JPS58133435A - Electronically controlled fuel injection method of internal-combustion engine - Google Patents

Electronically controlled fuel injection method of internal-combustion engine

Info

Publication number
JPS58133435A
JPS58133435A JP1509882A JP1509882A JPS58133435A JP S58133435 A JPS58133435 A JP S58133435A JP 1509882 A JP1509882 A JP 1509882A JP 1509882 A JP1509882 A JP 1509882A JP S58133435 A JPS58133435 A JP S58133435A
Authority
JP
Japan
Prior art keywords
decrease
engine
deceleration
fuel injection
intake pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1509882A
Other languages
Japanese (ja)
Other versions
JPH0573907B2 (en
Inventor
Toshiaki Isobe
磯部 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1509882A priority Critical patent/JPS58133435A/en
Publication of JPS58133435A publication Critical patent/JPS58133435A/en
Publication of JPH0573907B2 publication Critical patent/JPH0573907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To compatibly obtain acceleration and deceleration performance and exhaust gas purifying performance, by performing suitable decrease correction combined with a throttle valve opening decrease and intake pipe pressure decrease at the time of deceleration to maintain air fuel ratio in the vicinity of the logical air fuel ratio in an electronically controlled fuel injection device of intake pipe pressure type. CONSTITUTION:At operation of a deceleration decrease, whether an idle switch of a throttle sensor is turned on or not is decided. If a decision result is positive, that is, a throttle valve is fully closed, whether speed of an engine is a prescribed value, for instance, 1,000rpm or less or not is decided. If a decision result is positive, whether in a state of deceleration decrease, that is, TA (throttle valve opening) decrease or PM (intake pipe pressure) decrease is decided. If a decision result is positive, a value of correction coefficient F is forcibly returned to 0 to suspend the deceleration decrease. While the decision result is negative, that is, even in a state of deceleration decrease, when the idle switch is turned on or the speed of the engine exceeds 1,000rpm, the deceleration decrease is continued.

Description

【発明の詳細な説明】 本発I!II:Iは、内燃機関の電子制御燃料噴射方法
に係り、特に、吸気管圧力式の電子制御燃料噴射装置を
備えた自動車用内燃機関に用いるのに好適な、エンジン
の吸気管圧力とエンジン回転数に応じて基本噴射量を求
めると共に、過渡時は、エンジン運転状態に応じて前記
基本噴射量を補正することによって燃料噴射量を決定す
るようにした内燃機関の電子制御燃料噴射方法の改良に
関する。
[Detailed description of the invention] This invention I! II:I relates to an electronically controlled fuel injection method for an internal combustion engine, and in particular, to an engine intake pipe pressure and engine rotation suitable for use in an automobile internal combustion engine equipped with an intake pipe pressure type electronically controlled fuel injection device. This invention relates to an improvement in an electronically controlled fuel injection method for an internal combustion engine, in which the basic injection amount is determined according to the engine operating condition, and the fuel injection amount is determined by correcting the basic injection amount according to the engine operating state during transient times. .

自動車用エンジン等の内燃機関の燃焼室に所定空燃比の
混合気を供給する方法の一つに、電子を」御燃料噴射装
置を用いるものがある。これは、エンジン内に燃料t−
V射するためのインジェクタを、例えば、エンジンの吸
気マニホルド或いはスロットルボデーに、エンジン気筒
数個数いH1個配設し、該インジェクタの開弁時間をエ
ンジンの運転状態に応じて制御することにより、所定の
空燃比の混合気がエンジン燃焼室に供給されるようにす
るものである。この電子制御燃料噴射装置VCは、大別
して、エンジンの吸入空気量とエンジン回転数に応じて
基本噴射量を求めるようにした、いわゆる吸入空気量式
の電子制御燃料噴射装置と、エンジンの吸気管圧力とエ
ンジン回転数に応じて基本噴射量を求めるようにした。
One of the methods for supplying an air-fuel mixture with a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine such as an automobile engine is to use an electronically controlled fuel injection device. This means that the fuel t-
For example, H1 injectors for injecting V-injection are arranged in the intake manifold or throttle body of the engine for several engine cylinders, and the valve opening time of the injectors is controlled according to the operating state of the engine. The air-fuel mixture is supplied to the engine combustion chamber with an air-fuel ratio of . This electronically controlled fuel injection device VC can be roughly divided into a so-called intake air amount type electronically controlled fuel injection device that determines the basic injection amount according to the amount of intake air of the engine and the engine speed, and an electronically controlled fuel injection device of the engine intake pipe. The basic injection amount is calculated according to pressure and engine speed.

いわゆる吸気管圧方式の電子制御燃料噴射装置がある。There is a so-called intake pipe pressure type electronically controlled fuel injection device.

このうち前者は、空燃比を精密に制御することが可能で
あり、排気ガス浄化対策が施された自動車用エンジンに
広(用いられるようになっている。
Among these, the former allows for precise control of the air-fuel ratio, and is now widely used in automobile engines equipped with exhaust gas purification measures.

しかしながら、この吸入空気量式の電子制御燃料噴射装
置においては、吸入空気量が、アイドル時と高負荷時で
50倍程度i化し、ダイナミックレンジが広いので、吸
入空気1kを電気信号に変換する際の精度が低くなるだ
けでなく、後段のデジタル制御(ロ)路における計算精
度を高めようとすると。
However, in this intake air volume type electronically controlled fuel injection system, the intake air volume increases by about 50 times when idling and under high load, and the dynamic range is wide, so when converting 1k of intake air into an electrical signal, Not only will the accuracy of the calculation become lower, but if you try to increase the calculation accuracy in the digital control (b) path at the subsequent stage.

電気信号のピット長が長くなり、デジタル制御回路とし
て高価なコンピュータを用いる必要がある。
The pit length of the electric signal becomes long, and an expensive computer needs to be used as a digital control circuit.

父、T&人人気気量測定するために、エアフローメータ
等の非常に精密な構造を有する測定器を用いる必要があ
り、設備費が高価となる等の問題点を有していた。
Father, T & PopularityIn order to measure airflow, it was necessary to use a measuring device with a very precise structure, such as an air flow meter, which led to problems such as high equipment costs.

一方、後者の吸気管圧力式の電子制御燃料噴射装置l1
IVCおいてに、吸気管圧力の変化量が2〜3倍程度と
少なく、ダイナミックレンジが狭いので、後段のデジタ
ル制御回路における演算処理が容易であるだけでなく、
吸気管圧力を検知するだめの圧力センサも安価であると
いう特徴を有する。しかしながら、吸入空気量式の電子
制御燃料噴射装置に比べると、空燃比の制御精度が低く
、特に、減速時においては、吸気管圧力が減少しなけれ
ば燃料噴射量が減少しないため、空燃比が一時的にリッ
チとなって、減速性能が低いものとなるだけでなく、排
気ガス中の一酸化炭素量が増大して、空燃比を三元触媒
コンバータに適した所定軛囲内に維持することが困難で
あった。これに、排気下流@に配設した酸素濃度センサ
の出力信号に応じて燃料噴射量をフィードバック制御す
るようにした場合においても、酸素濃lセンサの応答が
遅いため、同様である。従って、従来は、吸気管圧力式
の電子制御燃料噴射装置を、空燃比を精密に制御するこ
とが必要な、排気ガス浄化対策が施され九自動車用エン
ジンに用いることに困難であると考えられていた。
On the other hand, the latter intake pipe pressure type electronically controlled fuel injection device l1
In IVC, the amount of change in intake pipe pressure is small, about 2 to 3 times, and the dynamic range is narrow, so calculation processing in the digital control circuit at the subsequent stage is not only easy, but also
The pressure sensor for detecting the intake pipe pressure is also characterized by being inexpensive. However, compared to electronically controlled fuel injection systems that use intake air flow, the control accuracy of the air-fuel ratio is lower, and especially during deceleration, the fuel injection amount does not decrease unless the intake pipe pressure decreases, so the air-fuel ratio Not only does this temporarily become rich and reduce deceleration performance, but the amount of carbon monoxide in the exhaust gas increases, making it difficult to maintain the air-fuel ratio within a predetermined range suitable for a three-way catalytic converter. It was difficult. Even when the fuel injection amount is feedback-controlled in accordance with the output signal of the oxygen concentration sensor disposed downstream of the exhaust gas, the same problem occurs because the response of the oxygen concentration sensor is slow. Therefore, conventionally, it has been considered difficult to use intake pipe pressure type electronically controlled fuel injection devices in automobile engines that require precise control of the air-fuel ratio and that require exhaust gas purification measures. was.

尚、前記のような欠点を解消するべく、減速時に減量補
正を行うことも考えられるが、この減速減量をアイドル
回転数近くになっても続行すると、減速状態からアイド
リンク状態に移行する際に、エンジン回転数がアイドル
回転数以下に落ち込んで、車両乗員に不快感を与えたり
、或いは、甚だしい場合KFi、エンジンストールを発
生してしまう可能性があった。
In order to eliminate the above-mentioned drawbacks, it may be possible to perform a reduction correction during deceleration, but if this deceleration reduction is continued even when the speed approaches the idle speed, it will be difficult to correct the There is a possibility that the engine speed drops below the idle speed, causing discomfort to vehicle occupants, or, in extreme cases, causing KFi and engine stall.

本発明は、前記従来の欠点を解消するべくなさからアイ
ドリング状態に移行する際の、エンジン回転数の落ち込
み或いはエンジンストールを防止することができ、従っ
て、良好な減速性能と排気ガス浄化性能を両立させるこ
とができる内燃機関の電子制御燃料噴射方法を提供する
ことを目的とする。
In order to solve the above-mentioned conventional drawbacks, the present invention can prevent a drop in engine speed or an engine stall when transitioning to an idling state, thus achieving both good deceleration performance and exhaust gas purification performance. An object of the present invention is to provide an electronically controlled fuel injection method for an internal combustion engine that can perform the following steps.

本発明は、エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共に、過渡時は、エンジン運
転状IIK応じて前記基本噴射量を補正することによっ
て燃料噴射量を決定するようにした内儀機関の電子制御
燃料噴射方法において、減速時(減量補正を行うと共に
、骸減速減!実行中に、絞り弁が全閉状態となり、且つ
、エンジン回転数が所定値以下とたつ九時は、前記減速
減量を中止するようにして、前記目的を達成したもので
ある。
The present invention determines the basic injection amount according to the intake pipe pressure and engine speed of the engine, and at the time of transient, the fuel injection amount is determined by correcting the basic injection amount according to the engine operating condition IIK. In the electronically controlled fuel injection method of the internal engine, during deceleration (while performing the reduction correction and the skeleton deceleration reduction!), when the throttle valve is fully closed and the engine speed is below a predetermined value, The above objective is achieved by canceling the deceleration reduction.

又、前記所定値を、アイドル回転数より若干高めのエン
ジン回転数としたものである。
Further, the predetermined value is set to an engine speed slightly higher than the idle speed.

以下図面を参照して、本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明に係る内燃機関の電子制御燃料噴射方法が採用さ
れ之吸気管圧力式の電子制御燃料噴射装置の実施例は、
第1図及び第2図に示す如く、外気を取入れる九めのエ
アクリーナ12と、該エアクリーナ12より取入れられ
た吸入空気の温IJj′を検出するための吸気温センサ
14と、吸気通路16中に配設され、運転席に配設され
たアクセルペダル(図示省略)と連動して開閉するよう
にされた。吸入空気の流量を制御するための絞り弁1B
と、該絞快弁18がアイドル開fにあるか否かを検出す
るためのアイドル接点及び絞り弁18の開瞥に比例した
電圧出方を発生するポテンショメータを含むスロットル
センサ2oと、サージタンク22と、骸サージタンク2
2内の圧力がら吸気管圧力を検出するための吸気管圧力
センサ23と、前記絞り弁18iバイパスするバイパス
通路24と、該バイパス通路24の途中に配設され。
An embodiment of an intake pipe pressure type electronically controlled fuel injection device in which the electronically controlled fuel injection method for an internal combustion engine according to the present invention is adopted is as follows:
As shown in FIGS. 1 and 2, a ninth air cleaner 12 that takes in outside air, an intake temperature sensor 14 for detecting the temperature IJj' of the intake air taken in from the air cleaner 12, and a It was arranged to open and close in conjunction with the accelerator pedal (not shown) arranged in the driver's seat. Throttle valve 1B for controlling the flow rate of intake air
, a throttle sensor 2o including an idle contact for detecting whether or not the throttle valve 18 is in the idle open position f, and a potentiometer that generates a voltage proportional to the open position of the throttle valve 18; and a surge tank 22. And Mukuro Surge Tank 2
An intake pipe pressure sensor 23 for detecting the intake pipe pressure from the pressure inside the throttle valve 18i, a bypass passage 24 that bypasses the throttle valve 18i, and an intermediate part of the bypass passage 24 are disposed.

該バイパス通路24の開口面積を制御することによって
アイドル回転速度を制御するためのアイドル回転制御弁
26と、吸気マニホルド28に配設され友、エンジンl
oの吸気ボートに向けて燃料ヲ噴射するためのインジェ
クタ3oと、排気マニホルド32に配設された。排気ガ
ス中の残存酸素濃度がら空燃比を検知するための酸素製
置センサ34と、前記排気マニホルド32下流側の排気
管36の途中に配設され九三元触媒コンバータ38と、
エンジンlOのクランク軸の回転と連動して回転するデ
ィストリビュータ軸を有するディストリビュータ40と
、該ディストリビュータ40に内蔵された。前記ディス
トリビュータ軸の回転に応じて上死点信号及びクランク
角信号を出゛カする上死点センサ42及びクランク角セ
ンサ44と、エンジン運転状態に配設された、エンジン
冷却水温を検知するための冷却水温センサ46と、を連
撮48の出力軸の回転数から車両の走行速1&’に検出
するための車速センサ5oと、前記吸気管圧力センサ2
3出力の吸気管圧力と前記クランク角センサ44の出力
から求められるエンジン回転数(応じてエンジンl工程
あたりの基本噴射irをマツプから求めると共に、これ
を、前記スロットルセンサ20の出力、前記酸素濃度セ
ンサ34出カの空燃比、前記冷却水温センサ46出カの
エンジン冷却水温等に応じて補正することによって、燃
料噴射量を決定して前記インジェクタ30に開弁時間信
号を出力し、又、エンジン運転状態に応じて点火時期を
決定してイグナイタ付コイル52に点火信号を出力し、
更に、アイドル時に前記アイドル回転制御弁26を制御
するデジタル制御回路54とを備えた自動車用エンジン
1oの吸気!’圧力式電子制御燃料噴射装置において、
前記デジタル制御回M54内で、前記スロットルセンサ
2゜のポテンショメータ出力から検知される絞り弁開1
の減少速度、及び、前記吸気管圧力センサ23の出力か
ら検知される吸気管圧力の減少速変に応じて、減速時に
減量補正を行うと共に、該減速減量実行中に、絞り弁が
全閉状態となり、且つ、エンジン回転数が、アイドル回
転数より若干高めの所定値C例えば1000rPrn)
以下となった時は。
An idle rotation control valve 26 for controlling the idle rotation speed by controlling the opening area of the bypass passage 24, and an idle rotation control valve 26 for controlling the idle rotation speed by controlling the opening area of the bypass passage 24;
An injector 3o for injecting fuel toward the intake boat 3o and an exhaust manifold 32 are provided. an oxygen installed sensor 34 for detecting the air-fuel ratio based on the residual oxygen concentration in the exhaust gas; a 93-way catalytic converter 38 disposed midway in the exhaust pipe 36 on the downstream side of the exhaust manifold 32;
The distributor 40 has a distributor shaft that rotates in conjunction with the rotation of the crankshaft of the engine IO, and the distributor 40 has a built-in distributor. A top dead center sensor 42 and a crank angle sensor 44 output a top dead center signal and a crank angle signal according to the rotation of the distributor shaft, and a top dead center sensor 42 and a crank angle sensor 44 are arranged to detect the engine cooling water temperature while the engine is running. a cooling water temperature sensor 46, a vehicle speed sensor 5o for detecting the vehicle running speed 1&' from the rotational speed of the output shaft of the continuous shooting 48, and the intake pipe pressure sensor 2.
The engine rotation speed determined from the three outputs of intake pipe pressure and the output of the crank angle sensor 44 (accordingly, the basic injection IR per engine stroke is determined from the map, and this is calculated from the output of the throttle sensor 20 and the oxygen concentration). By correcting the air-fuel ratio output from the sensor 34 and the engine cooling water temperature output from the cooling water temperature sensor 46, the fuel injection amount is determined and a valve opening time signal is output to the injector 30. Determines the ignition timing according to the operating state and outputs an ignition signal to the igniter-equipped coil 52,
Furthermore, the intake air of the automobile engine 1o is equipped with a digital control circuit 54 that controls the idle rotation control valve 26 during idle! 'In pressure type electronically controlled fuel injection system,
In the digital control circuit M54, the throttle valve opening 1 is detected from the potentiometer output of the throttle sensor 2°.
According to the rate of decrease in the intake pipe pressure and the rate of decrease in the intake pipe pressure detected from the output of the intake pipe pressure sensor 23, a reduction correction is made during deceleration, and the throttle valve is fully closed during the execution of the deceleration reduction. and the engine speed is a predetermined value C that is slightly higher than the idle speed (for example, 1000 rPrn).
When it becomes below.

前記減速減量を中止するようにしたものである。The above-mentioned deceleration reduction is discontinued.

前記デジタル制御回路54は、第2図に詳細に示す如く
、各種演算処理を行うマイクロプロセッサからなる中央
処理装置(以下CPUと称する)60ト、1ltl配置
1気温センサ14.スロットルセンサ20のポテンショ
メータ、吸気管圧力センサ23、酸素濃度センサ34.
冷却水温センサ46郷から入力されるアナログ信号を、
デジタル信号に変換して順次CP060に取込むための
マルチプレクサ付アナログ入力ポートロ2と、前記スロ
ットルセンサ20のアイドル接点、上死点センサ42、
クランク角センサ44、車速センサ50等から入力され
るデジタル信号を、所定のタイミングでCPU60に取
込むためのデジタル入カポー為 トロ4と、プログラム或いは各種定数等全記憶するため
のリードオンリーメモリ(以下ROMと称する)66と
、CPU60における演算データ等ヲ一時的Kf!憶す
るためのランダムアクセスメモリ(以下RAMと称する
)68と、機関停止時にも補助電源から給電されて記憶
を保持できるバックアップ用ランダムアクセスメモリ(
以下バックアップRAMと称する)70と、CPU6(
lこおける演算結果を、所定のタイミングで前記アイド
ル回転制御弁26.インジェクタ30、イグナイタ付コ
イル52等に出力するためのデジタル出力ポードア2と
、上記各構成機器間を接続するコモンバス74とから構
成されている。
As shown in detail in FIG. 2, the digital control circuit 54 includes a central processing unit (hereinafter referred to as a CPU) 60 consisting of a microprocessor that performs various arithmetic operations, a temperature sensor 14 . Potentiometer of throttle sensor 20, intake pipe pressure sensor 23, oxygen concentration sensor 34.
Analog signal input from cooling water temperature sensor 46,
An analog input port 2 with a multiplexer for converting into a digital signal and sequentially inputting it into the CP060, an idle contact of the throttle sensor 20, a top dead center sensor 42,
A digital input controller 4 is used to input digital signals inputted from the crank angle sensor 44, vehicle speed sensor 50, etc. to the CPU 60 at a predetermined timing, and a read-only memory (hereinafter referred to as "read-only memory") is used to store all programs and various constants. (referred to as ROM) 66 and the calculation data etc. in the CPU 60 are temporarily stored in Kf! A random access memory (hereinafter referred to as RAM) 68 for storing data, and a backup random access memory (hereinafter referred to as RAM) 68 that can be supplied with power from an auxiliary power source and retain data even when the engine is stopped.
(hereinafter referred to as backup RAM) 70, and CPU 6 (hereinafter referred to as backup RAM).
The results of the calculations in the idle rotation control valve 26.1 are sent to the idle rotation control valve 26. It is comprised of a digital output port door 2 for outputting to the injector 30, the igniter-equipped coil 52, etc., and a common bus 74 that connects each of the above-mentioned components.

以下作用を説明する。The action will be explained below.

まずデジタル制御回路54は、吸気管圧力センナ23出
力の吸気管圧力PMと、クランク角センナ44の出力か
ら算出されるエンジン回転数NEにより、ROM66に
予め記憶されているマツプから、基本噴射時間TP(P
M%NEIを絖出す。
First, the digital control circuit 54 calculates the basic injection time TP from a map stored in advance in the ROM 66 based on the intake pipe pressure PM output from the intake pipe pressure sensor 23 and the engine speed NE calculated from the output from the crank angle sensor 44. (P
Procure M%NEI.

更に、各センサからの信号に応じて、次式を用いて前記
基本噴射時間TP (PM、NE lを補正することに
より、燃料噴射時間TAUを算出する。
Furthermore, the fuel injection time TAU is calculated by correcting the basic injection time TP (PM, NE l) using the following equation according to the signals from each sensor.

TAU=TP(PM、NE)本(1+に*F)・・・・
・・(1)ここで、Fは、補正係数で、Fが正である場
合には増量補正を表わし、Fが負である場合には減量補
正を表わしている。父、Kに、前記補正係数Fを更に補
正するための補正倍率であり、通常は1とされている。
TAU = TP (PM, NE) books (1+ *F)...
(1) Here, F is a correction coefficient; when F is positive, it represents an increase correction, and when F is negative, it represents a decrease correction. This is a correction magnification for further correcting the correction coefficient F, and is normally set to 1.

このよ5KL、て決定された燃料噴射時間TAUに対応
する燃料噴射信号が、インジェクタ30に出力され、エ
ンジン回転と同期してインジェクタ30が燃料噴射時間
TAUだけ開かれて、エンジンlOの吸気マニホルド2
8内に燃料が噴射される。
A fuel injection signal corresponding to the fuel injection time TAU thus determined is output to the injector 30, and the injector 30 is opened for the fuel injection time TAU in synchronization with the engine rotation, and the intake manifold 2 of the engine IO is opened.
Fuel is injected into the 8.

本実施例における減速域tは次のようにして行われる。The deceleration region t in this embodiment is performed as follows.

即ち、83図に示す如く、減速時に1時刻t。That is, as shown in FIG. 83, one time t occurs during deceleration.

で絞り弁18が閉じられ始めると、吸気管圧力PMの減
少に先行して、第3図Iに実線Aで示すような、絞り弁
開i[TAの減少速度に応じた迅速な減量補正を行う絞
り弁開1減1111(以下TA減量と称する)が行われ
る。このTA減量に、具体的には1例えば、絞り弁開f
TAの所定時間毎の変化量に応じ圧積算値を積算した値
(負値)を補正係数Fとし1次いで、エンジン回転毎或
いは一定時間毎に、所定レベル塩は高速の、所定レベル
到達後は低速の、所定回複速1で0迄回復させることに
よって行われる。
When the throttle valve 18 begins to close at , the throttle valve opening i[TA is rapidly reduced according to the decreasing speed of the throttle valve opening i[TA, as shown by the solid line A in FIG. A throttle valve opening reduction 1111 (hereinafter referred to as TA reduction) is performed. For this TA reduction, specifically 1, for example, throttle valve opening f
The value (negative value) obtained by integrating the pressure integrated value according to the amount of change in TA for each predetermined time is used as the correction coefficient F. Next, the predetermined level of salt is adjusted at high speed at every engine rotation or every fixed time, after reaching the predetermined level. This is done by recovering to 0 at low speed and multiple speeds 1 for a predetermined number of times.

次いで、吸気管圧力PMが減少し始めると、時刻t、か
ら、#143図(6)に実!IBで示すような、吸気管
圧力PMの減少速叙に応じた精度の高い減量補正を行う
吸気管圧力減量(以下PM減蓋と称する)が行われる。
Next, when the intake pipe pressure PM starts to decrease, from time t, the result appears in #143 (6)! As shown by IB, intake pipe pressure reduction (hereinafter referred to as PM reduction) is performed to perform a highly accurate reduction correction according to the decrease in intake pipe pressure PM.

このPM#1itl!:、具体的には。This PM#1itl! :,in particular.

例えば、吸気管圧力PMO所足時間毎の変化量に応じた
積算値を積算し九億(負値)を補正係数Fとし、次いで
、エンジン回転毎或いは一定時間毎に、所定レベル塩は
高速の、所定レベル到達後は低速のlF定回復速匿で0
迄回復させることによって行われる。
For example, integrate the integrated value according to the amount of change in the intake pipe pressure PMO for each required time, set 900 million (negative value) as the correction coefficient F, and then set the predetermined level of salt at each engine revolution or every fixed period of time at high speed. , after reaching a predetermined level, the slow IF constant recovery speed is reduced to 0.
This is done by restoring it to a certain point.

なお、TA減量とPM減量が重複し九場合に。In addition, there are nine cases in which TA weight loss and PM weight loss overlap.

両者を合わせ行うと過減量になる恐れがある。従って、
本実施例においては、第3図0に太い実線で示す如く、
前記TA減量とPM減量の最小値をたどって1時刻t、
〜t3ではTA減量のみを行い。
If both are used together, there is a risk of excessive weight loss. Therefore,
In this embodiment, as shown by the thick solid line in FIG.
One time t, following the minimum value of the TA weight loss and PM weight loss,
At ~t3, only TA reduction was performed.

時刻ts”’−にでは、PM減量のみを行うようにして
いる。
At time ts''-, only PM reduction is performed.

又、1iitI記TA減量及びPM減量に際して、減速
減蓋夾行中に、絞り弁18が全閉状態となり、且つ、エ
ンジン回転数が、アイドル回転数より若干高めの轡定値
1例えば、11000rp以下となった時は、前記減速
域lを中止する。具体的には、第4図に示す如く、まず
ステップ101で、前記スロットルセンサ20のアイド
ルスイッチがオンであるか否かを判定する。判定結果が
正である場合、即ち、絞り弁18が全閉状態でめる場合
には、ステップ102に進み、エンジン回転数が所定値
、例えば11000rp以下であるか否かを判定する。
In addition, during the TA reduction and PM reduction described in 1iit I, the throttle valve 18 is fully closed during deceleration reduction and capping, and the engine rotation speed is set to a constant value 1 that is slightly higher than the idle rotation speed, for example, 11000 rpm or less. When this occurs, the deceleration region 1 is discontinued. Specifically, as shown in FIG. 4, first, in step 101, it is determined whether the idle switch of the throttle sensor 20 is on. If the determination result is positive, that is, if the throttle valve 18 is fully closed, the process proceeds to step 102, where it is determined whether the engine speed is below a predetermined value, for example 11,000 rpm.

判定結果が正である場合tIcは、ステップ103iC
進み、減速減量中、即ち、TA減減量−はPM減量実行
中であるか否かを判定する。判定結果が正である場合に
は、ステップ104に進み、補正係数Fの値を強制的に
0に戻して、減速域1に中止する。一方、前出ステラ7
101〜103のいずれかの判定結果が否である場合、
即ち、減速減量実行中であっても、アイドルスイッチが
オフであるか、或いは、エンジン回転数が1100Or
pを越えている時には、減速減量を中止することなく続
行する。
If the determination result is positive, tIc is executed in step 103iC.
Then, it is determined whether or not the deceleration reduction is in progress, that is, the TA reduction is in progress. If the determination result is positive, the process proceeds to step 104, where the value of the correction coefficient F is forcibly returned to 0, and the process is stopped in the deceleration region 1. On the other hand, the aforementioned Stella 7
If the determination result of any one of 101 to 103 is negative,
In other words, even if the deceleration reduction is being executed, the idle switch is off or the engine speed is 1100 Or
When the value exceeds p, the deceleration reduction is continued without being stopped.

本実施例における減速減量中のエンジン回転数NEと補
正係数Fの関係の一例を第5図に示す。
FIG. 5 shows an example of the relationship between the engine speed NE and the correction coefficient F during deceleration reduction in this embodiment.

第5図の実線Cから明らかな如く、本実施桝Vこおいて
は、エンジン回転数NEが1000rprnとなった時
刻t1で減速減量が中止され、補正係数Fが強制的に0
[戻されるため、組5図に破線りで示ス如く、エンジン
回転数NEがアイドル回転数以下にWrb込んでしまっ
たり、或いに、同じく第5図に一点鎖線Eで示す如く、
エンジンストールしてしまうことがない。
As is clear from the solid line C in FIG. 5, in this embodiment V, the deceleration reduction is stopped at time t1 when the engine speed NE reaches 1000 rprn, and the correction coefficient F is forced to 0.
[Because of this, the engine speed NE may fall below the idle speed Wrb, as shown by the broken line in Figure 5, or, as shown by the dashed line E in Figure 5,
The engine never stalls.

前記のようK L、て、応答の早いTA減旨と精度の高
いPM減量を組み合わせて減速減量を行うことによって
、適切な減量を実現することができ。
As described above, appropriate weight loss can be achieved by performing deceleration weight reduction by combining quick response TA reduction and highly accurate PM weight reduction.

空燃比を理論空燃比近傍に維持して、減速性能と排気ガ
ス浄化性能を両立することができる。
By maintaining the air-fuel ratio near the stoichiometric air-fuel ratio, it is possible to achieve both deceleration performance and exhaust gas purification performance.

尚、前記実施例においては、TA減量とPM減減量繊組
わせて減速減量を行うようにしていたが、減速減量の組
合わせはこれに限定されない。
In the above embodiment, the deceleration weight loss was performed by combining the TA weight loss and the PM fiber reduction weight loss, but the combination of the deceleration weight loss is not limited to this.

以上説明し九通り1本発明によれば、減速時に適切な減
量補正を行うことができ、空燃比′tlI論空燃比近傍
に維持すると共に、減速状態からアイドリング状1II
K移行する際の、エンジン回転の変化を円滑にして、良
好な減速性能と排気ガス浄化性能を両立することができ
る。従って、吸気管圧力式の電子制御燃料噴射装置を用
い九場合でも、精密な空燃比制御を行うことが可能とな
るという優れ九効果を有する。
According to the present invention, an appropriate reduction correction can be made during deceleration, the air-fuel ratio is maintained near the stoichiometric air-fuel ratio, and the deceleration state is changed to an idling state of 1II.
By smoothing the change in engine rotation during K transition, it is possible to achieve both good deceleration performance and exhaust gas purification performance. Therefore, even when an intake pipe pressure type electronically controlled fuel injection device is used, there is an excellent effect that precise air-fuel ratio control can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図扛、本発明に係る内燃機関の電子制御燃料噴射方
法が採用され九自動車用エンジンの吸気管圧力式電子制
御燃料噴射装置の実施例を示すブロック線図、82図は
、前記5j!施例で用いられているデジタル制御回路の
構成を示すブロック線図、第3図は、前記実施例におけ
る減速減量の様子を示す線図、菖4図は、同じく、減速
減量を中止する丸めのプログラムを示す流れ図、第5図
は、同じく、減速状態からアイドリンク状態に移行する
際の、エンジン回転数と補正係数の変化状態の一例を示
す111図である。 10・・・エンジン、14・・・吸気温センサ、18・
・・絞IF’、20・・・スロットルセンサ、23・・
・吸気管圧力上ンサ、30・・・インジェクタ、34・
・・酸素濃度センサ、40・・・ディストリビュータ、
42・・・上死点センナ、44・・・クランク角センサ
、46・・・冷却水温センナ、54・・・デジタル制御
回路。 代理人  高 矢   論 (ほか1名) #73 圀 (A′名:t  ON−一一し一− t。
FIG. 1 is a block diagram showing an embodiment of an intake pipe pressure type electronically controlled fuel injection device for an automobile engine in which the electronically controlled fuel injection method for an internal combustion engine according to the present invention is adopted. FIG. 3 is a block diagram showing the configuration of the digital control circuit used in the example, FIG. The flowchart of the program, FIG. 5, is also a diagram 111 showing an example of changes in the engine speed and the correction coefficient when transitioning from the deceleration state to the idle link state. 10... Engine, 14... Intake temperature sensor, 18.
...Aperture IF', 20...Throttle sensor, 23...
・Intake pipe pressure sensor, 30...Injector, 34・
...Oxygen concentration sensor, 40...Distributor,
42...Top dead center sensor, 44...Crank angle sensor, 46...Cooling water temperature sensor, 54...Digital control circuit. Agent Takaya Ron (and 1 other person) #73 Kuni (A' name: t ON-11-1-t.

Claims (1)

【特許請求の範囲】[Claims] (り  エンジンの吸気管圧力とエンジン回転数に応じ
て基本噴射11ヲ求めると共に、過渡時は、エンジン運
転状態に応じて前記基本噴射量を補正することによって
燃料噴射量を決定するよ5[L九内燃機関の電子111
1 m燃料噴射方法において、減速時に減量補正を行5
と共に、該減速減量実行中に、絞り弁が全閉状態となり
、且つ、エンジン回転数(2)  111T紀所定値が
、アイドル回転数より若干高めのエンジン回転数とされ
ている特許請求の範囲@1項に記載の内燃機関の電子制
御燃料噴射方法。
(The basic injection amount is determined according to the engine intake pipe pressure and engine speed, and during transient periods, the fuel injection amount is determined by correcting the basic injection amount according to the engine operating condition.) Nine internal combustion engine electronics 111
In the 1 m fuel injection method, a reduction correction is performed during deceleration5.
In addition, during the execution of the deceleration reduction, the throttle valve is in a fully closed state, and the predetermined value of the engine rotation speed (2) 111T is set to be an engine rotation speed slightly higher than the idle rotation speed. The electronically controlled fuel injection method for an internal combustion engine according to item 1.
JP1509882A 1982-02-02 1982-02-02 Electronically controlled fuel injection method of internal-combustion engine Granted JPS58133435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1509882A JPS58133435A (en) 1982-02-02 1982-02-02 Electronically controlled fuel injection method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1509882A JPS58133435A (en) 1982-02-02 1982-02-02 Electronically controlled fuel injection method of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58133435A true JPS58133435A (en) 1983-08-09
JPH0573907B2 JPH0573907B2 (en) 1993-10-15

Family

ID=11879362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1509882A Granted JPS58133435A (en) 1982-02-02 1982-02-02 Electronically controlled fuel injection method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58133435A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045738A (en) * 1983-08-23 1985-03-12 Mazda Motor Corp Controller for fuel of engine with regulated number of cylinders
US4616619A (en) * 1983-07-18 1986-10-14 Nippon Soken, Inc. Method for controlling air-fuel ratio in internal combustion engine
US4627404A (en) * 1983-11-29 1986-12-09 Nippon Soken, Inc. Method and apparatus for controlling air-fuel ratio in internal combustion engine
US4635200A (en) * 1983-06-16 1987-01-06 Nippon Soken, Inc. System for controlling air-fuel ratio in an internal combustion engine
US4633840A (en) * 1984-01-14 1987-01-06 Nippon Soken, Inc. Method for controlling air-fuel ratio in internal combustion engine
JPH04112937A (en) * 1990-08-31 1992-04-14 Mitsubishi Motors Corp Fuel control device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940890A (en) * 1972-08-25 1974-04-17
JPS5061533A (en) * 1973-10-04 1975-05-27
JPS52133418A (en) * 1976-05-03 1977-11-08 Allied Chem Fuel injection system
JPS5618035A (en) * 1979-07-19 1981-02-20 Nissan Motor Co Ltd Fuel controller
JPS56135725A (en) * 1980-03-27 1981-10-23 Toyota Motor Corp Controlling method for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940890A (en) * 1972-08-25 1974-04-17
JPS5061533A (en) * 1973-10-04 1975-05-27
JPS52133418A (en) * 1976-05-03 1977-11-08 Allied Chem Fuel injection system
JPS5618035A (en) * 1979-07-19 1981-02-20 Nissan Motor Co Ltd Fuel controller
JPS56135725A (en) * 1980-03-27 1981-10-23 Toyota Motor Corp Controlling method for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4635200A (en) * 1983-06-16 1987-01-06 Nippon Soken, Inc. System for controlling air-fuel ratio in an internal combustion engine
US4616619A (en) * 1983-07-18 1986-10-14 Nippon Soken, Inc. Method for controlling air-fuel ratio in internal combustion engine
JPS6045738A (en) * 1983-08-23 1985-03-12 Mazda Motor Corp Controller for fuel of engine with regulated number of cylinders
JPH0545778B2 (en) * 1983-08-23 1993-07-12 Mazda Motor
US4627404A (en) * 1983-11-29 1986-12-09 Nippon Soken, Inc. Method and apparatus for controlling air-fuel ratio in internal combustion engine
US4633840A (en) * 1984-01-14 1987-01-06 Nippon Soken, Inc. Method for controlling air-fuel ratio in internal combustion engine
JPH04112937A (en) * 1990-08-31 1992-04-14 Mitsubishi Motors Corp Fuel control device for internal combustion engine

Also Published As

Publication number Publication date
JPH0573907B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
JPH0251056B2 (en)
JPH0251052B2 (en)
JPS58150048A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS6231179B2 (en)
JPS58133435A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS593135A (en) Control of idle revolution number of internal- combustion engine
JPS58214632A (en) Electronically controlled fuel injection method for internal-combustion engine
JPH0512538B2 (en)
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH057546B2 (en)
JPH0372824B2 (en)
JPS58144635A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH059620B2 (en)
JPH0475382B2 (en)
JPS58150049A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58150042A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS593134A (en) Control of idle revolution number of internal- combustion engine
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH059621B2 (en)
JPS58150045A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58144639A (en) Electronically controlled fuel injecting method for internal-combustion engine
JP2615680B2 (en) Air-fuel ratio learning control method for internal combustion engine
JPS6324142B2 (en)