JPH0372824B2 - - Google Patents

Info

Publication number
JPH0372824B2
JPH0372824B2 JP57029238A JP2923882A JPH0372824B2 JP H0372824 B2 JPH0372824 B2 JP H0372824B2 JP 57029238 A JP57029238 A JP 57029238A JP 2923882 A JP2923882 A JP 2923882A JP H0372824 B2 JPH0372824 B2 JP H0372824B2
Authority
JP
Japan
Prior art keywords
increase
engine
intake pipe
pipe pressure
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57029238A
Other languages
Japanese (ja)
Other versions
JPS58144637A (en
Inventor
Nobuyuki Kobayashi
Toshiaki Isobe
Teruo Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2923882A priority Critical patent/JPS58144637A/en
Publication of JPS58144637A publication Critical patent/JPS58144637A/en
Publication of JPH0372824B2 publication Critical patent/JPH0372824B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、内燃機関の電子制御燃料噴射方法に
係り、特に、吸気管圧力感知式の電子制御燃料噴
射装置を備えた自動車用内燃機関に用いるのに好
適な、エンジンの吸気管圧力とエンジン回転数に
応じて基本噴射量を求めると共に、過渡時は、エ
ンジン運転状態に応じて算出される補正係数によ
り前記基本噴射量を補正することによつて燃料噴
射量を決定するようにした内燃機関の電子制御燃
料噴射方法の改良に関する。
The present invention relates to an electronically controlled fuel injection method for an internal combustion engine, and particularly to an engine intake pipe pressure and engine rotation method suitable for use in an automobile internal combustion engine equipped with an intake pipe pressure sensing type electronically controlled fuel injection device. In this internal combustion engine, the basic injection amount is determined according to the number of fuel injections, and the fuel injection amount is determined by correcting the basic injection amount using a correction coefficient calculated according to the engine operating state during transient times. This invention relates to improvements in electronically controlled fuel injection methods.

【従来の技術】[Conventional technology]

自動車用エンジン等の内燃機関の燃焼室に所定
空燃比の混合気を供給する方法の一つに、電子制
御燃料噴射装置を用いるものがある。 これは、エンジン内に燃料を噴射するためのイ
ンジエクタを、例えば、エンジンの吸気マニホー
ルドあるいはスロツトルボデイに、エンジン気筒
数個あるいは1個配設し、該インジエクタの開弁
時間をエンジンの運転状態に応じて制御すること
により、所定の空燃比の混合気がエンジン燃焼室
に供給されるようにするものである。 この電子制御燃料噴射装置には、大別して、エ
ンジンの吸入空気量とエンジン回転数に応じて基
本噴射量を求めるようにした、いわゆる吸入空気
量感知式の電子制御燃料噴射装置と、エンジンの
吸気管圧力とエンジン回転数に応じて基本噴射量
を求めるようにした、いわゆる吸気管圧力感知式
の電子制御燃料噴射装置がある。 このうち前者は、空燃比を精密に制御すること
が可能であり、排気ガス浄化対策が施された自動
車用エンジンに広く用いられるようになつてい
る。 しかしながら、この吸入空気量感知式の電子制
御燃料噴射装置においては、吸入空気量が、アイ
ドル時と高負荷時で50倍程度変化し、ダイナミツ
クレンジが広いので、吸入空気量の電気信号に変
換する際の精度が低くなるだけでなく、後段のデ
ジタル制御回路における計算精度を高めようとす
ると、電気信号のビツト長が長くなり、デジタル
制御回路として高価なコンピユータを用いる必要
がある。又、吸入空気量を検出するために、エア
フローメータ等の非常に精密な構造を有するセン
サを用いる必要があり、設備費が高価となる等の
問題点を有していた。 一方、後者の吸気管圧力感知式の電子制御燃料
噴射装置においては、吸気管圧力の変化量が2〜
3倍程度と少なく、ダイナミツクレンジが狭いの
で、後段のデジタル制御回路における演算処理が
容易であるだけでなく、吸気管圧力を検知するた
めの圧力センサも安価であるという特徴を有す
る。
2. Description of the Related Art One of the methods for supplying an air-fuel mixture at a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine such as an automobile engine uses an electronically controlled fuel injection device. In this method, an injector for injecting fuel into the engine is installed in the intake manifold or throttle body of the engine, for example, in several engine cylinders or one engine cylinder, and the valve opening time of the injector is adjusted depending on the operating state of the engine. By controlling the air-fuel mixture, a mixture having a predetermined air-fuel ratio is supplied to the engine combustion chamber. These electronically controlled fuel injection devices can be roughly divided into so-called intake air amount sensing type electronically controlled fuel injection devices that calculate the basic injection amount according to the engine's intake air amount and engine speed, and There is a so-called intake pipe pressure sensing type electronically controlled fuel injection system that determines a basic injection amount according to pipe pressure and engine speed. Among these, the former allows for precise control of the air-fuel ratio, and has come to be widely used in automobile engines equipped with exhaust gas purification measures. However, in this electronically controlled fuel injection system that senses the amount of intake air, the amount of intake air changes by about 50 times between idle and high load, and has a wide dynamic range, so it is converted into an electrical signal representing the amount of intake air. Not only does this result in lower accuracy when calculating, but if the calculation accuracy in the digital control circuit at the subsequent stage is to be increased, the bit length of the electrical signal becomes longer, requiring the use of an expensive computer as the digital control circuit. Furthermore, in order to detect the amount of intake air, it is necessary to use a sensor having a very precise structure, such as an air flow meter, resulting in problems such as high equipment costs. On the other hand, in the latter type of electronically controlled fuel injection device that detects intake pipe pressure, the amount of change in intake pipe pressure is 2 to 2.
Since the dynamic range is narrow, about 3 times as much, not only is the arithmetic processing in the subsequent digital control circuit easy, but the pressure sensor for detecting the intake pipe pressure is also inexpensive.

【発明が解決しようする課題】[Problem to be solved by the invention]

しかしながら、吸入空気量感知式の電子制御燃
料噴射装置に比べると、空燃比の制御精度が低
く、特に、加速時においては、吸気管圧力が増大
しなければ燃料噴射量が増えないため、空燃比が
一時的にリーンとなつて、加速性能が低いもので
あつた。 このような問題点を解消するべく、従来は、絞
り弁に配設された櫛歯状のセンサから出力される
パルス列に応じて加速増量を行うようにしていた
が、ドライバビリテイを高めるためには、増量の
量を非常に大としなければならず、その場合に
は、空燃比がオーバーリツチとなつて、排気ガス
中の一酸素炭素量が異常に増大し、空燃比を三元
触媒コンバータに適した所定範囲内に維持するこ
とができなかつた。これは、排気下流側に配設し
た酸素濃度センサの出力信号に応じて燃料噴射量
をフイードバツク制御するようにした場合におい
ても、酸素濃度センサの応答が遅いため、同様で
ある。 従つて従来は、吸気管圧力感知式の電子制御燃
料噴射装置を、空燃比を精密に制御することが必
要な、排気ガス浄化対策が施された自動車用エン
ジンに用いることは困難であると考えられてい
た。 又、吸気管圧力感知式の電子制御燃料噴射装置
においては、減速時には、吸気管圧力が減少しな
ければ、燃料噴射量が減らないため、空燃比が一
時的にリツチとなつて、排気ガス浄化性能も低い
ものであつた。 更に、従来のものは、エンジン負荷の変化速度
等に基づく過渡時燃料補正が、単独のパラメータ
により行われていたため、過渡時の初期から終期
まで、過渡応答性能を向上しつつ、空燃比を理論
空燃比近傍に維持して排気ガス浄化性能を向上さ
せることはできなかつた。 本発明は、前記従来の問題点を解消するべくな
されたもので、加速時及び減速時にそれぞれ見合
つた、アクセルペダルの踏み方(即ちアイドルス
イツチの状態と絞り弁開度)と吸気管圧力の両者
の変化及びエンジン暖機状態に応じた適切な、過
度とならない増減量補正を行つて、空燃比を理論
空燃比近傍に維持することができ、従つて、エン
ジン暖機状態に拘らず、良好な過渡応答性能と排
気ガス浄化性能を両立させることができる内燃機
関の電子制御燃料噴射方法を提供することを目的
とする。
However, compared to an electronically controlled fuel injection system that senses the amount of intake air, the control accuracy of the air-fuel ratio is lower, and especially during acceleration, the amount of fuel injected does not increase unless the intake pipe pressure increases, so the air-fuel ratio was temporarily lean, resulting in poor acceleration performance. In order to solve these problems, conventionally the acceleration was increased according to the pulse train output from a comb-like sensor installed in the throttle valve, but in order to improve drivability, In this case, the amount of increase must be very large, and in that case, the air-fuel ratio becomes overrich, the amount of monooxygen carbon in the exhaust gas increases abnormally, and the air-fuel ratio is changed to a three-way catalytic converter. could not be maintained within a suitable predetermined range. This is the same even when the fuel injection amount is feedback-controlled in accordance with the output signal of the oxygen concentration sensor disposed downstream of the exhaust gas because the response of the oxygen concentration sensor is slow. Therefore, in the past, it was thought that it would be difficult to use an electronically controlled fuel injection system that senses intake pipe pressure in an automobile engine that requires precise control of the air-fuel ratio and that takes measures to purify exhaust gas. It was getting worse. In addition, in an electronically controlled fuel injection system that detects intake pipe pressure, during deceleration, unless the intake pipe pressure decreases, the amount of fuel injected will not decrease, so the air-fuel ratio will temporarily become rich and the exhaust gas will be purified. Performance was also low. Furthermore, in the conventional system, transient fuel correction based on the rate of change in engine load, etc. was performed using a single parameter. It was not possible to improve the exhaust gas purification performance by maintaining the air-fuel ratio near the air-fuel ratio. The present invention was made in order to solve the above-mentioned conventional problems, and it is necessary to adjust both the accelerator pedal depression method (i.e., the idle switch state and the throttle valve opening) and the intake pipe pressure, respectively, during acceleration and deceleration. It is possible to maintain the air-fuel ratio near the stoichiometric air-fuel ratio by making appropriate and not excessive increase/decrease corrections in response to changes in engine temperature and warm-up state of the engine. An object of the present invention is to provide an electronically controlled fuel injection method for an internal combustion engine that can achieve both transient response performance and exhaust gas purification performance.

【課題を達成するための手段】[Means to achieve the task]

本発明は、エンジンの吸気管圧力とエンジン回
転数に応じて基本噴射量を求めると共に、過渡時
は、エンジン運転状態に応じて算出される補正係
数により前記基本噴射量を補正することによつて
燃料噴射量を決定するようにした内燃機関の電子
制御燃料噴射方法において、加速時に、アイドル
スイツチがオフとなつたときに増量補正を行うア
フタアイドル増量と、絞り弁開度の増大速度に応
じて増大させ、次いで、所定の減衰速度で減衰さ
せる絞り弁開度増量と、吸気管圧力の増大速度に
応じて増大させ、次いで、所定の減衰速度で減衰
させる吸気管圧力増量とを算出し、これら増量値
のうち、その最大値から前記補正係数を求めて加
速増量を行い、減速時に、絞り弁開度の減少速度
に応じて減少させ、次いで、所定の回復速度で回
復させる絞り弁開度減量と、吸気管圧力の減少速
度に応じて減少させ、次いで、所定の回復速度で
回復させる吸気管圧力減量とを算出し、これら減
量値のうち、その最小値から前記補正係数を求め
て減速減量を行うと共に、エンジン暖機時には、
エンジン暖機状態に応じた、加速時と減速時で異
なる補正倍率で、前記補正係数を更に補正するこ
とにより、前記目的を達成したものである。
The present invention calculates the basic injection amount according to the engine intake pipe pressure and engine rotation speed, and during transient periods, corrects the basic injection amount using a correction coefficient calculated according to the engine operating state. In an electronically controlled fuel injection method for an internal combustion engine that determines the amount of fuel to be injected, there is an after-idle amount increase that corrects the increase when the idle switch is turned off during acceleration, and an after-idle amount increase that corrects the increase in amount when the idle switch is turned off during acceleration. Calculate the increase in throttle valve opening that is increased and then attenuated at a predetermined damping speed, and the increase in intake pipe pressure that is increased in accordance with the increase speed of intake pipe pressure and then attenuated at a predetermined damping speed. Among the increase values, the correction coefficient is calculated from the maximum value to increase the acceleration, and during deceleration, the throttle valve opening is decreased according to the decreasing speed of the throttle valve opening, and then the throttle valve opening is recovered at a predetermined recovery speed. and the intake pipe pressure reduction, which is reduced according to the reduction rate of the intake pipe pressure and then recovered at a predetermined recovery speed, and the correction coefficient is calculated from the minimum value of these reduction values to determine the deceleration reduction. In addition, when warming up the engine,
The above objective is achieved by further correcting the correction coefficient using different correction magnifications during acceleration and deceleration depending on the warm-up state of the engine.

【作用】[Effect]

本発明においては、加速時及び減速時に、アク
セルペダルを踏んだ瞬間に増量補正を行う、極め
て応答の早いアフタアイドル増量(加速時のみ)
と、吸気管圧力の増大又は減少に先行して絞り弁
開度の増大又は減少速度に応じた増量又は減量補
正を行う、応答の早い絞り弁開度増量又は減量
と、吸気管圧力の増大又は減少に応じた増量又は
減量補正を行う、精度の高い吸気管圧力増量又は
減量と、を組合わせて増量補正及び減量補正を行
うようにしているので、応答が早く、且つ、精度
の高い加速増量及び減速減量を行うことができ
る。 即ち、前記アフタアイドル増量は、応答は極め
て早いが、どの程度の加速か判断できないため、
見込み補正しかできず、オーバーリツチ防止の観
点から多くの増量値とすることはできない。 又、前記絞り弁開度増量又は減量は、絞り弁開
度に基づいて行われるため、アクセルペダルの踏
み方に応じた増量又は減量を迅速に行うことがで
き、高精度の吸気管圧力増量又は減量が行われる
迄の中間加速又は減速部分の応答性を向上させる
ことができる。 これらに対して、前記吸気管圧力増量又は減量
は、絞り弁開度が変化した後で吸気管圧力の変化
が生じてから行われる。この吸気管圧力増量又は
減量は、実際にエンジン燃焼室に吸入される空気
量に基づいて行われるものであり、精度が高い。 なお、吸入空気量感知式の場合には、加速時に
絞り弁が開かれるか又は減速時に絞り弁が閉じら
れると、絞り弁より上流側のエアフローセンサ出
力は直ちに吸入空気量の増加又は減少を検出する
のに対し、実際に燃焼室に吸入される空気量は、
絞り弁より下流側のサージタンクの分だけ増加又
は減少が遅れるため、前記センサ出力により計算
される燃料量の方が先行して増加又は減少するこ
とになり、これが適当な加速増量又は減速減量と
なるため、本発明のような絞り弁開度増量又は減
量を必要としない。 本発明においては、更に、前記アフタアイドル
増量、絞り弁開度増減量及び吸気管圧力増減量の
最大値又は最小値を辿つて加速増量又は減速減量
を行うようにしているので、これらが重なる領域
でも過増量又は過減量となることがない。 又、エンジン暖機状態に応じて前記補正係数を
更に補正するための補正倍率を、加速時と減速時
で異なるものとしているので、加速時と減速時に
それぞれ見合つた、エンジン暖機中の加減速増減
量補正を行うことができる。
In the present invention, during acceleration and deceleration, the after-idle amount increase is performed at the moment the accelerator pedal is pressed, and the after-idle amount is increased with extremely quick response (only during acceleration).
and a fast-response throttle valve opening increase or decrease, in which an increase or decrease in throttle valve opening is corrected in accordance with the rate of increase or decrease in throttle valve opening prior to an increase or decrease in intake pipe pressure, and an increase or decrease in intake pipe pressure. Since the increase or decrease correction is performed in combination with highly accurate intake pipe pressure increase or decrease, which performs increase or decrease correction according to the decrease, the response is quick and the acceleration increase is highly accurate. and deceleration reduction. In other words, although the after-idle increase has an extremely quick response, it is not possible to determine how much acceleration the engine is accelerating.
Only estimated corrections can be made, and it is not possible to increase the amount by a large amount in order to prevent over-richness. Furthermore, since the throttle valve opening amount is increased or decreased based on the throttle valve opening degree, the amount can be quickly increased or decreased depending on how the accelerator pedal is depressed, and the intake pipe pressure can be increased or decreased with high precision. It is possible to improve the responsiveness of the intermediate acceleration or deceleration portion until weight reduction is performed. On the other hand, the intake pipe pressure increase or decrease is performed after the intake pipe pressure changes after the throttle valve opening changes. This intake pipe pressure increase or decrease is performed based on the amount of air actually taken into the engine combustion chamber, and is highly accurate. In addition, in the case of the intake air amount sensing type, when the throttle valve is opened during acceleration or closed during deceleration, the air flow sensor output upstream of the throttle valve immediately detects an increase or decrease in the intake air amount. However, the amount of air actually drawn into the combustion chamber is
Since the increase or decrease is delayed by the amount of the surge tank downstream from the throttle valve, the fuel amount calculated by the sensor output increases or decreases in advance, and this is determined by the appropriate acceleration increase or deceleration decrease. Therefore, there is no need to increase or decrease the throttle valve opening as in the present invention. In the present invention, the acceleration increase or deceleration decrease is further performed by following the maximum or minimum value of the after-idle increase, the throttle valve opening increase/decrease, and the intake pipe pressure increase/decrease, so that the acceleration increase or deceleration decrease is performed in the area where these overlap. However, there is no possibility of over-increase or under-dose. In addition, the correction magnification for further correcting the correction coefficient according to the engine warm-up state is different during acceleration and deceleration, so that acceleration and deceleration during engine warm-up are adjusted to match each acceleration and deceleration. Increase/decrease correction can be performed.

【実施例】【Example】

以下図面を参照して、本発明の実施例を詳細に
説明する。 本発明に係る内燃機関の電子制御燃料噴射方法
が採用された吸気管圧力感知式の電子制御燃料噴
射装置の実施例は、第1図及び第2図に示す如
く、外気を取入れるためのエアクリーナ12と、
該エアクリーナ12より取入れられた吸入空気の
温度を検出するための吸気温センサ14と、吸気
通路16中に配設され、運転席に配設されたアク
セルペダル(図示省略)と連動して開閉するよう
にされた、吸入空気の流量を制御するための絞り
弁18と、該絞り弁18がアイドル開度にあるか
否かを検出するためのアイドル接点(スイツチ)
及び絞り弁18の開度に比例した電圧出力を発生
するポテンシヨメータを含むスロツトルセンサ2
0と、気筒間の吸気干渉を防止するためのサージ
タンク22と、該サージタンク22内の圧力から
吸気管圧力を検出するための吸気管圧力センサ2
3と、前記絞り弁18をバイパスするバイパス通
路24と、該バイパス通路24の途中に配設さ
れ、該バイハス通路24の開口面積を制御するこ
とによつてアイドル回転速度を制御するためのア
イドル回転制御弁26と、吸気マニホールド28
に配設された、エンジン10の吸気ポートに向け
て燃料を噴射するためのインジエクタ30と、排
気マニホールド32に配設された、排気ガス中の
残存酸素濃度から空燃比を検知するための酸素濃
度センサ34と、前記排気マニホールド32下流
側の排気管36の途中に配設された三元触媒コン
バータ38と、エンジン10のクランク軸の回転
と連動して回転するデイストリビユータ軸を有す
るデイストリビユータ40と、該デイストリビユ
ータ40に内蔵された、前記デイストリビユータ
軸の回転に応じて上死点信号及びクランク角信号
を出力する上死点センサ42及びクランク角セン
サ44と、エンジンブロツクに配設された、エン
ジン冷却水温を検知するための冷却水温センサ4
6と、変速機48の出力軸の回転数から車両の走
行速度を検出するための車速センサ50と、前記
吸気管圧力センサ23出力の吸気管圧力と前記ク
ランク角センサ44の出力から求められるエンジ
ン回転数に応じてエンジン1工程あたりの基本噴
射量を求めると共に、これを、前記スロツトルセ
ンサ20の出力、前記酸素濃度センサ34出力の
空燃比、前記冷却水温センサ46出力のエンジン
冷却水温等に応じて補正することによつて燃料噴
射量を決定して、前記インジエクタ30に開弁時
間信号を出力し、又、エンジン運転状態に応じて
点火時期を決定してイグナイタ付コイル52に点
火信号を出力し、更に、アイドル時に前記アイド
ル回転制御弁26を制御するデジタル制御回路5
4とを備えた自動車用エンジン10の吸気管圧力
感知式電子制御燃料噴射装置において、前記デジ
タル制御回路54内で、前記スロツトルセンサ2
0のアイドルスイツチがオフとなつた時に所定量
の増量補正を行うアフタアイドル増量と、前記ス
ロツトルセンサ20のホテンシヨメータ出力から
検知される絞り弁開度の増大速度又は減少速度に
応じた増減量補正を行う絞り弁開度増減量と、前
記吸気管圧力センサ23の出口から検知される吸
気管圧力の増大速度又は減少速度に応じた増減量
補正を行う吸気管圧力増減量を組合せて、加速増
量及び減速減量を行うと共に、前記冷却水温セン
サ46出力のエンジン冷却水温が所定温度以下で
あるエンジン暖機時には、エンジン冷却水温に応
じた、加速時と減速時で異なる補正倍率で、前記
加速増量及び減速減量の補正係数を更に補正する
ようにしたものである。 前記デジタル制御回路54は、第2図に詳細に
示す如く、各種演算処理を行うマイクロプロセツ
サからなる中央処理装置(以下CPUと称する)
60と、前記吸気温センサ14、スロツトルセン
サ20のポテンシヨメータ、吸気管圧力センサ2
3、酸素濃度センサ34、冷却水温センサ46等
から入力されるアナログ信号を、デジタル信号に
変換して順次CPU60に取込むためのマルチプ
レクサ付アナログ入力ポート62と、前記スロツ
トルセンサ20のアイドルスイツチ、上死点セン
サ42、クランク各センサ44、車速センサ50
等から入力されるデジタル信号、所定のタイミン
グでCPU60に取込むためのデジタル入力ポー
ト64と、プログラムあるいは各種定数等を記憶
するためのリードオンリーメモリ(以下ROMと
称する)66と、CPU60における演算データ
等を一時的に記憶するためのランダムアクセスメ
モリ(以下RAMと称する)68と、機関停止時
にも補助電源から給電されて記憶を保持できるバ
ツクアツプ用ランダムアクセスメモリ(以下バツ
クアツプRAMと称する)70と、CPU60にお
ける演算結果を、所定のタイミングで前記アイド
ル回転制御弁26、インジエクタ30、イグナイ
タ付コイル52等に出力するためのデジタル出力
ポート72と、上記各構成機器間を接続するコモ
ンバス74とから構成されている。 以下、実施例の作用を説明する。 まずデジタル制御回路54は、吸気管圧力セン
サ23出力の吸気管圧力PMと、クランク角セン
サ44の出力から演算されるエンジン回転数NE
により、ROM66に予め記憶されているマツプ
から、基本噴射時間TP(PM、NE)を読出す。 更に、各センサからの信号に応じて、次式を用
いて前記基本噴射時間TAUを算出する。 TAU=TP(PM、NE)*(1+K*F) ……(1) ここで、Fは、補正係数で、Fが正である場合
には増量補正を表わし、Fが負である場合には減
量補正を表わしている。又、Kは、前記補正係数
Fを更に補正するための補正倍率であり、通常は
1とされている。 このようにして決定された燃料噴射時間TAU
に対応する燃料噴射信号が、インジエクタ30に
出力され、エンジン回転と同期してインジエクタ
30が燃料噴射時間TAUだけ開かれて、エンジ
ン10の吸気マニホールド28内に燃料が噴射さ
れる。 本実施例における加速増量及び減速減量は、次
のようにして行われる。 即ち、第3図に示す如く、加速時に、アクセル
ペダルが踏み込まれ、スロツトルセンサ20のア
イドルスイツチが、第3図Aに示す如く、時刻t1
でオフとなると、絞り弁開度TA及び吸気管圧力
PMの増大に先行して、第3図Dに実線Aで示す
ような、極めて迅速な増量補正を行うアフタアイ
ドル増量(以下LL増量と称する)が行われる。 このLL増量は、具体的には、例えば、補正係
数Fを、まず正の所定値とし、次いで、エンジン
回転毎あるいは一定時間毎に、所定の減衰速度で
0まで減衰させることによつて行われる。 次いで、絞り弁18が更に開かれ、前記スロツ
トルセンサ20のポテンシヨメータ出力から検知
される絞り弁開度TAが、第3図Bに示す如く、
時刻t2で立上り始めると、吸気管圧力PMの増大
に先行して、第3図Dに実線Bで示すような、絞
り弁開度TAの増大速度に応じた迅速な増量補正
を行う絞り弁開度増量(以下TA増量と称する)
が行われる。 このTA増量は、具体的には、例えば、絞り弁
開度の所定時間毎の変化量に応じた値を積算した
値(正値)を補正係数Fとし、次いで、エンジン
回転毎あるいは一定時間毎に、所定の減衰速度で
0まで減衰させることによつて行われる。 更に、吸気管圧力PMが絞り弁開度TAの増大
に遅れて増大し始めると、時刻t3から、第3図D
に実線Cで示すような、吸気管圧力PMの増大速
度に応じた精度の高い増量補正を行う吸気管圧力
増量(以下PM増量と称する)が行われる。 このPM増量は、具体的には、例えば、吸気管
圧力の所定時間毎の変化量に応じた値を積算した
値(正値)を補正係数Fとし、次いで、エンジン
回転毎あるいは一定時間毎に、所定の減衰速度で
0まで減衰させることによつて行われる。 なお、この際に、時刻t2〜t3ではLL増量とTA
増量が重なり、又、時刻t3〜t4では全ての増量が
重なり、更に、時刻t4〜t5ではTA増量とPM増量
が重なつているが、全ての増量を重畳して増量補
正を行つてしまうと、特に、応答は早いが精度の
良くないLL増量、TA増量の影響で、過増量とな
る恐れがある。 従つて、本発明においては、第3図Dに太い実
線で示す如く、前記LL増量、TA増量、PM増量
の最大値を辿つて加速増量を行うようにしてい
る。 次に、減速時には、時刻t6で絞り弁18が閉じ
られ始めると、吸気管圧力PMの減少に先行し
て、第3図Dに実線Dで示すような、絞り弁開度
TAの減少速度に応じた迅速な減量補正を行う絞
り弁開度減量(以下TA減量と称する)が行われ
る。 このTA減量は、具体的には、例えば、絞り弁
開度TAの所定時間毎の変化量に応じた値を積算
した値(負値)を補正係数Fとし、次いで、エン
ジン回転毎あるいは一定時間毎に、所定の回復速
度で0まで回復させることによつて行われる。 次いで、吸気管圧力PMが減少し始めると、時
刻t7から、第3図Dに実線Eで示すような、吸気
管圧力PMの減少速度に応じた精度の高い減量補
正を行う吸気管圧力減量(以下PM減量と称す
る)が行われる。 このPM減量は、具体的には、例えば、吸気管
圧力PMの所定時間毎の変化量に応じた値を積算
した値(負値)を補正係数とし、次いで、エンジ
ン回転毎あるいは一定時間毎に所定の回復速度で
0まで回復させることによつて行われる。 なお、この際に、TA減量とPM減量が重複し
た場合に、両者を合わせ行うと過減量になる恐れ
がある。 従つて、本発明においては、第3図Dに太い実
線で示す如く、前記TA減量とPM減量の最小値
を辿つて、時刻t7〜t8ではTA減量のみを行い、
時刻t8〜t9では、PM減量のみを行うようにして
いる。 一方、エンジン冷却水温が所定温度以下である
エンジン暖機中の加速時には、エンジン冷却水温
が低い程、空燃比のリーンの度合が大であるの
で、前記加速増量は更に増量する必要がある。
又、減速時には、エンジン冷却水温が低い程、空
燃比のリツチの度合が大であるので、前記減速減
量の減量度合を更に大とする必要がある。 従つて、本発明においては、前出(1)式における
補正倍率Kを、第4図に示すように設定し(K1
…加速時、K2…減速時、K1>K2)、暖機終了前
の状態では、エンジン冷却水温に応じた補正倍率
K1、K2で、前記加速増量、減速減量の補正係数
Fを更に補正するようにしている。 よつて、、エンジン暖機中の加速増量は、第5
図に破線Gで示す如く、暖機終了後の加速増量
(実線F)に比べて増量され、又、エンジン暖機
中の減速減量は、同じく第5図に破線Iで示す如
く、暖機終了後の減速減量(実線H)に比べて更
に減量される。 従つて、エンジン暖機終了後だけでなく、エン
ジン暖機中においても、良好な空燃比制御を行う
ことが可能となる。 本実施例における加速増量のプログラムを第6
図に、同じく、減速減量のプログラムを第7図に
示す。 前記のようにして、極めて応答の早いLL増量、
応答の早いTA増減量、精度の高いPM増減量を
組合せて、加速増量及び減速減量を行うことによ
つて、アクセルペダルを早く踏み込んだ場合には
多量の増量が実施され、一方、アクセルペダルを
徐々に踏み込んだ場合には少量の増量が行われる
等、アクセルペダルの踏み方に応じた適切な加速
増量あるいは減速減量を実現することができ、空
燃比を理論空燃比近傍に維持して、過渡応答性能
と排気ガス浄化性能を両立することができる。 本発明においては、エンジン冷却水温に応じた
補正倍率を、加速時と減速時で異なるものとして
いるので、エンジン要求特性に、より近い空燃比
制御を行うことができる。 なお、前記実施例においては、エンジン暖機状
態をエンジン冷却水温から検知するようにしてい
たが、エンジン暖機状態を検知する方法は、これ
に限定されず、例えば、エンジン温度、エンジン
始動後の経過時間等から、エンジン暖機状態を検
知することも勿論可能である。
Embodiments of the present invention will be described in detail below with reference to the drawings. An embodiment of the intake pipe pressure sensing type electronically controlled fuel injection device in which the electronically controlled fuel injection method for an internal combustion engine according to the present invention is adopted is as shown in FIGS. 1 and 2. 12 and
An intake temperature sensor 14 for detecting the temperature of the intake air taken in from the air cleaner 12 is disposed in the intake passage 16, and opens and closes in conjunction with an accelerator pedal (not shown) disposed in the driver's seat. A throttle valve 18 for controlling the flow rate of intake air, and an idle contact (switch) for detecting whether or not the throttle valve 18 is at an idle opening.
and a throttle sensor 2 including a potentiometer that generates a voltage output proportional to the opening degree of the throttle valve 18.
0, a surge tank 22 for preventing intake air interference between cylinders, and an intake pipe pressure sensor 2 for detecting intake pipe pressure from the pressure inside the surge tank 22.
3, a bypass passage 24 that bypasses the throttle valve 18, and an idle rotation valve disposed in the middle of the bypass passage 24 for controlling the idle rotation speed by controlling the opening area of the bypass passage 24. Control valve 26 and intake manifold 28
an injector 30 for injecting fuel toward the intake port of the engine 10, and an oxygen concentration sensor for detecting the air-fuel ratio from the residual oxygen concentration in the exhaust gas, located in the exhaust manifold 32. A distributor having a sensor 34, a three-way catalytic converter 38 disposed in the middle of an exhaust pipe 36 downstream of the exhaust manifold 32, and a distributor shaft that rotates in conjunction with the rotation of the crankshaft of the engine 10. 40, a top dead center sensor 42 and a crank angle sensor 44, which are built in the distributor 40 and output a top dead center signal and a crank angle signal in accordance with the rotation of the distributor shaft, and a top dead center sensor 42 and a crank angle sensor 44, which are installed in the engine block. A cooling water temperature sensor 4 is installed to detect the engine cooling water temperature.
6, a vehicle speed sensor 50 for detecting the running speed of the vehicle from the rotation speed of the output shaft of the transmission 48, and an engine that is determined from the intake pipe pressure output from the intake pipe pressure sensor 23 and the output from the crank angle sensor 44. The basic injection amount per engine stroke is determined according to the rotational speed, and this is applied to the output of the throttle sensor 20, the air-fuel ratio of the oxygen concentration sensor 34 output, the engine cooling water temperature of the cooling water temperature sensor 46 output, etc. The fuel injection amount is determined by correcting it accordingly, and a valve opening time signal is output to the injector 30, and the ignition timing is determined according to the engine operating condition and an ignition signal is sent to the igniter-equipped coil 52. a digital control circuit 5 that outputs an output and further controls the idle rotation control valve 26 during idle;
In the intake pipe pressure sensing type electronically controlled fuel injection device for an automobile engine 10 comprising:
After-idle increase is performed by increasing the amount by a predetermined amount when the idle switch of 0 is turned off, and the increase/decrease correction is performed according to the rate of increase or decrease in the throttle valve opening detected from the output of the potentiometer of the throttle sensor 20. The acceleration increase is performed by combining the throttle valve opening increase/decrease that performs and deceleration reduction, and when warming up the engine when the engine cooling water temperature output from the cooling water temperature sensor 46 is below a predetermined temperature, the acceleration amount increase and deceleration amount are increased and The correction coefficient for deceleration reduction is further corrected. As shown in detail in FIG. 2, the digital control circuit 54 is a central processing unit (hereinafter referred to as CPU) consisting of a microprocessor that performs various arithmetic operations.
60, the intake temperature sensor 14, the potentiometer of the throttle sensor 20, and the intake pipe pressure sensor 2.
3. An analog input port 62 with a multiplexer for converting analog signals input from the oxygen concentration sensor 34, cooling water temperature sensor 46, etc. into digital signals and sequentially inputting them to the CPU 60; and an idle switch for the throttle sensor 20; Top dead center sensor 42, crank sensors 44, vehicle speed sensor 50
A digital input port 64 for inputting digital signals input from etc. into the CPU 60 at a predetermined timing, a read-only memory (hereinafter referred to as ROM) 66 for storing programs or various constants, etc., and calculation data in the CPU 60. Random access memory (hereinafter referred to as RAM) 68 for temporarily storing information such as the engine, etc., and Backup random access memory (hereinafter referred to as backup RAM) 70 that can be supplied with power from an auxiliary power source and retain memory even when the engine is stopped. It is composed of a digital output port 72 for outputting the calculation results in the CPU 60 to the idle rotation control valve 26, injector 30, coil with igniter 52, etc. at a predetermined timing, and a common bus 74 that connects each of the above components. ing. The effects of the embodiment will be explained below. First, the digital control circuit 54 controls the intake pipe pressure PM output from the intake pipe pressure sensor 23 and the engine rotation speed NE calculated from the output of the crank angle sensor 44.
Accordingly, the basic injection time TP (PM, NE) is read from the map stored in advance in the ROM 66. Furthermore, the basic injection time TAU is calculated using the following equation according to the signals from each sensor. TAU=TP(PM,NE)*(1+K*F)...(1) Here, F is a correction coefficient. If F is positive, it represents an increase correction, and if F is negative, it represents an increase correction. represents the weight loss correction. Further, K is a correction magnification for further correcting the correction coefficient F, and is normally set to 1. Fuel injection time TAU determined in this way
A fuel injection signal corresponding to this is output to the injector 30, the injector 30 is opened for the fuel injection time TAU in synchronization with the engine rotation, and fuel is injected into the intake manifold 28 of the engine 10. The acceleration increase and deceleration decrease in this embodiment are performed as follows. That is, as shown in FIG. 3, the accelerator pedal is depressed during acceleration, and the idle switch of the throttle sensor 20 is activated at time t 1 as shown in FIG. 3A.
When it turns off, the throttle valve opening TA and intake pipe pressure
Prior to the increase in PM, after-idle power increase (hereinafter referred to as LL power increase) is performed, which performs extremely rapid power increase correction, as shown by the solid line A in FIG. 3D. Specifically, this LL increase is performed by, for example, first setting the correction coefficient F to a predetermined positive value, and then attenuating it to 0 at a predetermined damping speed every engine rotation or every certain period of time. . Next, the throttle valve 18 is further opened, and the throttle valve opening degree TA detected from the potentiometer output of the throttle sensor 20 becomes as shown in FIG. 3B.
When the rise starts at time t2 , the throttle valve performs a quick increase correction according to the rate of increase in the throttle valve opening TA, as shown by the solid line B in FIG. 3D, prior to the increase in the intake pipe pressure PM. Opening increase (hereinafter referred to as TA increase)
will be held. Specifically, this TA increase is performed, for example, by setting a value (positive value) that is the sum of the values corresponding to the amount of change in the throttle valve opening at each predetermined time period as a correction coefficient F, and then increasing the amount at each engine revolution or at a certain time period. This is done by damping down to zero at a predetermined damping rate. Furthermore, when the intake pipe pressure PM begins to increase with a delay in the increase in the throttle valve opening TA, from time t 3 , Fig. 3D
As shown by a solid line C, an intake pipe pressure increase (hereinafter referred to as PM increase) is performed that performs a highly accurate increase correction according to the rate of increase in intake pipe pressure PM. Specifically, this PM increase is performed by setting a correction coefficient F to a value (positive value) that is the sum of values corresponding to the amount of change in intake pipe pressure every predetermined time, and then , by decaying to zero at a predetermined decay rate. In addition, at this time, from time t 2 to t 3 , LL increase and TA
The increases overlap, and from time t 3 to t 4 all increases overlap, and furthermore, from time t 4 to t 5 , the TA increase and PM increase overlap, but all increases are superimposed to correct the increase. If you go too far, there is a risk of over-dosing due to the influence of LL and TA increases, which have a quick response but are not accurate. Therefore, in the present invention, as shown by the thick solid line in FIG. 3D, the accelerated increase is performed by following the maximum values of the LL increase, TA increase, and PM increase. Next, during deceleration, when the throttle valve 18 begins to close at time t6 , the throttle valve opening increases as shown by the solid line D in FIG.
Throttle valve opening reduction (hereinafter referred to as TA reduction) is performed to perform rapid reduction correction according to the rate of reduction of TA. Specifically, for this TA reduction, for example, a value (negative value) that is the sum of the values corresponding to the amount of change in the throttle valve opening TA every predetermined time is set as the correction coefficient F, and then This is done by recovering to 0 at a predetermined recovery speed each time. Next, when the intake pipe pressure PM starts to decrease, from time t7 , the intake pipe pressure is reduced by performing a highly accurate reduction correction according to the decreasing rate of the intake pipe pressure PM, as shown by the solid line E in FIG. 3D. (hereinafter referred to as PM reduction) is performed. Specifically, this PM reduction is achieved by using, for example, a value (negative value) that is the sum of values corresponding to the amount of change in intake pipe pressure PM at each predetermined time as a correction coefficient, and then This is done by recovering to 0 at a predetermined recovery speed. At this time, if TA weight loss and PM weight loss overlap, there is a risk that excessive weight loss will occur if both are performed together. Therefore, in the present invention, as shown by the thick solid line in FIG. 3D, only the TA reduction is performed from time t 7 to t 8 by following the minimum values of the TA reduction and PM reduction, and
From time t8 to time t9 , only PM reduction is performed. On the other hand, during acceleration during engine warm-up when the engine cooling water temperature is below a predetermined temperature, the lower the engine cooling water temperature, the greater the leanness of the air-fuel ratio, so the acceleration amount needs to be further increased.
Furthermore, during deceleration, the lower the engine cooling water temperature, the greater the degree of enrichment of the air-fuel ratio, so it is necessary to further increase the degree of reduction in the deceleration amount. Therefore, in the present invention, the correction magnification K in equation (1) above is set as shown in FIG. 4 (K1
...During acceleration, K2...During deceleration, K1>K2), before warming up, correction magnification according to engine cooling water temperature
K1 and K2 are used to further correct the correction coefficient F for the acceleration increase and deceleration decrease. Therefore, the increase in acceleration during engine warm-up is the fifth
As shown by the broken line G in the figure, the amount is increased compared to the increase in acceleration after the end of warm-up (solid line F), and the deceleration loss during engine warm-up is also shown by the broken line I in FIG. It is further reduced compared to the subsequent deceleration reduction (solid line H). Therefore, it is possible to perform good air-fuel ratio control not only after the engine has warmed up, but also during the engine warm-up. The accelerated dose increase program in this example is the sixth one.
Similarly, FIG. 7 shows a deceleration reduction program. As described above, LL dose increase with extremely quick response,
By combining fast-response TA increase/decrease and highly accurate PM increase/decrease to increase acceleration and deceleration, a large amount of increase is achieved when the accelerator pedal is pressed early, while a large amount is increased when the accelerator pedal is depressed. It is possible to achieve an appropriate increase in acceleration or decrease in deceleration depending on how the accelerator pedal is pressed, such as a small increase in the amount when the accelerator pedal is depressed gradually, and maintain the air-fuel ratio near the stoichiometric air-fuel ratio and It is possible to achieve both response performance and exhaust gas purification performance. In the present invention, since the correction magnification according to the engine cooling water temperature is different during acceleration and deceleration, it is possible to perform air-fuel ratio control closer to the required characteristics of the engine. In the above embodiment, the engine warm-up state was detected from the engine cooling water temperature, but the method for detecting the engine warm-up state is not limited to this. Of course, it is also possible to detect the engine warm-up state from the elapsed time and the like.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、加速時及
び減速時にそれぞれ見合つた、アクセルペダルの
踏み方と吸気管圧力の両者の変化及びエンジン暖
機状態に応じた適切な、温度とならない増減量補
正を行うことができ、空燃比を論理空燃比近傍に
維持して、エンジン暖機状態に拘らず、良好な過
度応答性能と排気ガス浄化性能を両立することが
できる。従つて、吸気管圧力感知式の電子制御燃
料噴射装置を用いた場合でも、精密な空燃比制御
を行うことが可能となるという優れた効果を有す
る。
As explained above, according to the present invention, an appropriate increase/decrease correction that does not result in temperature is made in accordance with changes in both the way the accelerator pedal is pressed and the intake pipe pressure, and the engine warm-up state, commensurate with each other during acceleration and deceleration. The air-fuel ratio can be maintained near the stoichiometric air-fuel ratio, and both good transient response performance and exhaust gas purification performance can be achieved regardless of the warm-up state of the engine. Therefore, even when using an electronically controlled fuel injection device that senses intake pipe pressure, there is an excellent effect in that precise air-fuel ratio control can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る内燃機関の電子制御燃
料噴射方法が採用された、自動車用エンジンの吸
気管圧力感知式電子制御燃料噴射装置の実施例を
示すブロツク線図、第2図は、前記実施例で用い
られているデジタル制御回路の構成を示すブロツ
ク線図、第3図は、前記実施例における加速増量
及び減速減量の様子を示す線図、第4図は、同じ
く前記実施例における、エンジン冷却水温と加速
増量及び減速減量の補正倍率の関係の例を示す線
図、第5図は、同じく前記実施例における、エン
ジン暖機終了後の加速増量及び減速減量と、エン
ジン暖機中の加速増量及び減速減量を比較して示
す線図、第6図は、同じく、加速増量のプログラ
ムを示す流れ図、第7図は、同じく、減速減量の
プログラムを示す流れ図である。 10……エンジン、14……吸気温センサ、1
8……絞り弁、20……スロツトルセンサ、23
……吸気管圧力センサ、30……インジエクタ、
34……酸素濃度センサ、40……デイストリビ
ユータ、42……上死点センサ、44……クラン
ク角センサ、46……冷却水温センサ、54……
デジタル制御回路。
FIG. 1 is a block diagram showing an embodiment of an intake pipe pressure sensing type electronically controlled fuel injection device for an automobile engine in which the electronically controlled fuel injection method for an internal combustion engine according to the present invention is adopted, and FIG. FIG. 3 is a block diagram showing the configuration of the digital control circuit used in the embodiment, FIG. 3 is a diagram showing how the acceleration amount increases and deceleration decreases in the embodiment, and FIG. , a diagram showing an example of the relationship between the engine cooling water temperature and the correction magnification of acceleration increase and deceleration decrease; FIG. FIG. 6 is a flowchart showing a program for increasing acceleration and FIG. 7 is a flowchart showing a program for reducing deceleration. 10...Engine, 14...Intake temperature sensor, 1
8... Throttle valve, 20... Throttle sensor, 23
...Intake pipe pressure sensor, 30...Injector,
34... Oxygen concentration sensor, 40... Distributor, 42... Top dead center sensor, 44... Crank angle sensor, 46... Cooling water temperature sensor, 54...
Digital control circuit.

Claims (1)

【特許請求の範囲】 1 エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共に、過渡時は、エン
ジン運転状態に応じて算出される補正係数により
前記基本噴射量を補正することによつて燃料噴射
量を決定するようにした内燃機関の電子制御燃料
噴射方法において、 加速時に、 アイドルスイツチがオフとなつたときに増量補
正を行うアフタアイドル増量と、 絞り弁開度の増大速度に応じて増大させ、次い
で、所定の減衰速度で減衰させる絞り弁開度増量
と、 吸気管圧力の増大速度に応じて増大させ、次い
で、所定の減衰速度で減衰させる吸気管圧力増量
とを算出し、 これら増量値のうち、その最大値から前記補正
係数を求めて加速増量を行い、 減速時に、 絞り弁開度の減少速度に応じて減少させ、次い
で、所定の回復速度で回復させる絞り弁開度減量
と、 吸気管圧力の減少速度に応じて減少させ、次い
で、所定の回復速度で回復させる吸気管圧力減量
とを算出し、 これらの減量値のうち、その最小値から前記補
正係数を求めて減速減量を行うと共に、 エンジン暖機時には、エンジン暖機状態に応じ
た、加速時と減速時で異なる補正倍率で、前記補
正係数を更に補正することを特徴とする内燃機関
の電子制御燃料噴射方法。
[Scope of Claims] 1. The basic injection amount is determined according to the engine intake pipe pressure and the engine speed, and during transient periods, the basic injection amount is corrected using a correction coefficient calculated according to the engine operating state. In an electronically controlled fuel injection method for an internal combustion engine in which the amount of fuel to be injected is determined by Calculate the throttle valve opening increase that is increased according to the rate of increase in intake pipe pressure and then attenuated at a predetermined damping speed, and the intake pipe pressure increase that is increased according to the increase rate of intake pipe pressure and then attenuated at a predetermined damping speed. Then, among these increase values, the correction coefficient is determined from the maximum value, and the throttle valve is increased during acceleration, and during deceleration, the throttle valve opening is decreased according to the decreasing speed of the throttle valve opening, and then the throttle valve is restored at a predetermined recovery speed. Calculate the opening reduction and the intake pipe pressure reduction, which is reduced according to the reduction rate of the intake pipe pressure and then recovered at a predetermined recovery speed, and calculate the correction coefficient from the minimum value among these reduction values. The electronically controlled fuel for an internal combustion engine is characterized in that the correction coefficient is further corrected at a correction magnification that differs during acceleration and deceleration, depending on the engine warm-up state, when the engine is warmed up. Injection method.
JP2923882A 1982-02-24 1982-02-24 Electronically controlled fuel injecting method for internal-combustion engine Granted JPS58144637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2923882A JPS58144637A (en) 1982-02-24 1982-02-24 Electronically controlled fuel injecting method for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2923882A JPS58144637A (en) 1982-02-24 1982-02-24 Electronically controlled fuel injecting method for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58144637A JPS58144637A (en) 1983-08-29
JPH0372824B2 true JPH0372824B2 (en) 1991-11-19

Family

ID=12270654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2923882A Granted JPS58144637A (en) 1982-02-24 1982-02-24 Electronically controlled fuel injecting method for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58144637A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611844A (en) * 1984-06-15 1986-01-07 Automob Antipollut & Saf Res Center Fuel injection device
JPS627956A (en) * 1985-07-04 1987-01-14 Mazda Motor Corp Engine exhaust gas purifier
JPH01125532A (en) * 1987-11-10 1989-05-18 Japan Electron Control Syst Co Ltd Controller for internal combustion engine
JP3784080B2 (en) * 1994-06-16 2006-06-07 株式会社デンソー Fuel injection amount correction method during warm-up process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566034A (en) * 1979-06-27 1981-01-22 Gen Motors Corp Fuel feed system for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566034A (en) * 1979-06-27 1981-01-22 Gen Motors Corp Fuel feed system for internal combustion engine

Also Published As

Publication number Publication date
JPS58144637A (en) 1983-08-29

Similar Documents

Publication Publication Date Title
JPH0251056B2 (en)
JPS6165038A (en) Air-fuel ratio control system
US4463732A (en) Electronic controlled non-synchronous fuel injecting method and device for internal combustion engines
JPH0251052B2 (en)
JPH057548B2 (en)
JPS6231179B2 (en)
JPH0512538B2 (en)
JPH0372824B2 (en)
JPH057546B2 (en)
JPS58133435A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH059620B2 (en)
JPH0475382B2 (en)
JPH0316498B2 (en)
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH0368221B2 (en)
JPH0510490B2 (en)
JPH059621B2 (en)
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0423098B2 (en)
JPS58144639A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH0325620B2 (en)
JPS58214633A (en) Electronically controlled fuel injection method for internal-combustion engine
JPS58144638A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH0325621B2 (en)
JPH0323738B2 (en)