JPH022457B2 - - Google Patents

Info

Publication number
JPH022457B2
JPH022457B2 JP57032031A JP3203182A JPH022457B2 JP H022457 B2 JPH022457 B2 JP H022457B2 JP 57032031 A JP57032031 A JP 57032031A JP 3203182 A JP3203182 A JP 3203182A JP H022457 B2 JPH022457 B2 JP H022457B2
Authority
JP
Japan
Prior art keywords
engine
increase
fuel injection
pipe pressure
intake pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57032031A
Other languages
Japanese (ja)
Other versions
JPS58150035A (en
Inventor
Toshiaki Isobe
Toshimitsu Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3203182A priority Critical patent/JPS58150035A/en
Publication of JPS58150035A publication Critical patent/JPS58150035A/en
Publication of JPH022457B2 publication Critical patent/JPH022457B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/086Introducing corrections for particular operating conditions for idling taking into account the temperature of the engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は、内燃機関の電子制御燃料噴射方法に
係り、特に、吸気管圧力感知式の電子制御燃料噴
射装置を備えた自動車用内燃機関に用いるのに好
適な、エンジンの吸気管圧力とエンジンの回転数
に応じて基本噴射量を求めると共に、過渡時等
は、エンジン運転状態に応じて前記基本噴射量を
増減量補正することによつて燃料噴射量を決定す
るようにした内燃機関の電子制御燃料噴射方法の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronically controlled fuel injection method for an internal combustion engine, and particularly to an engine suitable for use in an automobile internal combustion engine equipped with an electronically controlled fuel injection device that senses intake pipe pressure. The basic injection amount is determined according to the intake pipe pressure and the engine rotational speed, and at transient times, the fuel injection amount is determined by increasing or decreasing the basic injection amount according to the engine operating condition. This invention relates to improvements in electronically controlled fuel injection methods for internal combustion engines.

自動車用エンジン等の内燃機関の燃焼室に所定
空燃比の混合気を供給する方法の一つに、電子制
御燃料噴射装置を用いるものがある。これは、エ
ンジン内に燃料を噴射するためのインジエクタ
を、例えば、エンジンの吸気マニホルド或いはス
ロツトルボデーに、エンジン気筒数個或いは1個
配設し、該インジエクタの開弁時間をエンジンの
運転状態に応じて制御することにより、所定の空
燃比の混合気がエンジン燃焼室に供給されるよう
にするものである。この電子制御燃料噴射装置に
は、大別して、エンジンの吸入空気量とエンジン
回転数に応じて基本噴射量を求めるようにした、
いわゆる吸入空気量感知式の電子制御燃料噴射装
置と、エンジンの吸気管圧力とエンジン回転数に
応じて基本噴射量を求めるようにした、いわゆ
る、吸気管圧力感知式の電子制御燃料噴射装置が
ある。
2. Description of the Related Art One of the methods for supplying an air-fuel mixture at a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine such as an automobile engine uses an electronically controlled fuel injection device. In this method, an injector for injecting fuel into the engine is installed in the intake manifold or throttle body of the engine, for example, in several or one engine cylinder, and the valve opening time of the injector is adjusted depending on the operating state of the engine. By controlling the air-fuel mixture, a mixture having a predetermined air-fuel ratio is supplied to the engine combustion chamber. This electronically controlled fuel injection system can be roughly divided into two types: one that calculates the basic injection amount according to the intake air amount and engine speed of the engine;
There are so-called intake air amount sensing type electronically controlled fuel injection devices and so-called intake pipe pressure sensing type electronically controlled fuel injection devices that calculate the basic injection amount according to the engine intake pipe pressure and engine speed. .

このうち前者は、空燃比を精密に制御すること
が可能であり、排気ガス浄化対策が施された自動
車用エンジンに広く用いられるようになつてい
る。しかしながら、この吸入空気量感知式の電子
制御燃料噴射装置においては、吸入空気量が、ア
イドル時と高負荷時で50倍程度変化し、ダイナミ
ツクレンジが広いので、吸入空気量を電気信号に
変換する際の精度が低くなるだけでなく、後段の
デジタル制御回路における計算精度を高めようと
すると、電気信号のビツト長が長くなり、デジタ
ル制御回路として高価なコンピユータを用いる必
要がある。又、吸入空気量を測定するために、エ
アフローメーター等の非常に精密な構造を有する
測定器を用いる必要があり、設備費が高価となる
等の問題点を有していた。
Among these, the former allows for precise control of the air-fuel ratio, and has come to be widely used in automobile engines equipped with exhaust gas purification measures. However, in this electronically controlled fuel injection system that senses the amount of intake air, the amount of intake air changes by about 50 times between idle and high load, and has a wide dynamic range, so it converts the amount of intake air into an electrical signal. Not only does this result in lower accuracy when calculating, but if the calculation accuracy in the digital control circuit at the subsequent stage is to be increased, the bit length of the electrical signal becomes longer, requiring the use of an expensive computer as the digital control circuit. Furthermore, in order to measure the amount of intake air, it is necessary to use a measuring device with a very precise structure, such as an air flow meter, resulting in problems such as high equipment costs.

一方、後者の吸気管圧力感知式の電子制御燃料
噴射装置においては、吸気管圧力の変化量が2〜
3倍程度と少なく、ダイナミツクレンジが狭いの
で、後段のデジタル制御回路における演算処理が
容易であるだけでなく、吸気管圧力を検知するた
めの圧力センサも安価であるという特徴を有す
る。しかしながら、吸入空気量感知式の電子制御
燃料噴射装置に比べると、空燃比の制御精度が低
く、特に、アイドル時には、各センサからの入力
信号の位相遅れにより正帰還がかかりエンジン回
転がハンチングすることがあつた。このハンチン
グを防止するべく、アイドル時に、吸気管圧力及
びエンジン回転数の変化速度に応じて燃料噴射量
を増減量補正する、第1図Aに示すようなアイド
ル時空燃比補正を行うことも考えられるが、エン
ジン始動後に、エンジン暖機状態に応じて燃料噴
射量を増量補正し、次いで減衰する、第1図Bに
示すような始動後増量と併用された場合には、第
1図Cに示す如く、特にエンジン始動直後に空燃
比がオーバーリツチとなり、エンジン回転が不安
定になるだけでなく、始動性も悪くなつてしまう
という問題があつた。このような問題は、特に、
エンジン冷却水温が低く、低温時に、エンジン暖
機状態に応じて燃料噴射量を増量補正する暖機増
量が更に併用された場合に大である。
On the other hand, in the latter type of electronically controlled fuel injection device that detects intake pipe pressure, the amount of change in intake pipe pressure is
Since the dynamic range is narrow, about 3 times as much, not only is the arithmetic processing in the subsequent digital control circuit easy, but the pressure sensor for detecting the intake pipe pressure is also inexpensive. However, compared to an electronically controlled fuel injection system that senses the amount of intake air, the control accuracy of the air-fuel ratio is lower, and especially when idling, positive feedback occurs due to a phase lag in the input signals from each sensor, causing engine rotation to hunt. It was hot. In order to prevent this hunting, it may be possible to correct the air-fuel ratio at idle as shown in Figure 1A, which corrects the fuel injection amount to increase or decrease during idle according to the rate of change in intake pipe pressure and engine speed. However, when used in conjunction with a post-start increase as shown in Figure 1B, in which after the engine starts, the fuel injection amount is increased according to the engine warm-up state and then attenuated, as shown in Figure 1C. As such, there is a problem in that the air-fuel ratio becomes overrich, especially immediately after starting the engine, which not only makes the engine rotation unstable but also deteriorates startability. Such problems are especially
This is significant when the engine cooling water temperature is low and a warm-up increase, which corrects the fuel injection amount according to the engine warm-up condition, is also used.

本発明は、前記従来の欠点を解消するべくなさ
れたもので、吸気管圧力感知式の電子制御燃料噴
射装置において、特に、低温時の始動性及び始動
後のアイドル安定性を向上することができる内燃
機関の電子制御燃料噴射方法を提供することを目
的とする。
The present invention has been made to eliminate the above-mentioned conventional drawbacks, and is capable of improving starting performance at low temperatures and idling stability after starting, in particular, in an electronically controlled fuel injection system that detects intake pipe pressure. An object of the present invention is to provide an electronically controlled fuel injection method for an internal combustion engine.

本発明は、エンジンの吸気管圧力とエンジン回
転数に応じて基本噴射量を求めると共に、過渡時
は、エンジン運転状態に応じて前記基本噴射量を
増減量補正することによつて燃料噴射量を決定す
るようにした内燃機関の電子制御燃料噴射方法に
おいて、エンジン始動後に、エンジン冷却水温に
応じて増量値の初期値を決定し、次いで所定時間
毎又は所定回転毎に前記初期値を所定値ずつ減衰
させる始動後増量と、アイドル時に、吸気管圧力
の変化速度及びエンジン回転数の変化速度に応じ
て燃料噴射量を増減量補正してアイドル回転を安
定化するアイドル時空燃比補正とを行うと共に、
前記始動後増量実行中は、該アイドル時空燃比補
正を禁止するようにして、前記目的を達成したも
のである。
The present invention determines the basic injection amount according to the engine intake pipe pressure and engine speed, and during transient periods, adjusts the fuel injection amount by increasing or decreasing the basic injection amount according to the engine operating state. In the electronically controlled fuel injection method for an internal combustion engine, after the engine starts, an initial value of the increase value is determined according to the engine cooling water temperature, and then the initial value is increased by a predetermined value at every predetermined time or every predetermined rotation. In addition to increasing the amount after starting to attenuate the engine, and performing an idle air-fuel ratio correction that stabilizes the idle rotation by correcting the increase or decrease of the fuel injection amount according to the rate of change in intake pipe pressure and the rate of change in engine speed during idle,
The purpose is achieved by prohibiting the idling air-fuel ratio correction during the post-start fuel increase.

以下図面を参照して、本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明に係る内燃機関の電子制御燃料噴射方法
が採用された吸気管圧力感知式の電子制御燃料噴
射装置の実施例は、第2図及び第3図に示す如
く、外気を取入れるためのエアクリーナ12と、
該エアクリーナ12より取入れられた吸入空気の
温度を検出するための吸気温センサ14と、吸気
通路16中に配設され、運転席に配設されたアク
セルペダル(図示省略)と連動して開閉するよう
にされた、吸入空気の流量を制御するための絞り
弁18と、該絞り弁18がアイドル開度にあるか
否かを検出するためのアイドル接点及び絞り弁1
8の開度に比例した電圧出力を発生するポテンシ
ヨメータを含むスロツトルセンサ20と、気筒間
の吸気干渉を防止するためのサージタンク22
と、該サージタンク22内の圧力ら吸気管圧力を
検出するための吸気管圧力センサ23と、前記絞
り弁18をバイパスするバイパス通路24と、該
バイパス通路24の途中に配設され、該バイパス
通路24の開口面積を制御することによつてアイ
ドル回転速度を制御するためのアイドル回転制御
弁26と、吸気マニホルド28に配設された、エ
ンジン10の吸気ポートに向けて燃料を噴射する
ためのインジエクタ30と、排気マニホルド32
に配設された、排気ガス中の残存酸素濃度から空
燃比を検知するための酸素濃度センサ34と、前
記排気マニホルド32下流側の排気管36の途中
に配設された三元触媒コンバータ38と、エンジ
ン10のクランク軸の回転と連動して回転するデ
イストリビユータ軸を有するデイストリビユータ
40と、該デイストリビユータ40に内蔵され
た、前記デイストリビユータ軸の回転に応じて上
死点信号及びクランク角信号を出力する上死点セ
ンサ42及びクランク角センサ44と、エンジン
ブロツクに配設された、エンジン冷却水温を検知
するための冷却水温センサ46と、変速機48の
出力軸の回転数から車両の走行速度を検出するた
めの車速センサ50と、前記吸気管圧力センサ2
3出力の吸気管圧力と前記クランク角センサ44
の出力から求められるエンジン回転数に応じてエ
ンジン1工程あたりの基本噴射量をマツプから求
めると共に、これを前記スロツトルセンサ20の
出力、前記酸素濃度センサ34出力の空燃比、前
記冷却水温センサ46出力のエンジン冷却水温等
に応じて増減量補正することによつて、燃料噴射
量を決定して前記インジエクタ30に開弁時間信
号を出力し、又、エンジン運転状態に応じて点火
時期を決定してイグナイタ付コイル52に点火信
号を出力し、更に、アイドル時に前記アイドル回
転制御弁26を制御するデジタル制御回路54と
を備えた自動車用エンジン10の吸気管圧力式電
子制御燃料噴射装置において、前記デジタル制御
回路54内で、エンジン始動後に、エンジン冷却
水温から検知されるエンジン暖機状態に応じて燃
料噴射量を増量補正し、次いで減衰する始動後増
量と、アイドル時に、吸気管圧力及びエンジン回
転数の変化速度に応じて燃料噴射量を増減量補正
するアイドル時空燃比補正とを行うと共に、前記
始動後増量実行中は、該アイドル時空燃比補正を
禁止するようにしたものである。
An embodiment of the intake pipe pressure sensing type electronically controlled fuel injection device employing the electronically controlled fuel injection method for an internal combustion engine according to the present invention is as shown in FIGS. 2 and 3. 12 and
An intake temperature sensor 14 for detecting the temperature of the intake air taken in from the air cleaner 12 is disposed in the intake passage 16, and opens and closes in conjunction with an accelerator pedal (not shown) disposed in the driver's seat. A throttle valve 18 for controlling the flow rate of intake air, an idle contact and a throttle valve 1 for detecting whether or not the throttle valve 18 is at an idle opening degree.
A throttle sensor 20 including a potentiometer that generates a voltage output proportional to the opening of the cylinder 8, and a surge tank 22 for preventing intake air interference between cylinders.
an intake pipe pressure sensor 23 for detecting intake pipe pressure from the pressure in the surge tank 22; a bypass passage 24 that bypasses the throttle valve 18; An idle rotation control valve 26 for controlling the idle rotation speed by controlling the opening area of the passage 24, and an idle rotation control valve 26 for injecting fuel toward the intake port of the engine 10, which is disposed in the intake manifold 28. Injector 30 and exhaust manifold 32
an oxygen concentration sensor 34 disposed in the exhaust gas for detecting the air-fuel ratio from the residual oxygen concentration in the exhaust gas; and a three-way catalytic converter 38 disposed midway in the exhaust pipe 36 downstream of the exhaust manifold 32. , a distributor 40 having a distributor shaft that rotates in conjunction with the rotation of the crankshaft of the engine 10, and a top dead center signal built in the distributor 40 that responds to the rotation of the distributor shaft. and a top dead center sensor 42 and a crank angle sensor 44 that output a crank angle signal, a cooling water temperature sensor 46 disposed in the engine block for detecting the engine cooling water temperature, and the rotational speed of the output shaft of the transmission 48. a vehicle speed sensor 50 for detecting the running speed of the vehicle; and the intake pipe pressure sensor 2.
3-output intake pipe pressure and crank angle sensor 44
The basic injection amount per engine stroke is determined from the map according to the engine rotational speed determined from the output of The fuel injection amount is determined by correcting the increase or decrease of the output according to the engine cooling water temperature, etc., and a valve opening time signal is output to the injector 30, and the ignition timing is determined according to the engine operating state. In the intake pipe pressure type electronically controlled fuel injection device for an automobile engine 10, which outputs an ignition signal to a coil 52 with an igniter, and further includes a digital control circuit 54 that controls the idle rotation control valve 26 during idling. Within the digital control circuit 54, after the engine starts, the fuel injection amount is increased and corrected according to the engine warm-up state detected from the engine cooling water temperature, and then the amount is increased after starting, which is attenuated, and when the engine is idling, the intake pipe pressure and engine rotation are adjusted. The idling air-fuel ratio correction is performed to increase or decrease the fuel injection amount in accordance with the rate of change of the fuel injection amount, and the idling air-fuel ratio correction is prohibited during the execution of the post-start increase.

前記デジタル制御回路54は、第3図に詳細に
示す如く、各種演算処理を行うマイクロプロセツ
サからなる中央処理装置(以下CPUと称する)
60と、前記吸気温センサ14、スロツトルセン
サ20のポテンシヨメータ、吸気管圧力センサ2
3、酸素濃度センサ34、冷却水温センサ46等
から入力されるアナログ信号を、デジタル信号に
変換して順次CPU60に取込むためのマルチプ
レクサ付アナログ入力ポート62と、前記スロツ
トルセンサ20のアイドル接点、上死点センサ4
2、クランク角センサ44、車速センサ50等か
ら入力されるデジタル信号を、所定のタイミング
でCPU60に取込むためのデジタル入力ポート
64と、プログラム或いは各種定数等を記憶する
ためのリードオンリーメモリ(以下ROMと称す
る)66と、CPU60における演算データ等を
一時的に記憶するためにランダムアクセスメモリ
(以下RAMと称する)68と、機関停止時にも
補助電源から給電されて記憶を保持できるバツク
アツプ用ランダムアクセスメモリ(以下バツクア
ツプRAMと称する)70と、CPU60における
演算結果を所定のタイミングで前記アイドル回転
制御弁26、インジエクタ30、イグナイタ付コ
イル52等に出力するためのデジタル出力ポート
72と、上記各構成機器間を接続するコモンバス
74とから構成されている。
As shown in detail in FIG. 3, the digital control circuit 54 is a central processing unit (hereinafter referred to as CPU) consisting of a microprocessor that performs various arithmetic operations.
60, the intake temperature sensor 14, the potentiometer of the throttle sensor 20, and the intake pipe pressure sensor 2.
3. An analog input port 62 with a multiplexer for converting analog signals input from the oxygen concentration sensor 34, cooling water temperature sensor 46, etc. into digital signals and sequentially inputting them into the CPU 60; and an idle contact point of the throttle sensor 20; Top dead center sensor 4
2. A digital input port 64 for inputting digital signals input from the crank angle sensor 44, vehicle speed sensor 50, etc. to the CPU 60 at predetermined timing, and a read-only memory (hereinafter referred to as "read-only memory" for storing programs or various constants, etc.). Random access memory (hereinafter referred to as RAM) 68 for temporarily storing calculation data etc. in the CPU 60, and random access memory (hereinafter referred to as RAM) 68 for backup that can maintain memory by being supplied with power from the auxiliary power supply even when the engine is stopped. A memory (hereinafter referred to as backup RAM) 70, a digital output port 72 for outputting the calculation results in the CPU 60 to the idle rotation control valve 26, injector 30, coil with igniter 52, etc. at a predetermined timing, and each of the above-mentioned components. and a common bus 74 that connects between the two.

以下作用を説明する。 The action will be explained below.

まずデジタル制御回路54は、吸気管圧力セン
サ23出力の吸気管圧力PMと、クランク角セン
サ44の出力から算出されるエンジン回転数NE
により、ROM66に予め記憶されているマツプ
から、基本噴射時間TP(RM,NE)を読出す。
First, the digital control circuit 54 calculates the intake pipe pressure PM output from the intake pipe pressure sensor 23 and the engine rotation speed NE calculated from the output of the crank angle sensor 44.
Accordingly, the basic injection time TP (RM, NE) is read from the map stored in advance in the ROM 66.

更に、各センサからの信号に応じて、次式を用
いて前記基本噴射時間TP(PM,NE)を補正す
ることにより、燃料噴射時間TAUを算出する。
Furthermore, the fuel injection time TAU is calculated by correcting the basic injection time TP (PM, NE) using the following equation according to the signals from each sensor.

TAU=TP(PM,NE)*(1+FSE +FLL)*WL ……(1) ここで、FSEは、始動後増量補正係数、FLL
は、アイドル時空燃比補正係数、WLは、暖機増
量補正係数である。
TAU=TP(PM,NE)*(1+FSE+FLL)*WL...(1) Here, FSE is the post-start increase correction coefficient, FLL
is the idle air-fuel ratio correction coefficient, and WL is the warm-up increase correction coefficient.

このようにして決定された燃料噴射時間TAU
に対応する燃料噴射信号が、インジエクタ30に
出力され、エンジン回転と同期してインジエクタ
30が燃料噴射時間TAUだけ開かれて、エンジ
ン10の吸気マニホルド28内に燃料が噴射され
る。
Fuel injection time TAU determined in this way
A fuel injection signal corresponding to this is output to the injector 30, and the injector 30 is opened for the fuel injection time TAU in synchronization with the engine rotation, and fuel is injected into the intake manifold 28 of the engine 10.

本実施例における始動後増量補正係数FSE及び
アイドル時空燃比補正係数FLLの計算は、第4
図に示すようなプログラムに従つて行われる。
In this example, the calculation of the post-start increase correction coefficient FSE and the idle air-fuel ratio correction coefficient FLL is performed using the fourth
This is done according to the program shown in the figure.

即ち、まずステツプ101で、エンジン冷却水
温THWを取込む。次いで、ステツプ102で、
予めROM66に記憶されている、エンジン冷却
水温THWと始動後増量補正係数FSEの初期値と
の関係を表わしたテーブルから、エンジン冷却水
温THWに応じた始動後増量補正係数FSEの初期
値を読出す。更に、ステツプ103に進み、前回
の減衰から所定時間或いは所定回転数経過したか
否かを判定する。判定結果が正である場合には、
ステツプ104に進み、次式に従つて、その時の
始動後増量補正係数FSEを所定量ΔFSEだけ減衰
したものを、新たな始動後増量補正係数FSEとす
る。
That is, first, in step 101, the engine coolant temperature THW is acquired. Then, in step 102,
The initial value of the post-start increase correction coefficient FSE corresponding to the engine coolant temperature THW is read from a table that is stored in advance in the ROM 66 and represents the relationship between the engine coolant temperature THW and the initial value of the post-start increase correction coefficient FSE. . Furthermore, the process proceeds to step 103, where it is determined whether a predetermined time or a predetermined number of rotations have elapsed since the previous damping. If the judgment result is positive,
Proceeding to step 104, the current post-start increase correction coefficient FSE is attenuated by a predetermined amount ΔFSE according to the following equation, and the result is set as a new post-start increase correction coefficient FSE.

FSE=FSE−ΔFSE ……(2) ステツプ104終了後、或いは、前出ステツプ
103における判定結果が否である場合には、ス
テツプ105に進み、その時の始動後増量補正係
数FSEが0に到達したか否かを判定する。判定結
果が否である場合、即ち、始動後増量実行中であ
る場合には、ステツプ106に進み、アイドル時
空燃比補正係数FLLを0として、このプログラ
ムを終了し、アイドル時空燃比補正が行われない
ようにする。
FSE = FSE - ΔFSE ... (2) After the completion of step 104, or if the judgment result in step 103 is negative, the process proceeds to step 105, and the post-start increase correction coefficient FSE at that time has reached 0. Determine whether or not. If the determination result is negative, that is, if the amount is being increased after starting, the process proceeds to step 106, where the idle air-fuel ratio correction coefficient FLL is set to 0, this program is ended, and the idle air-fuel ratio correction is not performed. Do it like this.

一方、ステツプ105における判定結果が正で
ある場合、即ち、始動後増量が終了している場合
には、ステツプ107に進み、エンジン1回転当
りの吸気管圧力の変化量△PMを求める。次い
で、ステツプ108に進み、求められた吸気管圧
力の変化量△PMに応じて、第5図に示すような
関係に従つて予めROM66に記憶されているテ
ーブルから、吸気管圧力補正係数FPMを読出す。
更に、ステツプ109に進み、エンジン1回転当
りのエンジン回転数の変化量△NEを求める。次
いで、ステツプ110に進み、求められたエンジ
ン回転数の変化量△NEに応じて、第6図に示す
ような関係に従つて予めROM66に記憶されて
いるテーブルから、エンジン回転数補正係数
FNEを読出す。更に、ステツプ111に進み、
次式に示す如く、吸気管圧力補正係数FPMとエ
ンジン回転数補正係数FNEから、アイドル時空
燃比補正係数FLLを算出して、このプログラム
を終了する。
On the other hand, if the determination result in step 105 is positive, that is, if the increase after starting has been completed, the process proceeds to step 107, where the amount of change ΔPM in intake pipe pressure per engine rotation is determined. Next, the process proceeds to step 108, in which an intake pipe pressure correction coefficient FPM is calculated from a table stored in the ROM 66 in accordance with the obtained intake pipe pressure change amount ΔPM according to the relationship shown in FIG. Read out.
Furthermore, the process proceeds to step 109, where the amount of change ΔNE in the engine rotational speed per engine rotation is determined. Next, the process proceeds to step 110, in which an engine speed correction coefficient is determined from a table stored in advance in the ROM 66 according to the relationship shown in FIG.
Read FNE. Further, proceed to step 111,
As shown in the following equation, the idle air-fuel ratio correction coefficient FLL is calculated from the intake pipe pressure correction coefficient FPM and the engine speed correction coefficient FNE, and this program ends.

FLL=FPM+FNE ……(3) 本実施例における最終的な補正係数の変化状態
の一例を第7図に示す。
FLL=FPM+FNE (3) An example of the final change state of the correction coefficient in this embodiment is shown in FIG.

以上説明した通り、本発明によれば、吸気管圧
力感知式の電子制御燃料噴射装置において、始動
後増量とアイドル時空燃比補正が併用されること
によつて生じる、エンジン始動直後の空燃比のオ
ーバーリツチを防止することができ、特に、暖機
増量も行われる低温時のエンジン始動性及び始動
後のアイドル安定性を向上することができるとい
う優れた効果を有する。
As explained above, according to the present invention, in an electronically controlled fuel injection system that detects intake pipe pressure, an overflow of the air-fuel ratio immediately after engine startup occurs due to the combination of post-start increase and idling air-fuel ratio correction. It has the excellent effect of being able to prevent engine richness and, in particular, improving engine startability at low temperatures, where warm-up fuel consumption is also performed, and idling stability after startup.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、内燃機関の電子制御燃料噴射方法に
おいて、始動後増量とアイドル時空燃比補正とを
併用した場合の増量の様子を示す線図、第2図
は、本発明に係る内燃機関の電子制御燃料噴射方
法が採用された、自動車用エンジンの吸気管圧力
感知式電子制御燃料噴射装置の実施例の構成を示
すブロツク線図、第3図は、前記実施例で用いら
れているデジタル制御回路の構成を示すブロツク
線図、第4図は、同じく前記実施例で用いられて
いる、始動後増量補正係数及びアイドル時空燃比
補正係数を算出するためのプログラムを示す流れ
図、第5図は、同じく、エンジン1回転当りの吸
気管圧力の変化量と吸気管圧力補正係数の関係を
示す線図、第6図は、同じく、エンジン1回転当
りのエンジン回転数の変化量とエンジン回転数補
正係数の関係を示す線図、第7図は、前記実施例
における始動後増量及びアイドル時空燃比補正の
様子を示す線図である。 10…エンジン、14…吸気温センサ、18…
絞り弁、20…スロツトルセンサ、23…吸気管
圧力センサ、30…インジエクタ、34…酸素濃
度センサ、40…デイストリビユータ、42…上
死点センサ、44…クランク角センサ、46…冷
却水温センサ、54…デジタル制御回路。
FIG. 1 is a diagram illustrating how the amount increases when the after-starting amount increase and the idling air-fuel ratio correction are used together in an electronically controlled fuel injection method for an internal combustion engine, and FIG. FIG. 3 is a block diagram showing the configuration of an embodiment of an intake pipe pressure sensing type electronically controlled fuel injection device for an automobile engine in which a controlled fuel injection method is adopted, and FIG. 3 is a digital control circuit used in the above embodiment. FIG. 4 is a block diagram showing the configuration of the engine, and FIG. 4 is a flowchart showing a program for calculating the post-start increase correction coefficient and the idle air-fuel ratio correction coefficient, which are also used in the above embodiment. , a diagram showing the relationship between the amount of change in intake pipe pressure per engine revolution and the intake pipe pressure correction coefficient, and FIG. FIG. 7 is a diagram showing the relationship, and is a diagram showing how the amount is increased after starting and the air-fuel ratio at idle is corrected in the embodiment. 10...Engine, 14...Intake temperature sensor, 18...
Throttle valve, 20... Throttle sensor, 23... Intake pipe pressure sensor, 30... Injector, 34... Oxygen concentration sensor, 40... Distributor, 42... Top dead center sensor, 44... Crank angle sensor, 46... Cooling water temperature sensor , 54...digital control circuit.

Claims (1)

【特許請求の範囲】 1 エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共に、過渡時は、エン
ジン運転状態に応じて前記基本噴射量を増減量補
正することによつて燃料噴射量を決定するように
した内燃機関の電子制御燃料噴射方法において、 エンジン始動後に、エンジン冷却水温に応じて
増量値の初期値を決定し、次いで所定時間毎又は
所定回転毎に前記初期値を所定値ずつ減衰させる
始動後増量と、 アイドル時に、吸気管圧力の変化速度及びエン
ジン回転数の変化速度に応じて燃料噴射量を増減
量補正してアイドル回転を安定化するアイドル時
空燃比補正とを行うと共に、 前記始動後増量実行中は、該アイドル時空燃比
補正を禁止することを特徴とする内燃機関の電子
制御燃料噴射方法。
[Scope of Claims] 1. The basic injection amount is determined according to the intake pipe pressure and engine speed of the engine, and during transient periods, the basic injection amount is corrected to increase or decrease depending on the engine operating condition, thereby controlling the fuel consumption. In an electronically controlled fuel injection method for an internal combustion engine in which the injection amount is determined, an initial value of the increase value is determined according to the engine cooling water temperature after the engine is started, and then the initial value is changed at predetermined intervals or at each predetermined rotation. A post-start increase that attenuates by a predetermined value, and an idle air-fuel ratio correction that stabilizes idle rotation by correcting the increase or decrease of the fuel injection amount according to the rate of change in intake pipe pressure and the rate of change in engine speed during idle. An electronically controlled fuel injection method for an internal combustion engine, characterized in that the idling air-fuel ratio correction is prohibited during the execution of the post-start fuel increase.
JP3203182A 1982-03-01 1982-03-01 Electronically controlled fuel injection method of internal-combustion engine Granted JPS58150035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3203182A JPS58150035A (en) 1982-03-01 1982-03-01 Electronically controlled fuel injection method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3203182A JPS58150035A (en) 1982-03-01 1982-03-01 Electronically controlled fuel injection method of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58150035A JPS58150035A (en) 1983-09-06
JPH022457B2 true JPH022457B2 (en) 1990-01-18

Family

ID=12347493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3203182A Granted JPS58150035A (en) 1982-03-01 1982-03-01 Electronically controlled fuel injection method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58150035A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181233A (en) * 1975-01-16 1976-07-16 Automobile Antipollution DENSHISEIGYOSHIKINENRYOFUNSHASOCHI
JPS51117236A (en) * 1975-03-19 1976-10-15 Bosch Gmbh Robert Metod and apparatus for start at low temperature of fuel injection device
JPS5348909U (en) * 1976-09-29 1978-04-25
JPS56146025A (en) * 1980-04-14 1981-11-13 Toyota Motor Corp Electronic control device for engine
JPS5788242A (en) * 1980-11-21 1982-06-02 Nippon Denso Co Ltd Controlling method of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181233A (en) * 1975-01-16 1976-07-16 Automobile Antipollution DENSHISEIGYOSHIKINENRYOFUNSHASOCHI
JPS51117236A (en) * 1975-03-19 1976-10-15 Bosch Gmbh Robert Metod and apparatus for start at low temperature of fuel injection device
JPS5348909U (en) * 1976-09-29 1978-04-25
JPS56146025A (en) * 1980-04-14 1981-11-13 Toyota Motor Corp Electronic control device for engine
JPS5788242A (en) * 1980-11-21 1982-06-02 Nippon Denso Co Ltd Controlling method of internal combustion engine

Also Published As

Publication number Publication date
JPS58150035A (en) 1983-09-06

Similar Documents

Publication Publication Date Title
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JPH0251056B2 (en)
JPS6165038A (en) Air-fuel ratio control system
JPS58150048A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH057548B2 (en)
JPS59549A (en) Method of digitally controlling internal-combustion engine
JPH0316498B2 (en)
JPH0512538B2 (en)
JPH0573907B2 (en)
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH057546B2 (en)
JPH0361644A (en) Correction of fuel injection quantity in warming
JPH022457B2 (en)
JPH0325620B2 (en)
JPH059620B2 (en)
JPH0372824B2 (en)
JPH0325621B2 (en)
JPH0368221B2 (en)
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH0475382B2 (en)
JPH0510490B2 (en)
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58214633A (en) Electronically controlled fuel injection method for internal-combustion engine
JPH059621B2 (en)
JPS58217735A (en) Electronic controlled fuel injection method for internal-combustion engine