979-07-19 1981-02-20 Nissan Motor Co Ltd Fuel controller
JPS56135725A (en) * 1980-03-27 1981-10-23 Toyota Motor Corp Controlling method for internal combustion engine

Also Published As

Publication number Publication date
JPS58133435A (en) 1983-08-09

Similar Documents

Publication Publication Date Title
JPH0251056B2 (en)
JPS58150048A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0251052B2 (en)
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS6231179B2 (en)
JPH0573907B2 (en)
JPH0512538B2 (en)
JPH0316498B2 (en)
JPS593135A (en) Control of idle revolution number of internal- combustion engine
JPH057546B2 (en)
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH059620B2 (en)
JPH0372824B2 (en)
JPH0368221B2 (en)
JPH0475382B2 (en)
JPH0423098B2 (en)
JPS58150049A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0510490B2 (en)
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58214633A (en) Electronically controlled fuel injection method for internal-combustion engine
JPH059621B2 (en)
JPH0429855B2 (en)
JPS6360218B2 (en)
JPH0783104A (en) Ignition timing control method
JPS58144639A (en) Electronically controlled fuel injecting method for internal-combustion engine